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In the conventional PLS-path modeling, the relationship among latent 
variables (LVs) is estimated by fitting a simple/multiple linear regression 
lines. For this purpose, researchers have to assume that the endogenous LV is 
the linear function of exogenous LVs, which is rarely met in real data 
analysis. The statisticians have devised a non-linear model-fitting approach 
to overcome the issue of linearity, but for that purpose, one should assume 
some specific functional form like quadratic, cubic or some degree of a 
polynomial in advance. Hence, when the linearity assumption is violated, the 
only appropriate choice is to use the nonparametric regression approaches. 
This study is mainly focused on the estimation of the latent variable model by 
incorporating three nonparametric smoothing procedures: Kernel regression 
estimate, local polynomial estimate, and smoothing spline estimates. An 
algorithm for LV models is proposed and presented based on nonparametric 
regression approaches for the mode B type measurement model (i.e., 
formative model). From simulation studies, it was clearly concluded that 
nonparametric based LV modeling approaches perform well for large sample 
sizes (i.e., for sample size 100 and above) as compared to standard PLS-path 
modeling procedure. However, for small samples (less than 100 
observations), the standard PLS-path modeling procedure was giving better 
results. 
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1. Introduction 

*The popularity of LV models is increasing day-by-
day not only in the fields of social and behavioral 
sciences but also got a wide application in the 
disciplines of economics, medical and management 
sciences for studying the relationship among LVs as 
well as their associated manifest variables (MVs). In 
conventional PLS-path modeling, the relationship 
among LVs is estimated by applying the multiple 
linear regression. For this purpose, the researcher 
has to assume that the endogenous LV, denoted by 
“𝜂” is the linear function of exogenous LVs, denoted 
by 

 
𝜉1, 𝜉2, … , 𝜉𝑘 . 
 

𝐸{𝜂|𝜉1, 𝜉2, … , 𝜉𝑘} = ∑ 𝜉𝑖
𝑘
𝑖=1 𝛽𝑖                                                     (1) 
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where 𝛽𝑖  denotes the path coefficient and is 
interpreted just like regression coefficients. 

Although these models have a beauty that the 
researcher can easily interpret the coefficient values 
in terms of significant contribution, these models are 
quite restrictive. Especially, the two assumptions: 
linearity and additivity, make it sometimes very 
impractical. The statisticians have devised a non-
linear model-fitting approach to overcome the issue 
of linearity, but for that purpose, practitioners 
should assume some specific functional form like 
quadratic, cubic or some degree of the polynomial in 
advance. Hence, the only choice in the case of non-
linearity is to use the nonparametric regression 
approaches. 

In the literature, the estimation of regression 
function using a nonparametric regression approach 
has been studied for a long time. The most popular 
estimates for nonparametric regression function 
include kernel regression estimate, local polynomial 
regression estimate, and smoothing spline estimates. 
According to Kelava et al. (2017), the use of 
nonparametric regression in the context of LVs is a 
newly emerged research area. Recently, they 
estimated the LV model without specifying the 
underlying distributions. They adopted a two-step 
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procedure: In the first step, the measurement model 
is estimated by using a common factor model, while 
in the second step, nonparametric regression using 
smoothing splines estimates was used to analyze the 
relation among LVs. They did not study the other 
nonparametric estimates like local polynomial or 
kernel regression estimate etc. Hence, there is 
sufficient room left for research in adopting other 
estimation procedures like kernel regression 
estimate, or local polynomial etc. in fitting a latent 
variable model.  

This research study is mainly focused on the 
estimation of the PLS-path model (having the mode 
B type measurement model) by incorporating the 
above mentioned nonparametric smoothing 
procedures. Before presenting the proposed 
procedure, a brief review of PLS-PM is presented in 
the next sections, followed by a review of 
nonparametric regression techniques. In the last 
sections of this article, the results of simulation 
studies, as well as an application to real-world data, 
are presented. 

2. Summary of PLS-PM and nonparametric 
regression 

2.1. PLS-path modeling 

PLS-Path Modeling is a statistical modeling 
approach; in which, several blocks of variables are 
linked together to measure linear dependence 
relationships among them. The history of PLS-Path 
Modeling starts with the advent of NILES (Non-linear 
Iterative Least Squares) (Wold, 1966). Later on, it 
was re-named by Wold (1973) as NIPALS (Non-
linear Iterative PArtial Least Squares), which later on 
extended to PLS-Path Modeling (Wold, 1982). 

PLS-PM is comprised of two parts: First part is 
called "the inner model (or structural model)" while 
the second part is known as "the outer model (or the 
measurement model)" (Lohmöller, 1989). The "inner 
model" specifies the relationships among latent 
variables, while the "outer model" specifies the 
relationships between latent variables and their 
associated MVs. A simple PLS-PM is depicted in Fig. 
1. 

 

 
Fig. 1: PLS-path model 

 

The PLS-PM algorithm suggested by Lohmöller 
(1989) comprises of following steps: 
 
Step I: Initialization: To initialize the algorithm, any 
arbitrary numbers are chosen as weights to 

approximate the LV scores 𝜉  or �̂� by computing the 
linear combination of associated MVs. In simple 
words, each LV is constructed as a weighted sum of 
their associated MVs, and generally, the weights are 
all taken as equal to one (Monecke and Leisch, 
2012). However, in the second and next iterations, 
the weights calculated at step number 4 are utilized. 
Step II: Inner approximation: In this step, each LV 
is estimated by taking the weighted sum of other 
linked LVs. Now, the values of the weights, are 
depending on any of the three weighting schemes:  
 
(i) centroid weighting scheme (Wold, 1982): Which 
utilizes the sign of the correlations between LVs (i.e., 
-1 or +1).  
(ii) factor weighting scheme (Lohmöller, 1989): It 
takes the correlation values instead of their signs.  
(iii) path weighting scheme (Lohmöller, 1989): Also 
known as a structural scheme, in which regression 
coefficients are taken as weights instead of 
correlation coefficients.  
 
Step III: Outer approximation: In step I, all the 
weights were taken as "one" or any arbitrary 
number, but in this step, these weights are 
recalculated on the basis of estimated values of LVs 
obtained in step II according to the type of 
measurement model. 
Step IV: Estimation of LV scores: The outer weights 
computed in step III are now used to estimate the 
LV scores by taking the weighted sum of their 
associated MVs. 
Step V: Repeating the steps until convergence 
occurs: The process of inner approximation and 
outer approximation is repeated (i.e., loop of Step II 
to IV) until and unless the relative change between 
two consecutive iterations of all the outer weights 
become smaller than a prefixed threshold value or 
tolerance value (usually taken as 10-5).  
Step VI: Computing the path coefficients, loading 
coefficients, and total effects: Once the LV scores 
are finalized (after convergence of outer weights 
values), the path coefficients can be estimated by 
fitting multiple linear regression for each 
endogenous LV involved in the inner model.  

2.2. Nonparametric regression 

A major drawback of the classical parametric 
approach is that the observed data may fail to follow 
a specific parametric model and the incorrect 
modeling assumption may lead to seriously flawed 
statistical conclusions. The idea of nonparametric 
regression is to use models of the form: 
 
𝑌𝑖 = 𝑚(𝑋𝑖) + 𝜖𝑖                                                                               (2) 
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where (𝑋𝑖), some class of regression function, and 𝜖 
is an independent and identically distributed 
random variable with zero mean and unit variance. 
The nonparametric regression does not impose any 
functional form assumption and estimates the 
relationship by a smooth curve. The most commonly 
used nonparametric regression techniques are 
kernel regression estimate, local polynomial 
regression estimate, splines smoothing estimate. The 
detail discussion related to all these nonparametric 
estimation methods are available in some excellent 
books like Härdle (1990), Wand and Jones (1995), 
Fan and Gijbels (1996), Györfi et al. (2002), and 
Härdle et al. (2004) are few of them. However, a 
brief review of each is presented here. 

2.2.1. Kernel regression estimate 

Consider the simple case, that is, one predictor 
and one response variable, and the neighborhood 
points of X0 be bounded in the interval X0±h, where 
“h” is called as bandwidth and always a positive real 
number. Then the nonparametric estimator of m(X) 
is given by: 
 

�̂�(𝑋) =
∑ 𝐾𝑛

𝑖=1 (
𝑋𝑖 − 𝑋0

ℎ
) 𝑌𝑖

∑ 𝐾𝑛
𝑖=1 (

𝑋𝑖 − 𝑋0

ℎ
)

 

 

which is known as "local constant" or "Nadarya-
Watson" estimator. The smoothing parameter “h” 
(technically called bandwidth) is adjusted for the 
degree of smoothness. Here “K(.)” is Kernel function. 
There are various forms of Kernel function are 
available in the literature, and these might neither 
affect the estimates of regression function nor the 
form of density. For example, Uniform Kernel 
function may be expressed as: 
 

𝐾(𝑥) = 1,                 𝑥 ∈ [
−1

2
,
1

2
] 

 

The choice of “h” is usually done by trial and 
error, or by cross-validation. The level of 
smoothness depends on the value of “h”, i.e., smaller 
the value of “h”, the wigglier curve (wavy) will be, 
while a larger value of “h” produces a smooth curve. 

2.2.2. Local linear estimate  

NW estimator is a local constant approximation 
where the local constant is achieved by taking the 
average of Y values for all values of X lies in the 
interval X0±h. Another procedure, which fits a linear 
regression line locally (i.e., through the points lying 
in the same neighborhood), then this leads to a 
nonparametric technique known as Local Linear 
(LL) estimator. It's worthy to mention here that, if 
smoothing is increased i.e. when “h” approaches to 
infinity, the LL estimator and the parametric OLS 
estimator will be equal, but remember it is only true 
for a linear relationship. 

2.2.3. Local polynomial estimate 

To further improve the estimation, a local 
quadratic or cubic or polynomial of any order can be 
fitted rather than a local linear regression line. If "p" 
denotes the order of the local polynomial, then the 
local polynomial at p=0 will be equivalent to the NW 
estimator, while p=1 and p=2 will be exactly equal to 
Local Linear (LL) and local quadratic estimators 
respectively. 

2.2.4. Splines smoothing regression 

A spline is defined as a piecewise polynomial 
having pieces connected by a sequence of knots 𝜑1 <
𝜑2 <. . . < 𝜑𝑘   such that these pieces are joining 
smoothly at these knots. The Spline may be linear or 
of any degree. A spline of degree "d" is generally 
expressed as: 
 

𝑆(𝑥) = ∑ 𝛽𝑗

𝑑

𝑗=0

𝑥𝑗 + ∑ 𝜆𝑗

𝑘

𝑗=1

(𝑥 − 𝜑𝑗)+
𝑑  

 

which is a power series and where, 
 

(𝑥 − 𝜑𝑗)+ = {
𝑥 − 𝜑𝑗 ,  𝑥 > 𝜑𝑗

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Hence, if d=1, then the linear spline will be of the 
form: 
 
𝑆(𝑥) = 𝛽0 + 𝛽1𝑥 + 𝜆(𝑥 − 𝜑)+ 

3. Methodology 

3.1. The proposed procedure for using 
nonparametric regression in PLS-Path modeling 

The existing procedure of PLS-path modeling 
consists of six steps, which are already illustrated in 
subsection 1.1. To fit the LV model using the PLS-
path modeling approach, the linearity pattern among 
LVs is assumed, which may not be fulfilled at every 
situation (as discussed in the Introduction section). 
In this section, a fully nonparametric algorithm for 
LV models is proposed by modifying the existing 
methodology of the PLS-path modeling approach. 
The modification is done in two places: 
 
1. A nonparametric weighting scheme is proposed 

based on LOESS (Sen, 1968) approach, i.e. similar 
to path weighting scheme (Lohmöller, 1989), i.e., 
the median of slopes for local linear lines are taken 
as weights. 

2. After finalizing the LV scores, the nonparametric 
regression smoothers (kernel smoothing or local 
polynomial regression or splines smoothing 
regression) is adopted to estimate the relationship 
among LVs instead of fitting simple/multiple linear 
regression. 
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3.2. Simulation study 

In literature, Monte Carlo simulation is 
extensively used to empirically assess the 
performance of statistical procedures under certain 
conditions, like the size of the model, sample size etc. 
In LV models literature, most of the studies are 
designed under the guidelines provided in Paxton et 
al. (2001). In this section, three simulation studies 
are designed to investigate the performance of the 
proposed nonparametric LV modeling algorithm for 
a formative model (Mode B) keeping in view the 
guidelines of Paxton et al. (2001). The R 
programming language is used to code the program 
for the proposed algorithm (with a certain level of 
modifications in the "plspm (version 0.4.9)” package 
(Sanchez et al., 2015). 

The three simulation studies are designed 
(Ranging from simple to complex) small to large 
sample sizes (i.e., seven different sample sizes 
starting from 20, 30, 50, 100, 200, 300, and 500). The 
numbers of replications are fixed at 500. The 
following models were fitted on each data set: 
Conventional PLS-path modeling, and proposed NP-
based LV modeling with three different smoother 
approaches i.e., kernel smoothing, local polynomial 
smoothing (degree=0, degree=1, and degree=2) and 
spline smoothing. The consistency threshold is fixed 
at 0.00001. The performance of a model can be 
judged by considering how much the predicted 
values are closer to observed values. Two different 
consistency criteria MAE (Mean Absolute Error) and 
RMSE (Root Mean Square Error), are used to 
compare the performance of nonparametric-based 
path modeling and the existent PLS-PM approach. 
The predicted values of LV scores are determined by 
a 10-fold cross-validation approach for each sample 
size at each iteration. The simulation results are 
presented by tabular form (the amount of MAE and 
RMSE) in section 4. 

3.2.1. Simulation study 1 

The simplest model is considered in this first 
simulation study, by taking one endogenous LV and 
one exogenous latent variable having two MVs 
associated with each. The path coefficient and 
loading values are fixed at 0.7, as these were taken 
by many researchers for assessing the performance 
of PLS-path modeling. The specified model is 
depicted in Fig. 2. 

 

 
Fig. 2: Specification of the LV model for simulation study 1 

 

Using this specification, 3500 datasets are 
generated with seven different sample sizes starting 
from 20, 30, 50, 100, 200, 300, and 500, i.e. 500 
replications for each sample size produces 500 X 7= 
3500 datasets. The unit value (i.e., 1) is used as an 
initial approximation for weights. Further, different 
skewness values (-3, -4) and kurtosis values (5, 6) 
are applied to generate non-normal data for each 
MV. The path weighting scheme is applied in 
conventional PLS-path modeling while the LOESS 
approach is incorporated for nonparametric-based 
LV Modeling approaches. The results of MAE and 
RMSE for each standardized parameter estimate are 
presented in Table 1. 

 
Table 1: Simulation results for the specified simplest LV model involving two latent variables 

 Sample size PLS-PM Kernel 
Local Polynomial Spline 

Spline 
Degree=0 Degree=1 Degree=2 

M
A

E
 

20 0.7750 0.9266 0.7881 0.8795 1.8003 0.8113 
30 0.7580 0.8868 0.7703 0.8223 0.9242 0.7882 
50 0.7545 0.8767 0.7542 0.7735 0.8421 0.7541 

100 0.7533 0.8140 0.7475 0.7658 0.7831 0.7527 
200 0.7467 0.7963 0.7390 0.7492 0.7658 0.7383 
300 0.7446 0.7957 0.7360 0.7452 0.7544 0.7339 
500 0.7402 0.7783 0.7346 0.7435 0.7452 0.7248 

R
M

SE
 

20 1.0030 1.2067 1.0349 1.3023 3.1764 1.0793 
30 0.9997 1.1598 1.0276 1.2409 1.6388 1.0001 
50 0.9977 1.1019 0.9965 1.0627 1.4146 0.9938 

100 0.9947 1.0760 0.9886 1.0422 1.1154 0.9901 
200 0.9877 1.0493 0.9832 0.9893 1.0514 0.9824 
300 0.9862 1.0341 0.9818 0.9874 1.0202 0.9807 
500 0.9770 1.0041 0.9720 0.9804 0.9836 0.9722 

 

3.2.2. Simulation study 2 

Another model which is more complex than 
model 1 is considered in this simulation study, by 
taking one endogenous LV and two exogenous LVs 
having three MVs associated with each. The path 
coefficient and loading values are fixed at 0.6, as 

these were taken by many researchers for assessing 
the performance of PLS-path modeling (Paxton et al., 
2001). The specified model is depicted in Fig. 3. 

Using these specifications, 3500 datasets are 
generated with seven different sample sizes starting 
from 20, 30, 50, 100, 200, 300, and 500, i.e. 500 
replications for each sample size produces 500 X 7= 
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3500 datasets. The unit value (i.e., 1) is used as an 
initial approximation for weights. Further, different 
skewness values (-3, -4, -5) and kurtosis values (5, 6, 
7) are applied to generate non-normal data for each 
associated MV. The path weighting scheme is applied 

in conventional PLS-path modeling while the LOESS 
approach is incorporated for nonparametric-based 
LV modeling approaches. The results of MAE and 
RMSE for each standardized parameter estimate are 
presented in Table 2. 

 

 
Fig. 3: Specification of the LV model for simulation study 2 

 
Table 2: Simulation results for the specified LV model involving three latent variables 

 Sample Size PLS-PM Kernel 
Local Polynomial 

Spline 
Degree=0 Degree=1 Degree=2 

M
A

E
 

20 0.6666 0.7969 0.6995 0.7898 1.3279 0.6761 
30 0.6657 0.7601 0.6992 0.7553 1.3043 0.6696 
50 0.6638 0.7067 0.6923 0.7202 0.8355 0.6669 

100 0.6624 0.6994 0.6806 0.6978 0.8246 0.6622 
200 0.6617 0.6955 0.6607 0.6818 0.7369 0.6586 
300 0.6543 0.6571 0.6524 0.6712 0.6722 0.6505 
500 0.6426 0.6509 0.6414 0.6499 0.6551 0.6381 

R
M

SE
 

20 0.8985 1.1740 0.9394 1.2320 2.6228 0.9016 
30 0.8947 1.1942 0.9370 1.1647 2.2319 0.8986 
50 0.8930 1.0284 0.9358 1.0443 1.4006 0.8957 

100 0.8923 0.9671 0.9154 0.9721 1.2518 0.8935 
200 0.8918 0.9374 0.8938 0.9647 1.0048 0.8820 
300 0.8883 0.9049 0.8864 0.9577 0.9913 0.8789 
500 0.8809 0.9005 0.8768 0.9099 0.9428 0.8686 

 

3.2.3. Simulation study 3 

Another more complex model is considered in 
this simulation study, by taking two endogenous LV 
and three exogenous LVs having three MVs 
associated with each. Here, to make it more complex, 
the loading coefficient and structural path 
coefficients are also not fixed but varied to become 
more representative for real-world models. The 
loading coefficients are taken as 0.7, 0.6 and 0.5, 
while structural path coefficients are fixed at 0.5 and 
0.6 for both endogenous LVs. The specified model is 
depicted in Fig. 4. 

Using these specifications, 3500 datasets are 
generated with seven different sample sizes starting 
from 20, 30, 50, 100, 200, 300, and 500, i.e. 500 
replications for each sample size produces 500 X 7= 
3500 datasets. The unit value (i.e., 1) is used as an 
initial approximation for weights. Further, different 
Skewness values (-3, -4, -5) and kurtosis values (5, 6, 
7) are applied to generate non-normal data for each 
associated MV. The path weighting scheme is applied 
in conventional PLS-path modeling while the LOESS 
approach is incorporated for nonparametric LV 

modeling approaches. Here, the model involves two 
endogenous variables, so the prediction 
performance of these two LVs are tabulated in Table 
3 and Table 4. While the results of overall prediction 
performance in terms of MAE and RMSE are 
presented in Table 5. 

4. Results and discussion 

4.1. Discussion of simulation results 

The results for the simplest model involving two 
LVs (one endogenous and one exogenous LV) 
presented in Table 1, showed that the amount of 
MAE and RMSE reduces as the sample size increases 
for all approaches. Further, by comparing the results 
row-wise, it can be concluded that a sample size of 
20 and 30, the conventional PLS-PM approach gives 
better prediction performance (MAE= 0.7750, 
0.7580 and RMSE= 1.0030, 0.9997), the smallest 
amount as compare to Kernel or local polynomial or 
spline-based approaches. But as the sample size 
increases, the local polynomial at degree=0 (i.e., 
constant local line approach) and spline-smoothers 
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give better results. At sample size 100 and above, the 
spline-smoother gives more stable and better results 
than other approaches. However, this is applicable 

only in this case, when the model consists of two LVs 
having total of four indicators. 

 
 

 
Fig. 4: Specification of the LV model for simulation study 3 

 
Table 3: Prediction performance of the proposed NP-LV model for 𝜂1 based on 𝜉1 and 𝜉2 

 Sample Size PLS-PM Kernel 
Local Polynomial 

Spline 
Degree=0 Degree=1 Degree=2 

M
A

E
 

20 0.7326 0.8199 0.7425 0.8512 1.3620 0.7412 
30 0.7307 0.8094 0.7418 0.8316 1.1018 0.7437 
50 0.7205 0.7507 0.7304 0.8197 1.0420 0.7314 

100 0.7172 0.7448 0.7229 0.7592 0.8859 0.7252 
200 0.7154 0.7356 0.7147 0.7258 0.7511 0.7137 
300 0.7122 0.7290 0.7097 0.7245 0.7452 0.7066 
500 0.7107 0.7164 0.7053 0.7163 0.7431 0.7028 

R
M

SE
 

20 0.9524 1.0570 0.9719 1.2945 2.5159 0.9863 
30 0.9510 1.0233 0.9655 1.2534 2.1165 0.9840 
50 0.9491 0.9977 0.9520 1.1273 2.1352 0.9541 

100 0.9448 0.9913 0.9494 1.0311 1.5203 0.9493 
200 0.9420 0.9879 0.9405 0.9464 0.9944 0.9396 
300 0.9406 0.9652 0.9371 0.9450 0.9823 0.9356 
500 0.9397 0.9500 0.9321 0.9415 0.9801 0.9303 

 
Table 4: Prediction performance of the proposed NP-LV model for 𝜂2 based on 𝜉2 and 𝜉3 

 Sample Size PLS-PM Kernel 
Local Polynomial 

Spline 
Degree=0 Degree=1 Degree=2 

M
A

E
 

20 0.7338 0.7427 0.7512 0.7632 1.2611 0.7660 
30 0.7283 0.7405 0.7480 0.7618 1.0205 0.7347 
50 0.7203 0.7389 0.7340 0.7578 0.9826 0.7255 

100 0.7171 0.7347 0.7192 0.7395 0.8411 0.7193 
200 0.7163 0.7260 0.7139 0.7227 0.8339 0.7129 
300 0.7116 0.7252 0.7095 0.7186 0.7339 0.7022 
500 0.7109 0.7241 0.7016 0.7133 0.7216 0.6974 

R
M

SE
 

20 0.9565 0.9977 1.0033 1.1709 2.3676 1.1432 
30 0.9546 0.9901 0.9977 1.1425 1.9049 0.9597 
50 0.9507 0.9861 0.9609 1.0452 1.1557 0.9536 

100 0.9484 0.9825 0.9512 0.9654 1.0753 0.9495 
200 0.9467 0.9557 0.9428 0.9527 1.0062 0.9323 
300 0.9413 0.9446 0.9345 0.9487 0.9559 0.9266 
500 0.9399 0.9417 0.9222 0.9417 0.9531 0.9201 

 

The results tabulated in Table 2 for a model 
involving three LVs (one endogenous and two 
exogenous LV) showed that the amount of MAE and 
RMSE reduces as the sample size increases for all 
approaches. Further, by comparing the results row-
wise, it can be concluded that a sample size of 20, 30, 
and 50 the conventional PLS-PM approach gives 
better prediction performance (MAE= 0.6666, 

0.66657, 0.6638 and RMSE= 0.8985, 0.8947, 8930), 
the smallest amount as compare to Kernel or local 
polynomial or spline-based approaches. But as the 
sample size increases, the local polynomial at 
degree=0 (i.e., constant local line approach) and 
spline-smoothers give better results. At sample size 
100 and above, the spline-smoother gives more 
stable and better results than other approaches. 
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From these as well as from Tables 3-5 results, spline- smoothing outperforms in case of large samples.
  

Table 5: Simulation results for the overall prediction performance of the specified LV model involving five latent variables 

 Sample Size PLS-PM Kernel 
Local Polynomial 

Spline 
Degree=0 Degree=1 Degree=2 

M
A

E
 

20 0.7332 0.7813 0.7469 0.8072 1.3116 0.7536 
30 0.7295 0.7750 0.7449 0.7967 1.0612 0.7392 
50 0.7204 0.7448 0.7322 0.7888 1.0123 0.7285 

100 0.7172 0.7398 0.7211 0.7494 0.8635 0.7223 
200 0.7159 0.7308 0.7143 0.7243 0.7925 0.7133 
300 0.7119 0.7271 0.7096 0.7216 0.7396 0.7044 
500 0.7108 0.7203 0.7035 0.7148 0.7324 0.7001 

R
M

SE
 

20 0.9545 1.0274 0.9876 1.2327 2.4418 1.0648 
30 0.9528 1.0067 0.9816 1.1980 2.0107 0.9719 
50 0.9499 0.9919 0.9565 1.0863 1.6455 0.9539 

100 0.9466 0.9869 0.9503 0.9983 1.2978 0.9494 
200 0.9444 0.9718 0.9417 0.9496 1.0003 0.9360 
300 0.9410 0.9549 0.9358 0.9469 0.9691 0.9311 
500 0.9398 0.9459 0.9272 0.9416 0.9666 0.9252 

 

The results tabulated in Tables 3, Tables 4 and 
Tables 5 for a complex model involving five LVs (two 
endogenous and three exogenous LV) showed that 
the amount of MAE and RMSE reduces as the sample 
size increases for all approaches. Further, by 
comparing the results row-wise, it can be concluded 
that at sample size up to 100, the conventional PLS-
PM approach gives better prediction performance 
(MAE= 0.7332, 0.7295, 0.7204, 0.7172 and RMSE= 
0.9545, 0.9528, 0.9499, 0.9466), the smallest amount 
as compare to Kernel or local polynomial or spline-
based approaches.  

But as the sample size increases, the local 
polynomial at degree=0 (i.e., constant local line 
approach) and spline-smoothers give better results. 
At sample size 100 and above, the spline-smoother 
gives more stable and better results than other 
approaches. Hence, from all these simulation results, 
spline-smoothing outperforms in the case of large 
samples. 

4.2. Application of proposed procedure on real 
data set: Offense model 

In this section, the proposed nonparametric-
based path modeling is applied on a real data set 
"Offense". The data set "Offense" contains the offense 
statistics of American's National Football League 
(NFL) for the season 2010-11. The "offense" data set 
is freely available in "plspm" package in R, or it can 
be downloaded from www.teamrankings.com. The 
data set contains 32 observations on 17 manifest 
variables. These 17 MVs are associated with five 
latent variables:  

 
 Rushing Quality (includes three MVs: Rush1 to 

Rush3),  
 Passing Quality (includes three MVs: Pass1 to 

Pass3),  
 Special Teams and others (includes two MVs: 

Spec1 to Spec2),  
 Scoring success (includes three MVs: Scor1 to 

Scor3),  
 Offense performance (includes six MVs: Offen1 to 

Offen6).  

For further details on each MV, see Sanchez and 
Trinchera (2012). The full structural and 
measurement model for the offense model is 
sketched in Fig. 5.  

There are three exogenous LV involve in this 
model (i.e., Special, Rushing and Passing) while the 
Scoring and Offense LVs are depending on one or 
more than one LVs. Suppose this model is fitted by 
the PSL-path modeling technique and factor scores 
are computed. To study the relationship pattern 
among these LVs, the scatterplot of each endogenous 
LV vs exogenous LV is sketched and depicted in Fig. 
6. 

From these scatterplots, it is evident that one of 
the plots don’t exhibit a linear pattern between 
endogenous and exogenous LVs, i.e., scoring vs. 
Special. So, it is clearly an indication of a violation of 
the linearity assumption. Hence, the only choice in 
the case of nonlinearity is to use the nonparametric 
regression approaches. The proposed procedure is 
applied to the "offense" data set and the factor scores 
for Scoring are predicted using PLS-PM, local 
polynomial (degree=0) and spline approaches. The 
performance of NP-LV models is assessed via MAE 
and RMSE, computed through a one-leave-one-out 
cross-validation approach. The MAE and RMSE 
amounts, as well as predicted factor scores for initial 
twenty observations, are tabulated in Table 6. 

The predicted factor scores shown in Table 6 are 
obtained by applying the conventional PLS-PM 
approach and two nonparametric Local polynomials 
(degree=0) and spline smoothing indicate that the 
predictions will not same. For example, the predicted 
factor scores for the fifth observation are -0.5149, -
0.3932 and -0.7007. The reason is that: In the 
conventional PLS-PM approach, simple or multiple 
linear regression lines are globally fitted while using 
nonparametric approaches local lines or curves are 
fitted. Further, the prediction performance measures  

(MAE and RMSE) also indicate that spline smoothing 
and local polynomial are giving better performance 
for the prediction of factor scores of Scoring. 
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Fig. 5: LV model sketch of offence model 

 

 
Fig. 6: Scatter plots for LVs of Offense model 

 
5. Conclusion 

In this study, an algorithm based on 
nonparametric regression is proposed for LV path 
modeling having measurement models of Formative 
type (Mode B). Three approaches: Kernel regression, 
local polynomial regression and spline smoothers 
are implemented to get the relationship among LVs 
and finally to get the predicted factor scores of 

endogenous LVs. The performance of the proposed 
procedure is assessed by conducting a variety of 
simulation designs (simple to complex) and results 
are computed through computing MAE and RMSE. 
Although simulation results give a clear indication 
that the conventional PLS-PM approach is 
performing well at small sample sizes, while 
nonparametric-based proposed procedure 
outperforms in case of large sample size (i.e., sample 
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size 100 and above). The literature also recommends 
that nonparametric regression should be used for 
large sample sizes. But, when the linearity 
assumption is violated the only choice is to use 

nonparametric regression, otherwise, prediction 
results will be over or under-estimated. In the future, 
the current research can be extended by introducing 
the interaction effects in the model. 

 

Table 6: Predicted Factor Scores and prediction performance measures for Scoring LV 

 Observation No. PLS-PM Local Polynomial (degree=0) Spline 

P
re

d
ic

te
d

 F
ac

to
r 

Sc
o

re
s 

1 -0.0564 0.0198 -0.0569 
2 -0.0182 -0.0331 0.0733 
3 0.3329 0.1653 0.3718 
4 0.5334 0.2534 0.5143 
5 -0.5149 -0.3932 -0.7007 
6 2.1805 2.0000 2.1931 
7 0.0195 -0.0303 0.1484 
8 -0.2706 -0.0840 -0.3720 
9 -0.1484 -0.0417 -0.1744 

10 0.0958 0.0422 0.2744 
11 0.3555 0.1248 0.3338 
12 0.2925 0.1748 0.2646 
13 -0.0175 -0.0676 0.0719 
14 0.0567 0.1170 0.0888 
15 -0.1080 -0.0659 -0.0334 
16 -0.1286 0.0510 -0.2547 
17 -0.0095 0.0928 -0.0293 
18 -0.6127 0.1122 -0.6226 
19 -0.1009 -0.1253 0.0086 
20 -0.0709 -0.1015 0.0059 

MAE 0.8587 0.8256 0.8563 
RMSE 1.0749 1.0554 1.0722 

 

List of symbols 

d Degree of spline 
h Bandwidth 
p Order of local polynomial 
𝑋 Manifest variable associated with exogenous LV 
𝑌 Manifest variable associated with endogenous LV 
𝛽 Path coefficients 
𝜖 Disturbance term in regression model 
𝜑 Knot position in spline 
𝜂 Exogenous Latent Variable 
𝜉 Endogenous Latent Variable 
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