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In this paper, we are going to discuss the fuzzy logic techniques and their 
importance in the control of the nonlinear systems.  The double fed Induction 
generator (DFIG) is wildly used in wind energy conversion systems. The 
control of DFIG is very complicated due to its strong nonlinearities. The first 
case is a controller with 3 sets in inputs and outputs. The second case is a 
controller with 5 sets in inputs and outputs. The third case is a controller 
with 7 sets in inputs and outputs. The objective of this paper is to propose a 
new control strategy based on fuzzy logic in order to control the power of the 
wind turbine and make it adaptable to different constraints. A simulation 
study is done to validate this control strategy. 
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1. Introduction 

* Renewable energy resources represent an 
alternative solution to encounter the growing energy 
needs of our society, and to reduce environmental 
issues due to fossil fuels consumption. Renewable 
sources can be used to produce energy again and 
again i.e. solar energy, wind energy, geothermal 
energy, marine energy, biomass energy, biofuels, and 
many more. Renewable energy sources have the 
ability to provide energy free of air pollutants and 
greenhouse gasses by emitting zero or nearly zero 
percent of these gasses (Ebeed et al., 2013). Wind 
power systems provide several benefits including 
electrical energy production and reliability 
improvements. Thanks to recent progress in modern 
power electronics, a wind turbine with a doubly fed 
induction generator (DFIG) has drawn increasing 
attention. In the DFIG, the induction generator is 
grid-connected at the stator as well as at the rotor 
mains via a converter (Ismail and Bendary, 2016). 
The oriented vector control was widely applied to 
the rotor side converter of the DFIG. This allows 
using classical methods to active and reactive 
powers of the machine (Alaboudy et al., 2013; Wang 
et al., 2015). Nevertheless, these methods are not 
robust due to the presence of nonlinearities and 
uncertainties. In contrast to the conventional control 
theory, which is based on the system mathematical 
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models, fuzzy control is a kind of model-free control 
by incorporating linguistic information from human 
experts. In this context, we propose to use a fuzzy 
controller for power regulation for a DFIG (Tapia et 
al., 2003; Yang et al., 2012; Hussain et al., 2017). We 
will show the effect of the number of used fuzzy sets 
on system performances. The rest of paper is 
organized as follows: After the wind energy 
conversion system modeling, we present the fuzzy 
controller design. Before concluding, several 
simulation results are presented to confirm our 
objectives (Mi et al., 2004; Agarwal et al., 2009). 

2. Wind energy conversion system modeling 

The synoptic scheme of the studied system is 
shown in Fig. 1. It is composed of a wind turbine, a 
doubly fed induction Generator (DFIG), a diode 
rectifier, a filter and a PWM controlled inverter 
(Kesraoui et al., 2011). 

2.1. Wind turbine model 

As presented in, the turbine power and developed 
torque are given by the following expressions:  
 

𝑃𝑚 =
1

2
𝜌𝜋𝑅2𝜈3𝐶𝑝(𝜆)                                                                    (1) 

𝑇𝑚 =
𝑃𝑚

𝛺
=

1

2𝜆
𝜌𝜋𝑅3𝜈2𝐶𝑝(𝜆)                                                        (2) 

 

where, 𝜌 is air density; 𝑅 is blade length; 𝜈 is wind 
speed; 𝐶𝑝 is power coefficient; Ω is turbine angular 

speed; 𝜆 =
Ω𝑅

𝜈
  is the ration between the turbine 

angular speed and the wind speed. Its value is given 
by the manufacturer and can be defined by a 
mathematical approximation.  
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Fig. 1: Synoptic of the studied system 

 
2.2. DFIG model 

To covert the wind power to electrical one, we 
have chosen to use a DFIG generator due to its high 
energy efficiency, reduced mechanical stress on the 
wind turbine, and relatively low power rating of the 
connected power electronics converter of low costs 
(Bouscayrol et al., 2005; Vlad et al., 2010). The model 
of the DFIG is expressed in the (d-q) reference frame 
by the following equations:  

2.2.1. Electrical equations  

The DFIG mathematical model is analyzed in the 
𝑑𝑞 reference frame and is defined by the following 
equations: 

 

{
 
 

 
 
𝑉𝑑𝑠=𝑅𝑠𝑖𝑑𝑠+

𝑑

𝑑𝑡
𝜑𝑑𝑠−𝜔𝑠𝜑𝑞𝑠

𝑉𝑞𝑠=𝑅𝑠𝑖𝑞𝑠+
𝑑

𝑑𝑡
𝜑𝑞𝑠−𝜔𝑠𝜑𝑑𝑠

𝑉𝑑𝑟=𝑅𝑟𝑖𝑑𝑟+
𝑑

𝑑𝑡
𝜑𝑑𝑟−𝜔𝑟𝜑𝑞𝑟

𝑉𝑞𝑟=𝑅𝑟𝑖𝑞𝑟+
𝑑

𝑑𝑡
𝜑𝑞𝑟−𝜔𝑟𝜑𝑑𝑟

                                                                  (3) 

 
where, 𝑅𝑠 is stator resistance; 𝜑𝑑𝑠  is direct stator 
flux; 𝜔𝑠 is electrical speed of stator; 𝜑𝑞𝑠 is 

quadrature stator flux; 𝑅𝑟 is rotor resistance; 𝜑𝑑𝑟  is 
direct rotor flux; 𝜔𝑟 is electrical speed of rotor; 𝜑𝑞𝑟 is 

quadrature rotor flux. 

2.2.2. Flux linkage equations 

The electromagnetic torque depends on 𝑑𝑞 flux 
and the currents: 

 
𝜑𝑑𝑠=𝐿𝑠𝑖𝑑𝑠+𝑀𝑠𝑟𝑖𝑑𝑟
𝜑𝑞𝑠=𝐿𝑠𝑖𝑞𝑠+𝑀𝑠𝑟𝑖𝑞𝑟

𝜑𝑑𝑟=𝐿𝑟𝑖𝑑𝑟+𝑀𝑠𝑟𝑖𝑑𝑠
𝜑𝑞𝑟=𝐿𝑟𝑖𝑞𝑟+𝑀𝑠𝑟𝑖𝑞𝑠

                                                                                (4) 

 

where, 𝐿𝑠 is stator inductance; 𝑀𝑠𝑟 is mutual 
inductance; 𝐿𝑟 is rotor inductance. 

2.2.3. Mechanical equation 

The mechanical equation for the model DFIG is: 

𝐽
𝑑

𝑑𝑡
Ω = 𝑇𝑤 − 𝑇𝑒 − 𝐵Ω                                                                     (5) 

 

where, 𝐽 is moment of inertia; 𝑇𝑤  is wind torque; 𝑇𝑒  is 
electromagnetic torque; B is damping coefficient. 
 

𝑇𝑒 = 𝑝(𝜑𝑑𝑠𝑖𝑞𝑠 − 𝜑𝑞𝑠𝑖𝑑𝑠)                                                              (6) 

where, 𝑝 is pair number of poles. 

3. Control strategy 

To control the DFIG simply, we should guarantee 
an independent control of active and reactive 
powers via stator flux orientation. For this, we align 
the stator flux along the axis (d) of the rotating 
frame, which can be expressed as:  

 
𝜑𝑑𝑠 = 𝜑𝑠 
𝜑𝑞𝑠 = 0.                                                                                            (7) 

 
Furthermore, we assume that the stator is 

supplied by a stable grid and its resistance can be 
neglected. Then, we can obtain: 

 
𝑉𝑞𝑠 = 𝑉𝑠 

𝑉𝑑𝑠 = 0.                                                                                            (8) 

 
Otherwise, the active and reactive powers are 

given by the following expressions: 
 

𝑃𝑠 = 𝑉𝑑𝑠𝑖𝑑𝑠 + 𝑉𝑞𝑠𝑖𝑞𝑠 

𝑄𝑠 = 𝑉𝑞𝑠𝑖𝑑𝑠 − 𝑉𝑑𝑠𝑖𝑞𝑠.                                                                     (9) 
 

According to Eqs. 7 and 8 and the considered 
simplifications, Eq. 9 becomes: 

 

{
𝑝𝑠 = −𝑉𝑠

𝑀𝑠𝑟

𝐿𝑠
𝑖𝑞𝑟

𝑄𝑠 = −𝑉𝑠
𝑀𝑠𝑟

𝐿𝑠
𝑖𝑑𝑟 +

𝑉𝑠𝜑𝑠

𝐿𝑠

                                                            (10) 

 
Fig. 2 gives the synoptic scheme of the simplified 

model of Eq. 10. 

4. Fuzzy logic control design  

Given its many applications in the industrial 
world and the large number of research work 
developed, fuzzy logic is a very good solution for 
controlling nonlinear systems without the 
requirement of their mathematical model. General 
configuration of FLC consist of following four stages 
namely:  

 

 Fuzzification: allows to transform numerical 
inputs to fuzzy ones,  

 Rule base: a collection of rules in form of IF-Then 
describing the human making decision. 
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 Fuzzy inference: a mechanism allowing to exploit 
fuzzy rule base to calculate the linguistic output.  

 Defuzzification: converts the inferred decision 
from the linguistic variables back the numerical 
values.  
 
Fig. 3 gives basic configuration a fuzzy logic 

controller. In this work, we use two fuzzy logic 
controllers for active and reactive powers regulation. 

For each fuzzy controller, we use the error and its 
time derivative. For fuzzification we adopt Gaussian 
fuzzy sets. Three cases will be studied: 3, 5 and 7 
fuzzy sets for each input. Mamdani’s MAX-MIN 
manner is considered as the inference method, in 
which there are several methods for interface 
engine, while the center of gravity is used for the 
defuzzification process. The bloc diagram of the 
proposed control is given by Fig. 4.  

 

 
Fig. 2: Simplified model of DFIG 

 

FuzzificationInputs
Fuzzy Interface

+
Rules

Defuzzification Outputs

 
Fig. 3: Basic configuration a fuzzy logic controller 

 
Fig. 4: The bloc diagram of the proposed control 
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4.1. Case 1: Fuzzy controller with 3 sets in inputs 
and outputs 

Fig. 5 show the membership functions of the 
inputs: error (e) and variation of error (de), and the 
output (u). Here N is negative, Z is zero, P is positive 
(Amine et al., 2014).  

Table 1 shows the rules base. The rows represent 
the rate of the error e and the columns represent 
error change �̇� . Each pair (e, �̇�) determines the 
output level NB to PB corresponding to u . 

4.2. Case 2: Fuzzy controller with 5 sets in inputs 
and outputs 

Fig. 6 shows the membership functions of the 
inputs: error (e) and the change of error (de), and 

the output (u). Here NB is negative big, N is negative, 
Z is zero, P is positive and PB is positive big, are 
labels of fuzzy sets and their corresponding 
membership functions (Amine et al., 2014). 

  
Table 1: Rules base 

u 
𝑑𝑒 

N Z P 

e 
N N N Z 
Z N Z P 
P Z P P 

 
Table 2 shows the rules base. The rows represent 

the rate of the error change 𝑒 and the columns 
represent the error (e). Each pair (e, 𝑒) determines 
the output level GN (Big Negative) to GP (Big 
Positive) corresponding to u. 
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Fig. 5: Fuzzy sets of e, de and u 

 

4.3. Case 3: Fuzzy controller with 7 sets in inputs 
and outputs 

Fig. 7 show the membership functions of the 
inputs: error (e) and the change of error (de), and 
the output (u). Here NB is negative big, NM is 
negative medium, NS is negative small, Z is zero, PS 
is positive small, PM is positive medium and PB is 
positive big, are labels of fuzzy sets and their 
corresponding membership functions. Table 3 gives 
the rules base of corresponding fuzzy controller 
(Thongam et al., 2011; Amine et al., 2014). 

5. Simulation and results 

In this section, we have simulated, in Matlab-
Simulink, the system described in Fig. 4. For 
simplicity, we have supposed that the inverter is 
perfect. First, we have simulated the system as it is 
described in Fig. 4. To extract the maximum power 
that can be generated by the DFIG. The desired active 

power is the one that can be delivered by the wind 
turbine.  

 
Table 2: Rules base 

u 
de 

GN N Z P GP 

e 

GN GN GN N N Z 
N GN N N Z P 
Z N N Z P P 
P N Z P P GP 

GP Z P P GP GP 

 
Table 3: Rules base of fuzzy controller 

u 
de 

NB NM NS Z PS PM PB 

e 

NB NB NB NB NB NM NS Z 
NM NB NB NB NM NS Z PS 
NS NB NB NM NS Z PS PM 
Z NB NM NS Z PS PM PB 

PS NM NS Z PS PM PB PB 
PM NS Z PS PM PB PB PB 
PB Z PS PM PB PB PB PB 
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Fig. 6: Fuzzy sets of e, de and u 
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Fig.7: Membership functions: error (e), Δe, and output u 

 
For simulation, the following parameters have 

been used: 
 
DFIG Parameters: Rated output power 7,5 kW, 

Rated phase voltage 400V, f=50Hz, p=2, Rr=0.62Ω, 
Rs=0.455Ω, Lr=0.081H, Ls=0.084H, Msr=0.078H, 
J=0.3125 kg.m2, f=0.00673 N.m/s. 

 
Fig. 8 shows that using Fuzzy logic technique 

allowed us to have high performances to follow the 
desired trajectory without overshoot and good 
accuracy. The number of fuzzy sets used to describe 
each fuzzy variable (inputs and output) has a great 
impact on the number of rules in the inference bloc, 
and then on the performance of the fuzzy logic 
controller. The fuzzy logic controller with seven 
fuzzy sets (49 rule) has more accuracy then with five 
fuzzy sets (25 rules). 

Fig. 9 shows the test of robustness in the case of 
variation of rotor resistance (+50%), the response of 
system shows the robustness of the fuzzy controller, 
in tracking the desired trajectory even in the 
presence of intern or extern disturbances. 

6. Conclusion 

In this paper, we have interested to the design of 
the fuzzy logic controller to the control the power 
generated by the wind turbine based on a DFIG. The 
simulation results show the possibility of the control 
of the power generated by the DFIG to the grid by 
controlling the rotor voltages and the high 
performances of the controller based on fuzzy logic. 
Future works will be dedicated to type-2 fuzzy logic 
to enhance the robustness of our controller. 
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Fig. 8: Response of the system when using power Fuzzy logic controller 
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Fig. 9: Test of robustness in the case of variation of Rr (+ 50%) 
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