
 International Journal of Advanced and Applied Sciences, 6(9) 2019, Pages: 54-57  
 

 
 

 
 

Contents lists available at Science-Gate  

International Journal of Advanced and Applied Sciences 
Journal homepage: http://www.science-gate.com/IJAAS.html 

 

 

54 

 

Lagrangian-Taylor differential transformation dynamics analysis of self-
balancing inverted pendulum robot  

 
Michael C. Agarana 1, 2, *, Esther T. Akinlabi 1, Olasunmbo O. Agboola 2 
 
1Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg, South Africa 
2Department of Mathematics, Covenant University, Ota, Nigeria 
 

A R T I C L E  I N F O   A B S T R A C T  

Article history: 
Received 7 July 2018 
Received in revised form 
5 July 2019 
Accepted 6 July 2019 

Robots are fast becoming a fixture in our lives. Kinematics and dynamics of 
self-balancing inverted pendulum robot modelled as an inverted are derived 
in this paper using Lagrange energy method. The derived equation of motion 
of the inverted pendulum robot was analyzed via Taylor differential 
transformation. Maple Computer software was used for the plotting of 
graphs for the result obtained. The results show that the position and motion 
of the inverted pendulum robot have a significant effect on achieving its self-
balance. 
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1. Introduction 

*Robotics is an interdisciplinary branch of 
engineering and science that includes mechanical 
engineering, electrical engineering, computer 
science, and others. Robotics deals with the design, 
construction, operation, and use of robots, as well as 
computer systems for their control, sensory 
feedback, and information processing. These 
technologies are used to develop machines that can 
substitute for humans. Robots can be used in any 
situation and for any purpose, but today many are 
used in dangerous environments (including bomb 
detection and de-activation), manufacturing 
processes, or where humans cannot survive. Robots 
can take on any form but some are made to resemble 
humans in appearance. This is said to help in the 
acceptance of a robot in certain replicative behaviors 
usually performed by people. Such robots attempt to 
replicate walking, lifting, speech, cognition, and 
basically anything a human can do. Many of today's 
robots are inspired by nature, contributing to the 
field of bio-inspired robotics. For years now, robots 
have worked tirelessly in the shadows to increase or 
enhance the productivity of humans. The capabilities 
of robots have evolved well beyond the banality of 
those grainy industrial films. Today's industrial 
robots have incredible dexterity to match their brute 
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strength, and can actually learn on the job. And then 
there’s an entirely new breed of robots—some in 
humanoid form, and others that take highly practical 
forms all their own—that can walk, talk, save lives, 
and perform critical jobs in extreme environments, 
or simply take care of mundane tasks at home while 
we’re out enjoying our lives (Yazdani et al., 2016; 
Chen and Wu, 1996). 

The inverted pendulum is a classic automation 
problem that has numerous theoretical approaches 
as well as a multitude of practical applications 
(Hassan, 2008; Matesica et al., 2016). It can used to 
model the motion of parts or whole robot. 

An inverted pendulum robot is a dynamical 
system. It is a classic automation problem that has 
numerous theoretical approaches as well as a 
multitude of practical applications. Its focal point of 
mass is over its turn point (Agarana and Agboola, 
2015; Agarana and Iyase, 2015). While a typical 
pendulum is steady when hanging downwards, an 
inverted pendulum is inalienably shaky, and must be 
effectively adjusted so as to stay upright; this should 
be possible either by applying a torque at the turn 
point, by moving the rotate point on a level plane as 
a major aspect of an input framework, changing the 
rate of revolution of a mass mounted on the 
pendulum on a hub parallel to the turn hub and 
subsequently creating a net torque on the pendulum, 
or by swaying the rotate point vertically (Agarana 
and Iyase, 2015; Agarana and Bishop, 2015; Agarana 
and Emetere, 2016). The dynamical system is 
modelled as Lagrange's equation. It is a linear 
second-order non- homogenous partial differential 
equation. This equation was transformed to series 
using Taylor Differential Transformation method 
(TDTM). Application of Differential transformation 
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and related methods has proved over the years to be 
very efficient in solving differential equations. They 
are often referred to as semi – analytical methods.   

2. Problem formulations 

2.1. Equation of motion 

Using Lagrange's equations, which employ a 
single scalar function rather than vector 
components, to derive the equations modelling an 
inverted pendulum we take partial derivatives. In 
classical mechanics, the natural form of the 
Lagrangian is defined as (Chen and Wu, 1996): 

  
𝐿 = 𝐸𝑘 − 𝐸𝑝                                                                 (1) 

 
where, 𝐸𝑘and 𝐸𝑝 are kinetic energy and potential 

energy respectively. 𝐸𝑝is defined by its mass m, and 

the gravitational constant g: 
 
𝐸𝑝 = 𝑚𝑔ℎ                                                                                        (2) 

 
the kinetic energy 𝐸𝑘  of a point object is defined by 
its mass m and velocity v:  
 

𝐸𝑘 =
1

2
𝑚𝑣2.                                                                                     (3) 

 

Equation of motion can be directly derived by 
substitution using Euler Lagrange equation: 
 
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝜃
) =

𝜕𝐿

𝜕𝜃
                                                                                     (4) 

 
where 𝜃 is the angle the pendulum makes with the 
upward vertical.  

2.2. Inverted pendulum dynamic problem 
formulation 

From the Fig. 1 we have:  
 

𝑥 = 𝑙 𝑠𝑖𝑛𝜃                                                                                        (5) 
𝑦 = 𝑙 𝑐𝑜𝑠𝜃                                                                                        (6) 

 

this implies 
 
𝑑𝑥

𝑑𝑡
= 𝑙 𝑐𝑜𝑠(𝜃)

𝑑𝜃

𝑑𝑡
                                                                     (7) 

 
and 
 
𝑑𝑦

𝑑𝑡
= −𝑙 𝑠𝑖𝑛(𝜃)

𝑑𝜃

𝑑𝑡
                                                                    (8) 

 

application of the Lagrangian gives: 
 

𝐿 =
1

2
𝑚𝑙2 (

𝑑𝜃

𝑑𝑡
)

2
− 𝑚𝑔𝑙 𝑐𝑜𝑠𝜃                           (9) 

 
which implies 
 
𝜕𝐿

𝑑𝜃
= 𝑚𝑔𝑙 𝑠𝑖𝑛𝜃                                                                             (10) 

𝜕𝐿

𝜕(
𝑑𝜃

𝑑𝑡
)

= 𝑚𝑙2 𝑑𝜃

𝑑𝑡
                                                                              (11) 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕(
𝑑𝜃

𝑑𝑡
)
) = 𝑚𝑙2 𝑑2𝑦

𝑑𝑡2
                                                                   (12) 

𝑚𝑙2 𝑑2𝜗

𝑑𝑥2
𝑚𝑔𝑙 𝑠𝑖𝑛𝜃                                                                        (13) 

 
which leads to 
 
𝑑2𝜃

𝑑𝑡2 =
𝑔

𝑙
 𝑠𝑖𝑛𝜃                                                                                 (14) 

 
with the oscillator, the above equation becomes: 
 
𝑑2𝜃

𝑑𝑡2
=

1

𝑙
[𝑔 − 𝐴𝜔2𝑠𝑖𝑛(𝜔𝑡)]𝑠𝑖𝑛𝜃                                               (15) 

 
where 𝜔𝑡 is the phase the driving force term. 

 

 
Fig. 1: Inverted pendulum robot on a cart 

2.3. Taylor differential transformation 

Given the 𝑘𝑡ℎ derivative of the function 𝜃(𝑡) with 
respect to time 𝑡 as 
 
𝜕𝑘𝜃(𝑡)

𝜕𝑡𝑘
= 𝜑(𝑡, 𝑘),                                                 (16) 

 
the differential transformation of the function 𝜃(𝑡) at 
𝑡 = 𝑡1, is defined as (Agarana and Emetere, 2016): 

 

𝜃(𝑡) = 𝜑(𝑡, 𝑘) = [
𝜕𝑘𝜃(𝑡)

𝜕𝑡𝑘 ]
𝑡=𝑡1

.                                                  (17) 

 

From the Taylor theorem, it is assumed that the 
function 𝜃(𝑡) can be expanded in the form of Taylor 
series as follows (Hassan, 2008): 

 

𝜃(𝑡) = ∑
(𝑡−𝑡1)

𝑘!
𝜃(𝑘).                                                                   (18) 

 
For generalization, following Chen and Wu 

(1996), if 
 

𝜃(𝑘) = 𝑀(𝑘) [
𝜕𝑘𝑞(𝑡)𝜃(𝑡)

𝜕𝑡𝑘 ]
𝑡=𝑡0

                                                    (19) 

 
then 

 

𝜃(𝑡) =
1

𝑞(𝑡)
∑

(𝑡−𝑡0)𝑘

𝑘!

𝜃(𝑘)

𝑀(𝑘)
∞
𝑘=0                                                       (20) 
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where 𝑀(𝑘) ≠ 0 is called the proportional 
coefficient of the differential transformation, and 
𝑞(𝑡) ≠ 0 is called the transformation kernel of the 
given function 𝜃(𝑡). 

3. Analysis 

Based on the aforementioned equations we can 
write:  

 
𝑑2𝜃

𝑑𝑡2
=

1

𝑙
[𝑔 − 𝐴𝜔2𝑠𝑖𝑛(𝜔𝑡)]𝑠𝑖𝑛𝜃                                               (21) 

𝑙
𝑑2𝜃

𝑑𝑡2
− 𝑔𝑠𝑖𝑛𝜃 + 𝐴𝜔2𝑠𝑖𝑛(𝜔𝑡)𝑠𝑖𝑛𝜃 = 0                                  (22) 

 
with the initial conditions 

 
𝜃𝑡=0 = 𝜃0                                                                                       (23) 

[
𝑑𝜃

𝑑𝑡
]

𝑡=0
= 𝜃0 = 𝑣0                                                                       (24) 

 
where, 𝑙, 𝑔, 𝑡, 𝐴, 𝜔, 𝜃0, 𝑣0 denote length, acceleration 
due to gravity, time, initial displacement and 
velocity. Following Chen and Wu (1996) introducing 
the following dimensionless parameters and 
variables, 𝐶, 𝐾, 𝑋 and 𝑟 as defined. 
 

𝐶 =
𝑐𝜃0

𝑚𝑣0
, 𝐾 =

𝑘𝜃0
2

𝑚𝑣0
2 , 𝑋 =

𝜃

𝜃0
, 𝑟 =

𝑣0𝑡

𝜃0
                                         (25) 

 
with the following assumptions; 𝑠𝑖𝑛𝜃 = 𝜃, 𝑙 = 1, 𝐵 =
𝐴𝜔2, 𝑤𝑡 = 𝜃 we have  

 
�̈� − 𝑔𝜃 + 𝐵𝜃2 = 0                                                                      (26) 
𝜃0 = 1                                                                                             (27) 

�̇�0 = 1                                                                                             (28) 
 

Let 𝜃0 = 𝜃1 = 𝜃2 = 𝜃. 𝜃                                                          (29) 

 
and 𝜃2 = 𝜃3 = 𝜃1. 𝜃                                                                 (30) 

 
but, 
 

𝜃1(𝑘) = 𝜃(𝑘). 𝜃(𝑘) = ∑ 𝜃(𝑙)𝜃(𝑘 − 𝑙)𝑘
𝑙=0                              (31) 

𝜃2(𝑘) = 𝜃1(𝑘). 𝜃(𝑘) = ∑ 𝜃1(𝑙)𝜃(𝑘 − 𝑙).𝑘
𝑙=0                        (32) 

 

Taking the Taylor differential transformation 
with respect to dimensionless time r, the above 
equations becomes (Hassan, 2008): 
 
(𝑘+2)(𝑘+1)

𝐻2 𝜃(𝑘 + 2) − 𝑔𝜃(𝑘) + 𝐵𝜃2(𝑘) = 0                        (33) 

𝜃(0) = 𝜃0 = 1                                                                              (34) 

𝜃(1) = 𝐻�̇�0 = 𝐻.                                                                        (35) 
 

For 𝑘 = 0 and 1 the following equations are 
obtained 
 
𝜃1(0) = 𝜃(0)𝜃(0) = 1                                                              (36) 
𝜃2(0) = 𝜃1(0)𝜃1(0) = 1                                                         (37) 
𝜃1(1) = 𝜃(0)𝜃(1) + 𝜃(1)𝜃(0) = 𝐻 + 𝐻 = 2𝐻                 (38) 
𝜃2(1) = 𝜃1(0)𝜃(1) + 𝜃(1)𝜃(0) = 𝐻 + 2𝐻 = 3𝐻            (39) 
 

also, for 𝑘 = 1, 
 

2

𝐻2 𝜃(2) − 𝑔𝜃(0) + 𝐵𝜃2(0) = 0                                              (40) 

𝜃(2) = −
𝐻2

2
[𝑔 + 𝐵] =

𝐴0𝐻2

2!
                                                     (41) 

 

where 𝐴0 = −(𝑔 + 𝐵)  
 

for 𝑘 = 2,  
𝜃1(2) = 𝜃(0)𝜃(2) + 𝜃(1)𝜃(1) + 𝜃(2)𝜃(0) = (𝐴0 + 1)𝐻2 

               (42) 
𝜃2(2) = 𝜃1(0)𝜃(2) + 𝜃1(1)𝜃(1) + 𝜃1(2)𝜃(0) =

(
3

2
𝐴0 + 3) 𝐻2                                                                               (43) 

 

for 𝑘 = 3,  
6

𝐻2
𝜃(3) − 𝑔𝜃(1) + 𝐵𝜃2(1) = 0                                              (44) 

 

By substitution,  
 

𝜃(3) =
𝐻2

6
[𝑔𝜃(1) − 𝐵𝜃2(1)]  

=
𝐻2

6
[𝑔𝜃(1) − 𝐵𝜃2(1)]  

=
𝐻2

6
[𝑔(𝐻) − 𝐵(3𝐻)]  

=
𝐻3

6
(𝑔 − 3𝐵)  

=
𝐽0𝐻3

6
                                                                                             (45) 

 

where 𝐽0 = 𝑔 − 3𝐵  
 

for 𝑘 = 3, the following can be obtained 
 
𝜃1(3) = 𝜃(0)𝜃(2) + 𝜃(2)𝜃(1) + 𝜃(3)𝜃(0)  

= (𝐴0 +
𝐽0

3
) 𝐻3                                                                             (46) 

𝜃2(3) = 𝜃1(0)𝜃(32) + 𝜃1(1)𝜃(2) + 𝜃1(2)𝜃(1) +

𝜃1(3)𝜃(0) = (3𝐴0 +
𝐽0

3
+ 1) 𝐻3                                             (47) 

 

for 𝑘 = 2,  
12

𝐻2
𝜃(4) − 𝑔𝜃(2) + 𝐵𝜃2(2) = 0                                              (48) 

 

By substitution again,  
 

𝜃(4) =
𝐻2

12
[𝑔𝜃(2) − 𝐵𝜃2(2)] =

𝐻2

12
[𝑔 (

𝐴0𝐻2

2
) − 𝐵 (

3

2
𝐴0 +

3) 𝐻2] =
𝐻4

24
[𝑔𝐴0 − 3𝐵𝐴0 + 6𝐵]                                            (49) 

𝜃(4) =
𝑦0𝐻4

24
                                                                                   (50) 

 

where  
 
𝑦0 = 𝑔𝐴0 − 3𝐴0𝐵 + 6𝐵                                                            (51) 

4. Results 

The dimensionless displacement, velocity and 

acceleration, 𝜃(𝑡), �̇�(𝑡), �̈�(𝑡), respectively, can be 
written, from the analysis as follows: 

 

𝜃(𝑟) = ∑ 𝜃(𝑘) (
𝑟

𝐻
)

𝑘
∞
𝑘=0 = 𝜃(0) + 𝜃(1)

𝑟

𝐻
+ 𝜃(2) (

𝑟

𝐻
)

2
+

𝜃(3) (
𝑟

𝐻
)

3
+ 𝜃(4) (

𝑟

𝐻
)

4
+ ⋯ + 𝜃(𝑛) (

𝑟

𝐻
)

𝑛
�̇�(𝑟) =

𝑑𝜃

𝑑𝑟
= 1 +

𝐴0𝑟 +
𝐽0

2!
𝑟2 +

𝐽0

3!
𝑟3 + ⋯ +

𝜃0
𝑛

(𝑛−1)!
𝑟𝑛−1  

�̈�(𝑟) =
𝑑2𝜃

𝑑𝑟2 𝐴0 + 𝐽0𝑟 +
𝐽0

2!
𝑟2 + ⋯ + +

𝜃0
𝑛

(𝑛−2)!
𝑟𝑛−1 = 1 +

𝐻
𝑟

𝐻
+

𝐴0𝐻2

2!
(

𝑟

𝐻
)

2
+

𝐽0𝐻3

3!
(

𝑟

𝐻
)

3
+

𝐽0𝐻4

4!
(

𝑟

𝐻
)

4
+ ⋯ +

𝜃0
(𝑛)

𝐻𝑛

𝑛!
(

𝑟

𝐻
)

𝑛
= 1 + 𝑟 +

𝐴0

2!
𝑟2 +

𝐽0

3!
𝑟3 +

𝐽0

4!
𝑟4 + ⋯ +

𝜃0
(𝑛)

𝑛!
𝑟𝑛  
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where; 𝜃0
(𝑛)

= [
𝑑𝑛𝜃

𝑑𝑟𝑛]
𝑟≠0

 denotes the nth derivative of 

the dimensionless displacement 𝜃(𝑟), with respect to 
dimensionless time 𝑟 at 𝑟 ≠ 0. 

5. Conclusion 

This study set out to analyze the dynamics of 
inverted pendulum robot. The equation of motion of 
the system was derived using the Lagrange energy 
method. The second order ordinary differential 
equation of motion was transformed to its algebraic 
form using the Taylor differential transformation 
technique. From the analysis and evaluation results 
obtained are represented graphically in Figs. 2-4, 
using computer software – Maple. The displacement, 
velocity and acceleration of the inverted pendulum 
robot are functions of time r. At a particular time r, 
when the system is perturbed, its measure of 
displacement is higher than its velocity, while the 
velocity is higher than the acceleration. The Taylor 
differential transformation technique has proven to 
be a good and easy method of analyzing the dynamic 
behaviour of inverted pendulum system. 

 

 
Fig. 2: Displacement of inverted pendulum robot at 

various time 
 

 
Fig. 3: Velocity of inverted pendulum robot at various time 

 

 
Fig. 4: Acceleration of inverted pendulum robot at various 

times 
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