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In this article, we present and examine a mathematical system of equations 
which describes the dynamics of pine wilt disease. A non-linear 
mathematical model is employed to study and assess the dynamics of pine 
wilt disease in a wild life. We prove the essential properties, bounded, 
positivity and well-posed, also local and global stability analysis has been 
made for the epidemic model. The sensitivity analysis of the model is 
provided by threshold or reproductive number as well as analyzed 
qualitatively. To control the spread of the infection, we develop a control 
strategy by applying three control variables. An unconditionally convergent 
nonstandard finite difference scheme has been employed to solve model with 
different compartment. Finally, numerical results are depicted graphically 
and discussed quantitatively. 
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1. Introduction 

*Mathematical concepts and theory, we can easily 
measure the flow of work, process, predictions and 
outcomes. Therefore, biologists are highly dependent 
on mathematics and they applied mathematical for 
modeling on biological sciences (Biazar, 2006; 
Busenberg and Van den Driessche, 1990; El-Sayed et 
al., 2009). Biological system, integer order 
differential equations are involved in mathematical 
modeling and represent their change in structure 
which describes the dynamic and complex behavior 
of system. The behaviors of nonlinearity and 
multistage in mathematical modeling is describe the 
mutual relationship between parameter (Makinde, 
2007). Few decades ago, by using classical derivative 
many biological models are studied in detail (Arafa 
et al., 2012; Kribs-Zaleta, 1999). 

In human life, the forest has great importance. 
Therefore, it is compulsory to take necessary actions 
for the protection of the trees which are being 
infected by various diseases. Trees not only enhance 
the beauty of the environment but also provide 
august or blooming atmosphere for human 
community. For the forest and ecosystem the pine 
wilt disease (PWD) is the major threat. Within a very 

                                                 
* Corresponding Author.  
Email Address: farmanlink@gmail.com (M. Farman) 
https://doi.org/10.21833/ijaas.2019.09.002 

 Corresponding author's ORCID profile:  
https://orcid.org/0000-0001-7616-0500 
2313-626X/© 2019 The Authors. Published by IASE.  
This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/) 

short period of time it kills pine trees and the red 
dish brown foliage is the symptom of this dangerous 
diseases (Buonomo and Lacitignola, 2008; Kiyohara 
and Tokushige, 1971).  

In Japan, the pine wilt disease was noted in the 
beginning of the 2th century and now pine wilt 
disease had become the major ecological catastrophe 
of pine forest. For example in the 1980s, in Portugal, 
The pinewood nematode was first detected in 1990 
(Ryss et al., 2011). This disease is continuous to 
spread despite the concerned actions of government 
agencies. A new strategy which is related to the 
national program for the control of pinewood 
nematode introduced in 2006. Finally, in Portugal 
the eradication of the nematode has been announced 
(Ryss et al., 2011; Mota and Vieira, 2008). A 
pinewood nematode, a gymnosperm host, and an 
insect vector are three organism of this disease (Shi 
and Song, 2013; Mamiya, 2002). For feeding purpose 
mature beetles use healthy tree twinges during 
breeding. For copulation and ovipositionl they focus 
only on the infected trees (Arakawa and Togashi, 
2002). Today, all over the world pine wilt disease 
has become major threat to forests ecosystems 
(Togashi, 1991). A pine wilt disease is very 
dangerous and affects trees within weeks. The 
microscopic pine wood nematodes 
(Bursaphelenchus Xylophilus) are the major reason 
to the deaths of trees and disease is limited to 
prevention primarily. There are many cures for the 
disease. The nematode killed the infected trees by 
feeding on cells surrounding the resin ducts 
(Togashi, 1991; Khan et al., 2017).  
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The Non Standard Finite Difference Method 
(NSFDM) has been used widely for systems of 
differential equations that are describing problems 
in mathematical biology and other different areas. 
The positivity of the state variables of the systems 
under study showed by these methods is preserved 
(when compared to other numerical methods) 
(Mickens, 1994; Lubuma and Patidar, 2007). 
Applications of this NSFD method for singularly 
perturbed problems. However, a comprehensive 
account of work that uses such methods is 
contribute in survey articles by patidar (Munyakazi 
and Patidar, 2010; Patidar, 2005; Patidar, 2016). 

In this paper, we examine the stability and 
qualitative analysis of Pine wilt disease model. An 
unconditionally convergent nonstandard finite 
difference scheme has been given to obtain solution 
of model. Numerical results are conferred 
graphically to show the dynamics of the model. 

2. Materials and method 

The population of pinewood is denoted by 𝑁𝐻(𝑡). 
The susceptible, exposed and infected pine trees are 
represented as 𝑆𝐻(𝑡), 𝐸𝐻(𝑡) and 𝐼𝐻(𝑡), where 
𝑁𝐻(𝑡) = 𝑆𝐻(𝑡) + 𝐸𝐻(𝑡) + 𝐼𝐻(𝑡). The population of 
vector (beetles), susceptible beetles, exposed vector 
and infected vector beetles is donated by 𝑁𝑉(𝑡), 
𝑆𝑉(𝑡), 𝐸𝑉(𝑡) and 𝐼𝑉(𝑡) at any time t, with 𝑁𝑉(𝑡) =
𝑆𝑉(𝑡) + 𝐸𝑉(𝑡) + 𝐼𝑉(𝑡) (Khan et al., 2017). Thus, the 
system of nonlinear differential equations are: 
 
𝑑𝑆𝐻

𝑑𝑡
= Λ𝐻 − 𝑘1𝜓𝑆𝐻𝐼𝑉 − 𝑘2𝜙𝛼𝑆𝐻𝐼𝑉 − 𝑑1𝑆𝐻                             (1) 

𝑑𝐸𝐻

𝑑𝑡
= 𝑘1𝜓𝑆𝐻𝐼𝑉 − 𝑘2𝜙𝛼𝑆𝐻𝐼𝑉 − (𝑑1 + 𝛿)𝐸𝐻                           (2) 

𝑑𝐼𝐻

𝑑𝑡
= δE𝐻 − (𝑑1 + 𝛾)𝐼𝐻                                                               (3) 

𝑑𝑆𝑉

𝑑𝑡
= Λ𝑉 − 𝜂𝑆𝑉𝐼𝐻 − 𝑑2𝑆𝑉                                                           (4) 

𝑑𝐸𝑉

𝑑𝑡
= 𝜂𝑆𝑉𝐼𝐻 − (𝑑2 + 𝜇)𝐸𝑉                                                          (5) 

𝑑𝐼𝑉

𝑑𝑡
= 𝜇𝐸𝑉 − 𝑑2𝐼𝑉 .                                                                          (6) 

 

The parameter Λ𝑉  is susceptible recruitment rate, 
k1 is the contact rate during maturation. 𝑘1𝜓𝑆𝐻𝐼𝑉 
shows the incidence rate,  𝑘2 represents the 
nematode transmitted probability through oviposit 
ion by an infected beetle and adult beetles 
represents 𝜙 with average number of contacts per d. 
The probability of susceptible cease oleoresin 
exudation without infected by nematode is 
represented by 𝛼. The new infection is represented 
by 𝑘2𝜙𝛼𝑆𝐻𝐼𝑉  and 𝑘2𝜙𝛼 is transmission through 
oviposit ion. 𝛿 and 𝑑1 represents the progression 

rate and natural death rate of pine trees respectively. 
The transfer rate from  𝐸𝑉  to 𝐼𝑉 , natural death rate 
and disease induced death rate are respectively 
denoted by  𝜇, 𝑑2 and  𝛾 are given Khan et al. (2017). 
System (1-6) with initial conditions 𝑆𝐻(0) =
𝑆𝐻

∗, 𝐼𝐻(0) = 𝐼𝐻
∗, 𝐸𝐻(0) = 𝐸𝐻

∗, 𝑆𝑉(0) = 𝑆𝑉
∗, 𝐼𝑉(0) =

𝐼𝑉
∗, 𝐸𝑉(0) = 𝐸𝑉

∗, Adding Eqs. 1 to 3 from system, we 
obtain the conservation law 
 
𝑑𝐻

𝑑𝑡
= Λ𝐻 + Λ𝑉 − 𝑑1𝐻𝐻 − 𝑑2𝐻𝑉 − 𝛾𝐼𝐻,                                     (7) 

 

here, S𝐻 + 𝐸𝐻 + I𝐻 = 𝐻𝐻 ,  𝑆𝑉 + 𝐸𝑉 + 𝐼𝑉 = 𝐻𝑉 ,  is the 
total active population. 
 
Theorem 1: Suppose that model in Eqs. 1 to 6 has a 
global solution corresponding to non-negative initial 
conditions. Then the solution is non-negative at all 
time. 
 
Proof: Suppose that  
 
𝑆𝐻(0) ≥ 0, 𝐼𝐻(0) ≥ 0, 𝐸𝐻(0) ≥ 0,   𝑆𝑉(0) ≥ 0,   𝐼𝑉(0) ≥ 0,
𝐸𝑉(0) ≥ 0,  
 
Eq. 1 of the given system is as follows: 

 
𝑑𝑆𝐻

𝑑𝑡
= Λ𝐻 − A (t) 𝑆𝐻  

 

where A (t) = 𝑘1𝜓𝐼𝑉 − 𝑘2𝜙𝛼𝐼𝑉 − 𝑑1. 

The solution of linear first order equation in S 
 

S= S (0) exp (∫ −𝐵(𝑠)𝑑𝑠)
𝑡

0
 + exp (∫ −𝐵(𝑠)𝑑𝑠)

𝑡

0
 ×  

(∫ 𝜋
𝑡

0
 exp (∫ −𝐵(𝑤)𝑑𝑤)

𝑢

0
 du ≥ 0. 

 

Hence 𝑆𝐻 ≥ 0, ∀𝑡 ≥ 0, About the non-negativity of 
the residual variables, we deliberate the subsystem  
 
𝑑𝐸𝐻

𝑑𝑡
= 𝑘1𝜓𝑆𝐻𝐼𝑉 − 𝑘2𝜙𝛼𝑆𝐻𝐼𝑉 − (𝑑1 + 𝛿)𝐸𝐻  

𝑑𝐼𝐻

𝑑𝑡
= δE𝐻 − (𝑑1 + 𝛾)𝐼𝐻  

𝑑𝑆𝑉

𝑑𝑡
= Λ𝑉 − 𝜂𝑆𝑉𝐼𝐻 − 𝑑2𝑆𝑉  

𝑑𝐸𝑉

𝑑𝑡
= 𝜂𝑆𝑉𝐼𝐻 − (𝑑2 + 𝜇)𝐸𝑉  

𝑑𝐼𝑉

𝑑𝑡
= 𝜇𝐸𝑉 − 𝑑2𝐼𝑉 .                                                                          (8) 

 

This can be redrafted in the matrix system 
 

𝑑𝑋(𝑡)

𝑑𝑡
= N 𝑌(𝑡)+𝐶(𝑡)                                                                      (9) 

 

where, 

 

𝑋(𝑡) =  

[
 
 
 
 
𝐸𝐻

𝐼𝐻
𝑆𝑣

𝐸𝑣

𝐼𝑣 ]
 
 
 
 

, N =

[
 
 
 
 
−(𝑑1+𝛿) 0 0

𝛿 −(𝑑1+𝛾) 0

0
0
0

−𝜂𝑆𝑣

𝜂𝑆𝑣

0

𝜂𝐼𝐻−𝑑2

𝜂𝐼𝐻
0

    

0 (𝐾1𝜓−𝐾2𝜙𝛼)𝑆𝐻

0 0
0

−(𝑑2 + 𝜇
𝜇

)
0
0

−𝑑2 ]
 
 
 
 

, B (t) = 

[
 
 
 
 
0
0
0
0
𝛾]
 
 
 
 

 

 
We take note of that N is a Metzler matrix (i.e., with 
non-negative off-diagonal elements) in assessment 
of the before now perceived non-negativity of S. 
Subsequently, Eq. 9 is a monotone framework. In this 
way, 𝑅+

5  is invariant under the stream of framework 

(9). This finishes the evidence of the 
recommendation.  

We would now be able to state and demonstrate 
the accompanying suggestion, which ensures the 
boundedness of the solution of framework (1-6).  
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Theorem 2: Suppose that the initial conditions for 
system given in Eqs. 1 to 6 satisfy 
 
H(0) ≤ 𝐻𝑛, 𝐼𝐻(0) ≤ 𝐼𝐻(𝑛), 𝐸𝐻(0) ≤ 𝐸𝐻(𝑛), 𝑆𝑉(0) ≤

𝑆𝑉(𝑛), 𝐼𝑉(0) ≤ 𝐼𝑉(𝑛), 𝐸𝑉(0) ≤ 𝐸𝑉(𝑛)  

𝐻𝑛 =  
(Λ𝐻+Λ𝑉)

𝜇
, 𝐸𝐻 =

(𝐾1𝜓−𝐾2𝜙𝛼)𝑆𝐻(Λ𝐻+Λ𝑉)

(𝑑1+𝛿)𝜇
 , 𝐼𝐻 =

𝛿𝐸𝐻(Λ𝐻+Λ𝑉)

(𝑑1+𝛾)𝜇
,   𝐸𝑉 =

𝜂𝑆𝑣(Λ𝐻+Λ𝑉)

(𝑑2+𝜇)𝜇
,     𝐼𝑉 =

𝜇𝐸𝑉(Λ𝐻+Λ𝑉)

𝑑2𝜇
. 

 

Then, if the solution exists on an interval J, it satisfies 
the following a priori bounds:  
 
H (t) ≤𝐻𝑛, 𝐼𝐻(𝑡) ≤ 𝐼𝐻(𝑛), 𝐸𝐻(𝑡) ≤ 𝐸𝐻(𝑛),   𝐼𝑉(𝑡) ≤

𝐼𝑉(𝑛), 𝐸𝑉(𝑡) ≤ 𝐸𝑉(𝑛) 

 

Proof: Subsequently 𝐼𝑉  (t) ≥ 0 we know as of Eq. 2 
that 
 
𝑑𝐻(𝑡)

𝑑𝑡
= Λ𝐻 + Λ𝑉 − 𝑑1𝐻𝐻 − 𝑑2𝐻𝑉. 

 
Submission of the Gronwall inequality yields 
 

H (t)  ≤  
Λ𝐻+Λ𝑉

𝜇
+ ( 𝐻(0) − 

 Λ𝐻+Λ𝑉

𝜇
 )𝑒−𝜇𝑡  

 

Since which 
 

 𝐻(𝑡) ≤ 𝐻𝑛,  

 
whenever 

 
𝐻(0) ≤𝐻𝑛 

 

Accordingly 𝐼𝑉  (t) ≤  𝐻𝑛 . Substituting this in the 
2nd Eqs. 1 to 6 provides  

 
𝑑𝐸𝐻

𝑑𝑡
≤ (𝑘1𝜓𝑆𝐻 − 𝑘2𝜙𝛼𝑆𝐻)𝐻𝑛 − (𝑑1 + 𝛿)𝐸𝐻  
 

As of someplace alternative presentation of the 
Gronwall inequality clues to 

 

𝐸𝐻(𝑡) ≤ 𝐻(𝑛)      

 
If 

 
𝐸𝐻(0) ≤ 𝐸𝐻(𝑛)  

 
The boundedness of 𝐼𝐻,   𝐸𝑉 𝑎𝑛𝑑 𝐼𝑉 are 

demonstrated correspondingly.  
Joining theorem 1 and 2 together with the 

unimportant presence and uniqueness of nearby 
roots for the Eqs. 1 to 6, we have built up the 
accompanying hypothesis which guarantees the 
numerical and organic well-posedness of framework 
(1-6).  

 
Theorem 3: System (1 – 6) is a dynamical system on 
the compact set 

 
𝑘 = {𝑆𝐻(𝑡), 𝐼𝐻(𝑡), 𝐸𝐻(𝑡), 𝑆𝑉(𝑡), 𝐼𝑉(𝑡), 𝐸𝑉(𝑡) 𝜖 𝑅+; 𝐻(𝑡) ≤

 
(Λ𝐻+Λ𝑉)

𝜇
, 𝐸𝐻 ≤

(𝐾1𝜓−𝐾2𝜙𝛼)𝑆𝐻(Λ𝐻+Λ𝑉)

(𝑑1+𝛿)𝜇
 , 𝐼𝐻 ≤

𝛿𝐸𝐻(Λ𝐻+Λ𝑉)

(𝑑1+𝛾)𝜇
,   𝐸𝑉 ≤

𝜂𝑆𝑣(Λ𝐻+Λ𝑉)

(𝑑2+𝜇)𝜇
,     𝐼𝑉 ≤

𝜇𝐸𝑉(Λ𝐻+Λ𝑉)

𝑑2𝜇
} 

3. Qualitative and sensitivity analysis 

By substituting the values of parameters in given 
system of differential equations and the rate of 
change with respect to time is zero, we get. 

By simplifying the above equations we get, 
disease-free equilibrium, denoted by 𝐸0 i.e., 𝐸0 =
(1,0,0,0,0). Reproductive number 𝑅0 of the given 
system is as follows 

 

𝑅0 = √
𝜂𝜇𝛿Λ𝐻Λ𝑉(𝑘1𝜓+𝑘2𝜙𝛼)

𝑑1𝑑2
2(𝛾+𝑑1)(𝛿+𝑑1)(𝑑2+𝜇)

  

 

The sensitivity of 𝑅0 = √
𝜂𝜇𝛿Λ𝐻Λ𝑉(𝑘1𝜓+𝑘2𝜙𝛼)

𝑑1𝑑2
2(𝛾+𝑑1)(𝛿+𝑑1)(𝑑2+𝜇)

, to 

each of its parameters is 

 

𝜕𝑅0

𝜕𝜂
=

1

2
√

𝑑1𝑑2
2(𝛾 + 𝑑1)(𝛿 + 𝑑1)(𝑑2 + 𝜇)

𝜂𝜇𝛿Λ𝐻Λ𝑉(𝑘1𝜓 + 𝑘2𝜙𝛼)
(

𝜇𝛿Λ𝐻Λ𝑉(𝑘1𝜓 + 𝑘2𝜙𝛼)

𝑑1𝑑2
2(𝛾 + 𝑑1)(𝛿 + 𝑑1)(𝑑2 + 𝜇)

) ≥ 0 

𝜕𝑅0

𝜕Λ𝐻
=

1

2
√

𝑑1𝑑2
2(𝛾 + 𝑑1)(𝛿 + 𝑑1)(𝑑2 + 𝜇)

𝜂𝜇𝛿Λ𝐻Λ𝑉(𝑘1𝜓 + 𝑘2𝜙𝛼)
(

𝜂𝜇𝛿Λ𝑉(𝑘1𝜓 + 𝑘2𝜙𝛼)

𝑑1𝑑2
2(𝛾 + 𝑑1)(𝛿 + 𝑑1)(𝑑2 + 𝜇)

) ≥ 0 

𝜕𝑅0

𝜕Λ𝑉
=

1

2
√

𝑑1𝑑2
2(𝛾 + 𝑑1)(𝛿 + 𝑑1)(𝑑2 + 𝜇)

𝜂𝜇𝛿Λ𝐻Λ𝑉(𝑘1𝜓 + 𝑘2𝜙𝛼)
(

𝜂𝜇𝛿Λ𝐻(𝑘1𝜓 + 𝑘2𝜙𝛼)

𝑑1𝑑2
2(𝛾 + 𝑑1)(𝛿 + 𝑑1)(𝑑2 + 𝜇)

) ≥ 0 

𝜕𝑅0

𝜕𝛼
=

1

2
√

𝑑1𝑑2
2(𝛾 + 𝑑1)(𝛿 + 𝑑1)(𝑑2 + 𝜇)

𝜂𝜇𝛿Λ𝐻Λ𝑉(𝑘1𝜓 + 𝑘2𝜙𝛼)
(

𝜂𝜇𝛿Λ𝐻Λ𝑉𝑘2𝜙

𝑑1𝑑2
2(𝛾 + 𝑑1)(𝛿 + 𝑑1)(𝑑2 + 𝜇)

) ≥ 0 

𝜕𝑅0

𝜕𝜙
=

1

2
√

𝑑1𝑑2
2(𝛾 + 𝑑1)(𝛿 + 𝑑1)(𝑑2 + 𝜇)

𝜂𝜇𝛿Λ𝐻Λ𝑉(𝑘1𝜓 + 𝑘2𝜙𝛼)
(

𝜂𝜇𝛿Λ𝐻Λ𝑉𝑘2𝛼

𝑑1𝑑2
2(𝛾 + 𝑑1)(𝛿 + 𝑑1)(𝑑2 + 𝜇)

) ≥ 0 

𝜕𝑅0

𝜕𝜓
=

1

2
√

𝑑1𝑑2
2(𝛾 + 𝑑1)(𝛿 + 𝑑1)(𝑑2 + 𝜇)

𝜂𝜇𝛿Λ𝐻Λ𝑉(𝑘1𝜓 + 𝑘2𝜙𝛼)
(

𝜂𝜇𝛿Λ𝐻Λ𝑉𝑘1

𝑑1𝑑2
2(𝛾 + 𝑑1)(𝛿 + 𝑑1)(𝑑2 + 𝜇)

) ≥ 0 

𝜕𝑅0

𝜕𝑘1
=

1

2
√

𝑑1𝑑2
2(𝛾 + 𝑑1)(𝛿 + 𝑑1)(𝑑2 + 𝜇)

𝜂𝜇𝛿Λ𝐻Λ𝑉(𝑘1𝜓 + 𝑘2𝜙𝛼)
(

𝜂𝜇𝛿Λ𝐻Λ𝑉𝜓

𝑑1𝑑2
2(𝛾 + 𝑑1)(𝛿 + 𝑑1)(𝑑2 + 𝜇)

) ≥ 0 

𝜕𝑅0

𝜕𝑘2
=

1

2
√

𝑑1𝑑2
2(𝛾 + 𝑑1)(𝛿 + 𝑑1)(𝑑2 + 𝜇)

𝜂𝜇𝛿Λ𝐻Λ𝑉(𝑘1𝜓 + 𝑘2𝜙𝛼)
(

𝜂𝜇𝛿Λ𝐻Λ𝑉𝜙𝛼

𝑑1𝑑2
2(𝛾 + 𝑑1)(𝛿 + 𝑑1)(𝑑2 + 𝜇)

) ≥ 0 
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𝜕𝑅0

𝜕𝜇
=

1

2
√

𝑑1𝑑2
2(𝛾 + 𝑑1)(𝛿 + 𝑑1)(𝑑2 + 𝜇)

𝜂𝜇𝛿Λ𝐻Λ𝑉(𝑘1𝜓 + 𝑘2𝜙𝛼)
(

𝜂𝛿Λ𝐻Λ𝑉(𝑘1𝜓 + 𝑘2𝜙𝛼)𝑑2

𝑑1𝑑2
2(𝛾 + 𝑑1)(𝛿 + 𝑑1)(𝑑2 + 𝜇)2

) ≥ 0 

𝜕𝑅0

𝜕𝛿
=

1

2
√

𝑑1𝑑2
2(𝛾 + 𝑑1)(𝛿 + 𝑑1)(𝑑2 + 𝜇)

𝜂𝜇𝛿Λ𝐻Λ𝑉(𝑘1𝜓 + 𝑘2𝜙𝛼)
(

𝜂𝜇Λ𝐻Λ𝑉(𝑘1𝜓 + 𝑘2𝜙𝛼)𝑑1

𝑑1𝑑2
2(𝛾 + 𝑑1)(𝛿 + 𝑑1)

2(𝑑2 + 𝜇)
) ≥ 0 

𝜕𝑅0

𝜕𝛾
= −

1

2
√

𝑑1𝑑2
2(𝛾 + 𝑑1)(𝛿 + 𝑑1)(𝑑2 + 𝜇)

𝜂𝜇𝛿Λ𝐻Λ𝑉(𝑘1𝜓 + 𝑘2𝜙𝛼)
(

𝜂𝜇𝛿Λ𝐻Λ𝑉(𝑘1𝜓 + 𝑘2𝜙𝛼)

𝑑1𝑑2
2(𝛾 + 𝑑1)

2(𝛿 + 𝑑1)(𝑑2 + 𝜇)
) ≤ 0 

𝜕𝑅0

𝜕𝑑1
=

1

2
√

𝑑1𝑑2
2(𝛾 + 𝑑1)(𝛿 + 𝑑1)(𝑑2 + 𝜇)

𝜂𝜇𝛿Λ𝐻Λ𝑉(𝑘1𝜓 + 𝑘2𝜙𝛼)
(
𝜂𝜇𝛿Λ𝐻Λ𝑉(𝑘1𝜓 + 𝑘2𝜙𝛼)(𝑑1

2 + 𝛾𝛿 + 2𝑑1𝛿

𝑑1
2𝑑2

2(𝛾 + 𝑑1)
2(𝛿 + 𝑑1)

2(𝑑2 + 𝜇)
) ≥ 0 

𝜕𝑅0

𝜕𝑑2
= −

1

2
√

𝑑1𝑑2
2(𝛾 + 𝑑1)(𝛿 + 𝑑1)(𝑑2 + 𝜇)

𝜂𝜇𝛿Λ𝐻Λ𝑉(𝑘1𝜓 + 𝑘2𝜙𝛼)
(
𝜂𝜇𝛿Λ𝐻Λ𝑉(𝑘1𝜓 + 𝑘2𝜙𝛼)(3𝑑2

2 + 𝜇

𝑑1(𝛾 + 𝑑1)(𝛿 + 𝑑1)(𝑑2
3 + 𝜇𝑑2)

2
) ≤ 0 

 

It can be seen that 𝑅0 is most sensitive to change 
in parameter, here; 𝑅0, is increasing with 
𝜂, 𝜑, 𝜙, 𝑘1, 𝑘2, 𝛿, 𝜇, 𝛼, 𝑑1Λ𝐻 , Λ𝑉 , and decreasing 
with 𝑑2, 𝛾. 

4. Nonstandard finite difference (NSFD) scheme 

In recent years, nonstandard finite difference 
(NSFD) scheme for discrete models have been 
constructed or tested for wide range of nonlinear 
systems of differential equations (Anguelov and 
Lubuma, 2001; Lubuma and Patidar, 2007; Roeger, 
2014). The positivity of the state variables involved 
in the system is satisfied by prosed method. This 
property has key role when we solve mathematical 
models arising in biology because these state 
variables represent sub-populations which never 
take negative values. 

In this section, we design an NSFDS scheme 
(Roeger, 2014). Let 

 
𝑌 = (𝑆𝐻

𝑘 , 𝐸𝐻
𝑘 , 𝐼𝐻

𝑘 , 𝑆𝑉
𝑘 , 𝐸𝑉

𝑘 , 𝐼𝑉
𝑘  )𝑇   

 

denoted an approximation of X (tk). Where  𝑡𝑘 = 𝜅Δ𝑡, 
with 𝑘 𝜖 𝑁, ℎ = Δ𝑡 > 0 be a step size then 
 

𝑆𝐻
𝑘+1−𝑆𝐻

𝑘

𝑇
= Λ𝐻 − κ1𝜓𝑆𝐻

𝑘+1𝐼𝑉
𝑘 − κ2𝜙𝛼𝑆𝐻

𝑘+1𝐼𝑉
𝑘 − d1𝑆𝐻

𝑘+1        (7) 

𝐸𝐻
𝑘+1−𝐼𝐻

𝑘

𝑇
= (κ1𝜓 + κ2𝜙𝛼)𝑆𝐻

𝑘+1𝐼𝑉
𝑘 − (d1 + 𝛿)𝐸𝐻

𝑘+1                 (8) 

𝐼𝐻
𝑘+1−𝐼𝐻

𝑘

𝑇
= 𝛿𝐸𝐻

𝑘+1 − (𝑑1 + 𝛾)𝐼𝐻
𝑘+1                    (9) 

𝑆𝑉
𝑘+1−𝐼𝑉

𝑘

𝑇
= Λ𝑉 − 𝜂𝑆𝑉

𝑘+1𝐼𝐻
𝑘+1 − 𝑑2𝑆𝑉

𝑘+1                 (10) 

𝐸𝑉
𝑘+1−𝐸𝑉

𝑘

𝑇
= 𝜂𝑆𝑉

𝑘+1𝐼𝐻
𝑘+1 − (𝑑2 + 𝜇)𝐸𝑉

𝑘+1                  (11) 

𝐼𝑉
𝑘+1−𝐼𝑉

𝑘

𝑇
= 𝜇𝐸𝑉

𝑘+1 − 𝑑2𝐼𝑉
𝑘+1                   (12) 

 
Which is the new purposed NSFD scheme for the 

given model, where 
 

𝑇 = 𝑇(ℎ) =
1−𝑒(𝑑1+𝛾)ℎ

𝑑1+𝛾
                   (13) 

5. Analysis of the scheme 

The analysis of NSFD scheme for the given system 
on the biological feasible domain  𝜅 are given as 
follows. 

 

𝑆𝐻
𝑘+1 =

𝑥Λ𝐻+𝑆𝐻
𝑘

1+𝑥(𝑘1𝜓+𝑘2𝜙𝛼)𝐼𝑉
𝑘+𝑥𝑑1

  

𝐸𝐻
𝑘+1 =

[𝑥(𝑘1𝜓+𝑘2𝜙𝛼)(𝑥Λ𝐻+𝑆𝐻
𝑘)𝐼𝑉

𝑘+(1+𝑥(𝑘1𝜓+𝑘2𝜙𝛼)𝐼𝑉
𝑘+𝑥𝑑1)𝐸𝐻

𝑘

[1+𝑥(𝑑1+𝛿)][1+𝑥(𝑘1𝜓+𝑘2𝜙𝛼)𝐼𝑉
𝑘+𝑥𝑑1]

  

𝐼𝐻
𝑘+1 =

𝐴∗+𝐶∗

𝐵∗
  

𝑆𝑉
𝑘+1 =

𝐵∗(𝑥Λ𝑉+𝑆𝑉
𝑘)

𝐵∗+𝑥(𝜂𝐴∗+𝐵∗𝑑2)
  

𝐸𝑉
𝑘+1 =

𝐴∗𝐵∗𝑥𝜂(𝑥Λ𝑉+𝑆𝑉
𝑘)+𝐵∗[𝐵∗+𝑥(𝜂𝐴∗+𝐵∗𝑑2)]

𝐵∗[1+𝑥(𝑑2+𝜇)][𝐵∗+𝑥(𝜂𝐴∗+𝐵∗𝑑2)]
  

 

𝐼𝑉
𝑘+1 =

𝑥𝜇[𝐴∗𝐵∗𝑥𝜂(𝑥Λ𝑉 + 𝑆𝑉
𝑘) + 𝐵∗[𝐵∗ + 𝑥(𝜂𝐴∗ + 𝐵∗𝑑2)]] + 𝐵∗[1 + 𝑥(𝑑2 + 𝜇)][𝐵∗ + 𝑥(𝜂𝐴∗ + 𝐵∗𝑑2)]𝐼𝑉

𝑘

𝐵∗(1 + 𝑥𝑑2)[1 + 𝑥(𝑑2 + 𝜇)][𝐵∗ + 𝑥(𝜂𝐴∗ + 𝐵∗𝑑2)]
 

 

where 
 

𝐴∗ = 𝑥𝛿[𝑥(𝑘1𝜓 + 𝑘2𝜙𝛼)(𝑥Λ𝐻 + 𝑆𝐻
𝑘)𝐼𝑉

𝑘 + (1 + 𝑥(𝑘1𝜓 +

𝑘2𝜙𝛼)𝐼𝑉
𝑘 + 𝑥𝑑1)𝐸𝐻

𝑘   
𝐵∗ = (1 + 𝑥(𝑑1 + 𝛾))(1 + 𝑥(𝑑1 + 𝛿))(1 + 𝑥(𝑘1𝜓 +
𝑘2𝜙𝛼)𝐼𝑉

𝑘 + 𝑥𝑑1)  

𝐶∗ = (1 + 𝑥(𝑑1 + 𝛿))(1 + 𝑥(𝑘1𝜓 + 𝑘2𝜙𝛼)𝐼𝑉
𝑘 + 𝑥𝑑1)𝐼𝐻

𝑘 , 

 
thus  

 
𝑆𝐻

𝑘+1 ≥ 0, 𝐸𝐻
𝑘+1 ≥ 0, 𝐼𝐻

𝑘+1 ≥ 0, 𝑆𝑉
𝑘+1 ≥ 0, 𝐸𝑉

𝑘+1 ≥ 0, 𝐼𝑉
𝑘+1 ≥

0, 
 

Adding the (7) and (8), we get 
 

[1 + 𝑇𝑑1]𝑀
𝑘+1 = 𝑇Λ𝐻 + 𝑀𝑘 − [1 + (𝑑1 + 𝛿)𝑇]𝐸𝐻

𝑘+1 ≤
𝑇Λ𝐻 + 𝑀𝑘  
[1 + 𝑇𝑑1]𝑀

𝑘+1 ≤ 𝑇Λ𝐻 + 𝑀𝑘  

⇒ 𝑀𝑘+1 ≤
Λ𝐻

𝑑1
  

 
whenever 
 

𝑀𝑘 ≤
Λ𝐻

𝑑1
  

 
The priori bonds for   𝐼2

𝑘+1 and 𝑅𝑘+1 follow the 
radially from the fact that  𝐼2

𝑘+1 and 𝐼1
𝑘+1 and less 

then or equal  𝐻𝑘+1. Which proves the positivity and 
invariant 𝜅. 
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6. Results and discussion 

The mathematical analysis of Pine welt epidemic 
model with non-linear incidence has been presented. 
To observe the effects of the parameters using in this 
dynamics given in model in Eqs. 1 to 6, conclude 
several numerical simulations varying the value of 
parameters (Khan et al., 2017) for 𝑅0 < 1. Figs. 1-6 
shows the convergence solution for diseases free 
equilibrium by using NSFD scheme at different 
values of ℎ for ∅ = ∅(ℎ) + 𝑂(ℎ2). The technique 
create a better impact to control the Disease, It can 
be easily seen that by reducing the step size the 
system (1-6) converge rapidly to the steady state 
point. The describe results in Khan et al. (2017) are 
given with different initial conditions for each case 
and control strategy should try to approach the 
result for desired free equilibrium point which is 
taking time to control the diseases in plants or may 
be negative with large time interval. It is very time 
consuming for susceptible, exposed and infected in 
each case and results only shows by increasing 
behavior of susceptible and decreasing behavior of 
infected but not contained in the feasible domain 
according to steady state points. Our derived 
algorithm precise that the obtained results are in 
feasible domain for stability, uniqueness and 
preserve positivity for short as well as long time 
intervals and Pine welt diseases can be completely 
controlled in short period of time without effecting. 
The result can be easily observed in the Figs. 1-6 
which meets the requirement. 

 

 

 
Fig. 1: Numerical solutions for Susceptible pine trees, 

Exposed pine trees and infected pine trees in a time 𝑡 for 
disease free equilibrium points 

 

Theorem 5: The endemic fixed-point of the NSFD 
scheme (7-12) for all the full model is GAS. 

 

Proof: Let  𝑌𝑘𝜖 𝑅+
6  is the bounded sequence defined 

by the NSFD scheme (7-12), Therefore, there exists 
 𝜃 > 0 such that for an initial condition 𝑌0 satisfying 
 
 ∥ 𝑃0 − 𝑃∗ ∥ ≤ 𝜃,                    (14) 
 

we have 
 
lim

𝑥→+∞
∥ 𝑃0 − 𝑃∗ ∥ = 0  

Let  𝑃0  be an arbitrary initial condition. As 
 

lim
𝑥→+∞

𝑃𝜂𝜅 = 𝑃∗.  

 
There exists a integer 𝑘0 such that 

 
∥ 𝑃𝜂𝑘0 − 𝑃∗ ∥ ≤ 𝜃.                   (15) 

 

In view equation (14) and (15), we have 
 
lim

𝑥→+∞,𝜂≥1
∥ 𝑃𝜂𝜂

− 𝑃∗ ∥ = lim
𝑥→+∞,𝜂≥𝜂𝑘0

∥ 𝑃𝜂𝜂
− 𝑃∗ ∥= 0 (16) 

This proves that  𝑃∗ is GAS. 
 

 
Fig. 2: Numerical solutions for Susceptible pine trees, 

Exposed pine trees and infected pine trees in a time 𝑡 with 
different initial conditions for disease free equilibrium 

points 
 

 
Fig. 3: Numerical solutions for Susceptible pine trees, 

Exposed pine trees and infected pine trees in a time 𝑡 with 
different step size for disease free equilibrium points 

7. Conclusion 

Sufficient conditions for local stability of the DFE 
point 𝐸0 are given by using the basic reproduction 
number 𝑅0 of the model, where it is asymptotically 
stable and sensitivity analysis of the parameters 
involved in threshold parameter 𝑅0, which shows the 
actual behavior of the dynamical model to reduce the 
effect of pine welt disease in the forest for society 
beneficial.  
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Fig. 4: Numerical solutions for Susceptible beetles, 

Exposed vector beetles and infected vector beetles in a 
time 𝑡 for disease free equilibrium points 

 

 
Fig. 5: Numerical solutions for Susceptible beetles, 

Exposed vector beetles and infected vector beetles in a 
time 𝑡 with different initial conditions for disease free 

equilibrium points 
 

 
Fig. 6: Numerical solutions for Susceptible beetles, 

Exposed vector beetles and infected vector beetles in a 
time 𝑡 with different step size for disease free equilibrium 

points 
 

It is important to note that nonstandard finite 
difference scheme for mathematical models based on 
system of differential equations is more powerful 
approach to compute the convergent solutions for 
the disease models. Finally, we presented the 
numerical simulation and verified all the analytical 
results numerically by using nonstandard finite 

difference scheme to reduce the infected rates very 
fast for disease free equilibria by using different 
initial conditions, we are able to control the 
spreading of pine welt disease in the forest to make 
country neat and green. 
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