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In this article, an optimal control problem of HIV-1 infection model consists 
of pathogen virus and engineered virus is taken into account. The purpose of 
this work is to investigate an optimal control model of drug treatment of HIV 
infection of genetically modified virus and CD4+T-cells. The optimal control 
problem is to design an effective drug plan in order to reduce the number of 
infected cells and free virions for patients infected by HIV. Two kinds of 
treatments are used, and existence and uniqueness results for the optimal 
control pair are established. Pontryagins maximum principle is used to 
characterize the optimal levels of the controls. The results of optimality are 
solved numerically using MATLAB software. In the last few decades, the 
researchers have focused on controlling problems on similar models of HIV 
infection in different types of models using treatment with a single drug and 
similar objective functional. Many researchers have studied the HIV models 
consisting of the only class of pathogen virus and class of single infected cells. 
Here we consider the HIV-1 optimal control problem consisting of a 
genetically modified virus and double infected cells. 
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1. Introduction 

*HIV stands for a human immunodeficiency virus 
which is lentivirus that causes AIDS (acquired 
immunodeficiency syndrome). In this stage, the 
immune system is badly damaged, which can cause 
the life-threatening opportunistic infections. AIDS 
emerged in 1981 which is sexuality transmitted 
disease throughout the world. More than 30 million 
people have been killed in the last 30 years (Jordan 
et al., 2012). It is approximated that HIV spreads at 
the rate of 7, 000 people per day (Jordan et al., 
2012). Nowadays, several antiretroviral drugs are 
available which can help the immune system in 
reducing the HIV-1 infection. Although it is not 
possible to cure it. RTIs which stands for Reverse 
Transcriptase Inhibitors are the type of 
chemotherapies which can oppose the conversion of 
RNA of the virus to DNA. Thus, the viral population 
will be minimum and the CD4+ count remains higher 
and due to this the host can survive. The other types 
are protease inhibitors (PIs) which keep the density 
of new viruses minimum. In the literature, optimal 
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control theory has been applied in the analysis of in-
host HIV dynamics as well as in population-based 
HIV models. Consequently, researchers have 
formulated and analyzed mathematical models in 
order to understand the dynamics of HIV-1 infection 
(Fister et al., 1998; Adams et al., 2005; Kirschner et 
al., 1997; Ali and Zaman, 2016; Richter et al., 1999; 
Zhou et al., 2008; Cohen et al., 2011; Boltyanskii et 
al., 1960; Joshi, 2002; Garira et al., 2005; Revilla and 
Garcı́a-Ramos, 2003; Ali et al., 2017). From another 
point of view, optimal control theory has been 
applied to biological or medical models to draw 
conclusions about the control of infections 
(Kirschner et al., 1997; Garira et al., 2005; Ali et al., 
2017). The desired goals, performance and outcomes 
of control actions depend on specific situations. The 
foundation of theoretical approach of optimal 
control was developed by Pontryagin et al. (1962). 
They applied this theory to ordinary differential 
equations. After that, the applications of this theory 
and corresponding numerical simulations are 
progressing continuously. One can find an 
interesting work on control of epidemics in Joshi 
(2002) and a survey on the control of pests and 
infectious diseases in Joshi (2002). For this purpose, 
an optimal control model of HIV therapy was 
considered by Fister et al. (1998). This model 
represents the effects of the treatment on the 
interaction of the healthy T cells with the pathogen 
virus. Joshi (2002) examined an optimal control HIV-
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1 infection model which was consists of two optimal 
controls. One for strengthening the immune system 
and the other for delaying HIV-1 progression. 
Further, a single control variable was taken into 
account in Garira et al. (2005) which represents the 
percentage effect of the chemotherapy and viral 
production. Then, Garira et al. (2005) considered 
two controls variables which simulate the effects of 
RTIs and PIs. These models are used to investigate 
an optimal chemotherapy treatment to avoid drugs 
beyond normal limits. Therefore, we chose an HIV-1 
infection within-host model which is focusing on 
mathematical study supporting the previous HIV-1 
models. Our proposed model of genetically modified 
virus is consists of system of ordinary differential 
equations which was considered in Fleming and 
Rishel (1975). 

In the literature cited above, one can observe that 
as much as ARTs have been used for the suppression 
of virus, the optimal control treatment is necessary 
to keep low viral load is an approximation. At the 
time, when HIV cure is found, physicians will try 
their best to apply the control strategy that can 
inhibit viral progression while keeping the side 
effects to a minimum. Most of the drugs have side 
effects that should be maintained at a very low level. 
As, long-term use of protease inhibitors cause insulin 
intolerance, cholesterol elevation, and the 
redistribution of body fat. Therefore, there is a need 
to establish the optimal treatment strategy. hus, we 
formulate a (new) model by introducing optimal 
controls, representing the regular use of microbicide 
gel and treatment by HAART. Thus, by adopting this 
policy, the following three objectives will be 
obtained: (a) maximizing the healthy T cells 
populations, (b) minimizing virus population and (c) 
minimizing the infected T cells population.  

2. The mathematical model 

The following HIV-1 model was considered by 
Revilla and Garcı́a-Ramos (2003) which discusses 
the approach of fighting HIV with a recombinant 
virus and capable of controlling the infections of 
HIV-1: 

 
𝑑𝐼1(𝑡)

𝑑𝑡
= 𝜆 − 𝑑𝐼1(𝑡) − 𝛽𝐼1(𝑡)𝑃𝑣(𝑡),

𝑎𝑛𝑑
𝑑𝐼2(𝑡)

𝑑𝑡
= 𝛽𝐼1(𝑡)𝑃𝑣(𝑡) − 𝑎𝐼2(𝑡) − 𝛼𝑅𝑣(𝑡)𝐼2(𝑡),

𝑎𝑛𝑑
𝑑𝐼3(𝑡)

𝑑𝑡
= 𝛼𝑅𝑣(𝑡)𝐼2(𝑡) − 𝑏𝐼3(𝑡),

𝑎𝑛𝑑
𝑑𝑃𝑣(𝑡)

𝑑𝑡
= 𝑘𝐼2(𝑡) − 𝑝𝑃𝑣(𝑡),

𝑎𝑛𝑑
𝑑𝑅𝑣(𝑡)

𝑑𝑡
= 𝑐𝐼3(𝑡) − 𝑞𝑅𝑣(𝑡). }

 
 
 
 
 

 
 
 
 
 

                      (1) 

 
with initial conditions 
 
𝑇(𝑡0) = 𝑇

0, 𝐼(𝑡0) = 𝐼
0, 𝐷(𝑡0) = 𝐷

0, 𝑉𝑝(𝑡0) = 𝑉𝑝
0, 𝑉𝑟(𝑡0) =

𝑉𝑟
0                                         (2) 

 

Here 𝐼1(𝑡), 𝐼2(𝑡), 𝐼3(𝑡), 𝑃𝑣(𝑡) and 𝑅𝑣(𝑡) stand for 
the concentrations of uninfected 𝑇 cells, single 
infected 𝑇 cells, double infected 𝑇 cells, pathogen 
virus, and recombinant virus respectively at any 
time 𝑡. The parameters of the model can be defined 
as follows: uninfected 𝑇 cells are produced at rate 𝜆 
and die at rate 𝑎. The rate of infection of healthy cells 
is denoted by 𝛽 and d is the death rate of infected 
cells. The new viruses are produced at rate 𝑘. 𝑝 is the 
death rate of pathogen virus. 𝑞 is the death rate of 
recombinant virus. 𝑐 is the rate of production of 
double infected cells. The rate of infection of infected 
𝑇 cells is denoted by 𝛼 and 𝑏 is the death rate of 
double infected 𝑇 cells.  

The rest of the paper is divided as follows: next 
section is the formulation of the optimal control 
model. Section 4 is devoted to examine the existence 
of the optimal control. In section 5, we will study the 
theatrical derivations of the optimal controls. 
Numerical simulations will be carried out in section 
6 and conclusions will be drawn in Section 7 
respectively.  

3. The policy of optimal control 

We incorporate the following two control 
variables in the system (1): the first control 𝐾1(𝑡) is 
applied to the first step of infection, which 
compromise the entry of virus into the host cell. 
Therefore, it is brought into the infection term 𝛽𝐼1𝑃𝑣 
to reduce parameter 𝛽. It could be an entry inhibitor, 
or treatments of other types which can block 
infection caused by pathogen virus (Revilla and 
Garcı́a-Ramos, 2003). The second control 𝐾2(𝑡) 
represents HAART treatment which is highly active 
antiretroviral therapy. The effect of HAART is to 
produce viruses which are non-infectious. Therefore, 
it is introduced into the term 𝑘𝐼2 to reduce the value 
of the parameter 𝑘. The following controlled system 
can be obtained by using the above assumptions:  
 

𝑑𝐼1(𝑡)

𝑑𝑡
= 𝜆 − 𝑑𝐼1(𝑡) − (1 − 𝐾1(𝑡))𝛽𝐼1(𝑡)𝑃𝑣(𝑡),

𝑎𝑛𝑑
𝑑𝐼2(𝑡)

𝑑𝑡
= (1 − 𝐾1(𝑡))𝛽𝐼1(𝑡)𝑃𝑣(𝑡) − 𝑎𝐼2(𝑡) − 𝛼𝑅𝑣(𝑡)𝐼2(𝑡),

𝑎𝑛𝑑
𝑑𝐼3(𝑡)

𝑑𝑡
= 𝛼𝑅𝑣(𝑡)𝐼2(𝑡) − 𝑏𝐼3(𝑡),

𝑎𝑛𝑑
𝑑𝑃𝑣(𝑡)

𝑑𝑡
= 𝑘(1 − 𝐾2(𝑡))𝐼2(𝑡) − 𝑝𝑃𝑣(𝑡),

𝑎𝑛𝑑
𝑑𝑅𝑣(𝑡)

𝑑𝑡
= 𝑐𝐼3(𝑡) − 𝑞𝑅𝑣(𝑡). }

 
 
 
 
 

 
 
 
 
 

   

                                                        (3) 

 
The biological interpretation of the proposed 

model is to maximize the density of uninfected 
healthy T cells and minimize the viral load. 

We define the objective functional 𝑇 (to be 
maximized over all 𝐾1(𝑡),𝐾2(𝑡) ∈ 𝑈) 

 

𝐽(𝐾1(𝑡), 𝐾1(𝑡)) = ∫ [𝜌𝐼1(𝑡) − (𝑊1𝐾1
2(𝑡) +𝑊2𝐾2

2(𝑡)]
𝑇

0
        (4) 
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The proposed objective functional focuses on the 
maximization of heathy T cells over the time period 
[0, 𝑇] by means of the first term in the integrand. 
Here, 𝜌𝐼1(𝑡) shows the benefits of T cells. Moreover, 
the systemic costs of the drug therapy are 
represented by 𝑊1𝐾1

2(𝑡) +𝑊2𝐾2
2(𝑡). The coefficients 

𝑊1 and 𝑊2 stand for weight constants. Also, it 
expected that the effects of drugs are nonlinear and 
we choose the terms 𝐾1

2(𝑡) and 𝐾2
2(𝑡) which are 

quadratic cost terms and reflect the side effects of 
drugs. Our aim is to investigate optimal control pair 
(𝐾1, 𝐾2), which satisfies 

 
𝐽(𝐾1(𝑡), 𝐾2(𝑡)) = 𝑚𝑎𝑥{ 𝐽(𝐾1(𝑡), 𝐾2(𝑡))\𝐾1(𝑡), 𝐾2(𝑡) ∈ 𝑈}, 
                      (5) 

 
so that the density of the uninfected T cells is 
increased, and viral load and cost of treatment is 
reduced, where 𝑈 = {(𝐾1(𝑡), 𝐾2(𝑡))\
𝐾𝑖(𝑡)  is Lebesgue measurable on [0,1],0 ≤ 𝐾𝑖(𝑡) ≤
1, 𝑖 = 1,2} is the control set. Next, we discuss the 
existence of the optimal control pair. 

3.1. Existence of control problem 

The existence of an optimal control is 
accomplished by the assumptions of compactness on 
control and state spaces. Moreover, it can be proved 
by the structure of convexity of the optimal problem 
and boundedness of the solutions, and smoothness 
of the right-hand side of system (1) (Joshi, 2002). 

3.2. Conclusions about optimal control pair 

The Hamiltonian related to the control system (3) 
is defined as follows: 
 

𝛨 = 𝜌𝐼1(𝑡) −
1

2
(𝑊1𝐾1

2(𝑡) +𝑊2𝐾2
2(𝑡)) + 𝛾1(𝜆 − 𝑑𝐼1(𝑡) −

(1 − 𝐾1(𝑡))𝛽𝐼1(𝑡)𝑃𝑣(𝑡) + 𝛾2(𝜆 − 𝐾1(𝑡)) − 𝛽𝐼1(𝑡)𝑃𝑣(𝑡) −
𝑎𝐼2(𝑡) − 𝛼𝑅𝑣(𝑡)𝐼2(𝑡) + 𝛾3(𝑅𝑣(𝑡)𝐼2(𝑡) − 𝑏𝐼3(𝑡) + 𝛾4(𝑘(1 −
𝐾2(𝑡)𝐼2(𝑡) − 𝑝𝑃𝑣(𝑡)) + 𝛾5(𝑐𝐼3(𝑡) − 𝑞𝑅𝑣(𝑡)).                        (6) 
 

Further, we derive the necessary conditions for 
the proposed study by using the Pontryagins 
Maximum Principle (Boltyanskii et al., 1960). The 
following three conditions are satisfied for 
continuous function 𝛾(𝑡) on [0, 𝑇]: 

 
𝑥(𝑡) = 𝛨𝛾(𝑥, 𝑅1, 𝑅2, 𝛾)(𝑡),                                                          (7) 

 
which represents the state equation 
 
0 = 𝛨𝑈(𝑥, 𝑅1, 𝑅2, 𝛾)(𝑡),                                                                (8) 

 
which shows optimality conditions and the adjoint 
equation is represented by 
 
−𝑑𝛾(𝑡)

𝑑𝑡
= 𝛨𝑥(𝑥, 𝑅1, 𝑅2, 𝛾)(𝑡)                                                        (9) 

 

here, 𝛨𝛾 , 𝛨𝑈  and 𝛨𝑥  represent derivatives with 

respect to 𝛾, 𝑅1, 𝑅2, 𝑥(𝑡) respectively, where, 𝑥(𝑡) =
(𝐼1(𝑡), 𝐼2(𝑡), 𝐼3(𝑡), 𝑃𝑣(𝑡), 𝑅𝛾(𝑡)). Next, this 

Hamiltonian will be used to determine the adjoint 

system by Pontryagin Maximum Principle (Cohen et 
al., 2011). 

 
Theorem 3.1: There exist the following adjoint 
variables 𝛾𝑛(𝑡), 𝑛 = 1, . . . ,5, for the given control 
variables 𝐾1(𝑡), 𝐾2(𝑡)  and solutions 
𝐼1(𝑡), 𝐼2(𝑡), 𝐼3(𝑡), �̃�𝑣(𝑡), �̃�𝑣(𝑡) of the corresponding 
state system (1). 
 

𝑑𝛾1

𝑑𝑡
= [𝛾1(𝑡)(𝜌 − 𝐾1(𝑡) − 𝛾2(𝑡)]𝛽�̃�𝑣(𝑡) − 𝜌 + 𝛾1(𝑡)𝑑,

𝑎𝑛𝑑
𝑑𝛾2

𝑑𝑡
= 𝑎𝛾2(𝑡) + (𝛾2(𝑡) − 𝛾3(𝑡))𝛼�̃�𝑣(𝑡) − 𝛾4(𝑡)𝑘(1 − 𝐾2(𝑡)),

𝑎𝑛𝑑
𝑑𝛾3

𝑑𝑡
= 𝑏𝛾3(𝑡) − 𝑐𝛾5(𝑡),

𝑎𝑛𝑑
𝑑𝛾4

𝑑𝑡
= ((𝛾1(𝑡)(𝜌𝐾1(𝑡)) − 𝛾2(𝑡)))𝛽𝐼1(𝑡) + 𝛾4(𝑡)𝑝,

𝑎𝑛𝑑
𝑑𝛾5

𝑑𝑡
= (𝛾2(𝑡) − 𝛾3(𝑡))𝛼𝐼2(𝑡) + 𝛾5(𝑡)𝑞. }

 
 
 
 
 

 
 
 
 
 

 

                                                      (10) 
 

along with 𝛾𝑛(𝑇) = 0, 𝑛 = 1,2, . . . ,5, which are 
transversality conditions. 
 
Proof: Pontryagins Maximum Principle (Cohen et al., 
2011) and the substitutions 𝐼1 = 𝐼1, 𝐼2 = 𝐼2, 𝐼3 =
𝐼3, 𝑃𝑣 = �̃�𝑣 , 𝑅𝑣 = �̃�𝑣, 𝐾1 = 𝐾1, 𝐾2 = 𝐾2 give the adjoint 
system (10), after determining the following 
differentiations: 
 
𝑑𝛾1

𝑑𝑡
= −

𝜕𝛨

𝜕𝐼1
,
𝑑𝛾2

𝑑𝑡
= −

𝜕𝛨

𝜕𝐼2
,
𝑑𝛾3

𝑑𝑡
= −

𝜕𝛨

𝜕𝐼3
,
𝑑𝛾4

𝑑𝑡
= −

𝜕𝛨

𝜕𝑃𝑣
,
𝑑𝛾5

𝑑𝑡
=

−
𝜕𝛨

𝜕𝑅𝑣
,  

 
which satisfy the transversality conditions 𝛾𝑛(𝑇) =
0, 𝑛 = 1,2, . . . ,5. 
 
Theorem 3.2: The optimal control pair 
(𝐾1(𝑡), 𝐾2(𝑡)), which maximizes 𝐽 over 𝑈 is given by 
 
𝐾1(𝑡) = 𝑚𝑎𝑥{𝑚𝑖𝑛{𝐾1(𝑡),1},0}                                              (11) 
𝐾2(𝑡) = 𝑚𝑎𝑥{𝑚𝑖𝑛{𝐾2(𝑡),1},0}                                              (12) 

 

where, 𝐾1(𝑡) =
𝐼1(𝑡)𝜆1

2𝑊1
, 𝐾2(𝑡) = −

𝑘𝐼2(𝑡)𝛾4(𝑡)

2𝑊2
. 

 
Proof: The optimality conditions are used to find the 
following: 
 
𝜕𝛨

𝜕𝐾1
= 𝛾1(𝑡)𝐼1(𝑡)𝛽𝑃𝑣(𝑡) − 2𝑊1(𝑡)𝐾1(𝑡), at 𝐾1 = 𝐾1          (13) 

 
and 
 
𝜕𝛨

𝜕𝐾2
= −2𝑊2𝐾2(𝑡) − 𝛾4(𝑡)𝑘𝐼2(𝑡), at 𝐾2 = 𝐾2                      (14) 

 
The following equations can be obtained after 

solving for 𝐾1(𝑡), 𝐾2(𝑡): 
 

𝐾1(𝑡) =
𝛽𝛾1(𝑡)𝐼1(𝑡)𝑃𝑣(𝑡)

2𝑊1
                                                                 (15) 

𝐾2(𝑡) = −
𝑘𝐼2(𝑡)𝛾4(𝑡)

2𝑊2
                                                                    (16) 
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By using the bounds 0 ≤ 𝐾1 ≤ 1 and 0 ≤ 𝐾2 ≤ 1, 

after letting 𝐾1(𝑡) =
𝐼1(𝑡)𝜆1

2𝑊1
, 𝐾2(𝑡) = −

𝑘𝐼2(𝑡)𝛾4(𝑡)

2𝑊2
, we 

get Equations (11) and (12). 

Thus, we get the following optimality system 
(Boltyanskii et al., 1960; Joshi, 2002; Kirschner et al., 
1997; Garira et al., 2005; Revilla and Garcı́a-Ramos, 
2003; Ali et al., 2017; Fleming and Rishel, 1975): 

 
𝑑𝐼1(𝑡)

𝑑𝑡
= 𝜆 − 𝑑𝐼1(𝑡) − (1 − 𝑚𝑎𝑥{𝑚𝑖𝑛{𝐾1(𝑡),1},0})𝛽𝐼1(𝑡)𝑃𝑣(𝑡),

𝑑𝐼2(𝑡)

𝑑𝑡
= (1 − 𝑚𝑎𝑥{𝑚𝑖𝑛{𝐾1(𝑡),1},0})𝛽𝐼1(𝑡)𝑃𝑣(𝑡) − 𝑎𝐼2(𝑡) − 𝛼𝑅𝑣(𝑡)𝐼2(𝑡),

𝑑𝐼3(𝑡)

𝑑𝑡
= 𝛼𝑅𝑣(𝑡)𝐼2(𝑡) − 𝑏𝐼3(𝑡),

𝑑𝑃𝑣(𝑡)

𝑑𝑡
= 𝑘(1 − 𝑚𝑎𝑥{𝑚𝑖𝑛{𝐾2(𝑡),1},0})𝐼2(𝑡) − 𝑝𝑃𝑣(𝑡),

𝑑𝑅𝑣(𝑡)

𝑑𝑡
= 𝑐𝐼3(𝑡) − 𝑞𝑅𝑣(𝑡).

𝑑𝛾1

𝑑𝑡
= [𝛾1(𝑡)(𝜌 − 𝐾1(𝑡) − 𝛾2(𝑡)]𝛽�̃�𝑣(𝑡) − 𝜌 + 𝛾1(𝑡)𝑑,

𝑑𝛾2

𝑑𝑡
= 𝑎𝛾2(𝑡) + (𝛾2(𝑡) − 𝛾3(𝑡))𝛼�̃�𝑣(𝑡) − 𝛾4(𝑡)𝑘(1 − 𝐾2(𝑡)),

𝑑𝛾3

𝑑𝑡
= 𝑏𝛾3(𝑡) − 𝑐𝛾5(𝑡),

𝑑𝛾4

𝑑𝑡
= ((𝛾1(𝑡)(𝜌𝐾1(𝑡)) − 𝛾2(𝑡)))𝛽𝐼1(𝑡) + 𝛾4(𝑡)𝑝,

𝑑𝛾5

𝑑𝑡
= (𝛾2(𝑡) − 𝛾3(𝑡))𝛼𝐼2(𝑡) + 𝛾5(𝑡)𝑞.

𝐾1(𝑡) = 𝑚𝑎𝑥{𝑚𝑖𝑛{𝐾1(𝑡),1},0

𝐾2(𝑡) = 𝑚𝑎𝑥{𝑚𝑖𝑛{𝐾2(𝑡),1},0} }
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

                            (17) 

 
along with initial conditions 𝑇(𝑡0) = 𝑇0, 𝐼(𝑡0) = 𝐼

0, 
𝐷(𝑡0) = 𝐷0, 𝑉𝑝(𝑡0) = 𝑉𝑝

0, 𝑉𝑟(𝑡0) = 𝑉𝑟
0 transversility 

conditions 𝛾𝑛(𝑇) = 0, 𝑛 = 1,2, . . . ,5. 

4. Numerical simulation 

We introduce in this part the comparison of the 
progression of HIV-1 infection before and after the 
control treatment chemotherapy. Therefore, for the 
following parameters and initial values, we use some 
of the values from the exiting literature and some are 
estimated: 𝜆 = 2 (Joshi, 2002), 𝛼 = 0.0004 (Ali et al., 
2017), 𝑑 = 0.01 (Fleming and Rishel, 1975), 𝛽 =
0.004 (Fleming and Rishel, 1975; Ali et al., 2016), 𝑐 =
20 (estimated), 𝑏 = 0.5 (estimated), 𝑘 = 0.1 
(estimated), 𝑝 = 0.21 (estimated), 𝑎 = 0.5 
(Kirschner et al., 1997), 𝑞 = 3 (Garira et al., 2005), 
𝐼1
0 = 4, 𝐼2

0 = 2,  𝐼3
0 = 2,  𝑃𝑣

0 = 3, 𝑅𝑣
0 = 2. For this 

purpose, Runge-Kutta method of order fourth is 
used. The following figures can justify our proposed 
strategy. 

Figs. 1-6 represent optimal controls plots. When 
the virus inters in the human body, it destroys and 
kills the CD4+ cells and due to this reason, the 
concentration of healthy T cells reduces (Fig. 1). 
Consequently, the virus 𝑃𝑣 spreads more rapidly and 
so its concentration increases (Fig. 4). But after using 
the optimal treatment, this situation is controlled. 
The effects of chemotherapy can be observed after 
few days. These effects appear in the form of growth 
of healthy T cells and decrease of virus 𝑃𝑣 (Figs. 1 
and 4). Moreover, the density of infected cells 𝐼2 
decreases after treatment as shown in (Fig. 2). The 
concentration of double infected cells 𝐼3(𝑡), shown in 

(Fig. 3), decreases after treatment. Fig. 6 shows the 
optimal controls treatment for drug administration. 

5. Discussion 

In this work, optimal control strategies were 
developed for reducing the infection of HIV-1. Two 
optimal control treatments were introduced which 
are enough for reducing the density of infected cells 
and the population of free viruses. These variables 
produce very fruitful results. They produce a large 
amount of healthy cells and bring it to a level which 
is convenient. Further, the densities of free viruses 
and infected cells could reach to the low level.  

 

 
Fig. 1: The difference between the concentration the 

heathy target cells 𝐼1(𝑡) with and without control 
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Fig. 2: The difference between the concentration of the 
infected cells 𝐼2(𝑡) before and after control treatment 

 

 
Fig. 3: The difference between the concentration the 

double infected cells 𝐼3(𝑡) before and after control 
treatment 

 

 
Fig. 4: The difference between the viral load 𝑃𝑣(𝑡) before 

and after control treatment 
 

One can also observed that during the whole time 
period for drug administration, 𝐾1 and 𝐾2 stay on 
value which is maximal. Moreover, an efficient 
numerical method was presented in order to reduce 
the infection rate and viral production. The derived 
results show the growth of healthy T cells, and 
decrease of infected cells and viral load by using 
inhibitors and HAART. 

 
Fig. 5: The difference between the viral load 𝑅𝑣(𝑡) before 

and after control treatment 
 

 
Fig. 6: The graph shows the effect of control variables 
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