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This paper is based on the analysis of SEIR measles models, which are used 
to study the integrating vaccination as a control strategy and taking the two 
stages of infectiousness and transmission dynamics of infectious diseases in 
a population. Measles is a higher contagious that can spread in a community 
population depending on the number of people susceptible or infected and 
also depending on their movement in a community. We construct an 
unconditionally convergent nonstandard finite difference (NSFD) scheme 
for SEIR measles model. NSFD preserve the positivity of all values of h. This 
method proved to be a very efficient technique for solving epidemic models. 
We obtained disease-free equilibrium (DFE) point, Endemic equilibrium 
(EE), reproduction number for the model. Moreover, the analysis of the 
epidemic models using nonstandard finite difference scheme reveals that 
the method provides a rapidly convergent series solution by little iteration 
and avoids the massive computational work. Numerical simulations show 
that the rate of infection is decreased with the passage of time and disease 
will die out in the community. The results are compared to the Differential 
Transformation Method to show this scheme is efficient and better accuracy 
for epidemic models. 
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1. Introduction 

*In human population epidemiology studies play 
an important role to understand the disease in 
human population. The research of this kind help to 
understand the ratio of disease spread in the 
population and to control their parameters (Grenfell, 
1992). These types of diseased models are often 
called infectious diseases (i.e., the disease which 
transferred from one person to another person). 
Measles, rubella, chicken pox, mumps, aids and 
gonorrhea syphilis are the examples of infectious 
disease. Rubella virus is highly infectious illness 
which is also known as morbilli or measles. The 
virus can be found in the mucus of the throat, nose of 
an infected adult and child. Measles symptoms 
caused by Rubeola virus always included fever, 
coryza (runny nose), conjunctivitis and at least one 
of the three Cs-cough. Symptoms appear after the 
initial infection about 9-11 days. Virus grows in 
lymphatic system and lungs after entering the body 
and. Blood vessels, central nervous system, urinary 
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tract, imitates in the eyes are chance to be infected. 
According to the experts, the virus created itself 
within 1-3 weeks. Measles reinfection are very rare. 
Measles is an air borne disease so the ratio of 90 
percent peoples who haven’t got the immunity 
against measles cause to spread this disease from 
one person to another person if they live together at 
the same house (Ochoche and Gweryina, 2014). 
Complications of measles are fairly common but the 
patients have weak immune system are more likely 
to be worse such as those with HIV/AIDS or 
leukemia and those with vitamin deficiency. Healthy 
children over the age of 5 are less likely to have 
complications than adults over the age of 20. It is the 
first and worst eruptive fever occurs during 
childhood (Hethcote, 2000; Murray, 2003). It 
produces infection of eyes, bronchitis, vomiting, 
bronchitis is inflammation of the inner walls of 
airways and laryngitis is inflammation of the voice 
box. 

In recent study the differential transform method 
is the one of the most effective and efficient 
numerical techniques for solving system of linear 
and non-linear differential equations, integral and 
Integro differential equations. Till now this method 
solve various type of linear, non-linear differential 
equations as well as integral equations (Pukhov, 
1978). DTM provides an efficient numerical and 
explicit solution with least calculations and high 
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accuracy. DTM is very effective technique because it 
gives well approximately solution in a very small 
region (Pukhov, 1981; 1982; 1986). 

Now we discuss nonstandard finite difference 
scheme (NSFD) which works correctly for large time 
step size. In recent years, construction of NSFD 
discrete models has been tested for a wide range on 
nonlinear dynamical systems (Moaddy et al., 2011; 
Dimitrov and Kojouharov, 2005; Taylor et al., 1986). 

The NSFD have been widely used for system of 
differential equations that are describing problems 
in mathematical biology and the other different 
areas. These Method showed the superiority in 
preserving the passivity (Jang, 2005; Gumel et al., 
2005; Mounim and de Dormale, 2004; Mickens, 
2003) when comparing all others well known 
numerical method of state variable of the system 
under study. 

In this paper, we design and analyze a NSFD for 
mathematical model of the transmission of measles 
in the society. The dynamics of this model are 
studied using the qualitative theory of dynamical 
system. This method also preserves positivity of the 
solution which is one of the essential requirement 
when modeling epidemic disease. Comparison also 
made with other conventional approaches that are 
routinely used for such problems. 

2. Material and method 

To describe the transmission dynamics of 
measles we formulate a deterministic, 
compartmental, mathematical model. In order to 
describe the model equations, the total population 
(N) is divided into four classes: S, E, I, R represented 
as Susceptible, Exposed, infected and recovered 
population respectively. We divided our 
compartmental model into four compartment as 
shown in flow chart given in Fig. 1. The susceptible 
population which are not infected and are able to 
catch the disease and able to transmit others is in S 
class with infection contact rate βand increased by 
birth or immigration at a rate B with mortality rate μ 
(i.e., natural death rate). The compartment E shows 
the class of those peoples which are exposed but not 
able to transfer the disease to another individuals in 
the period of incubation. The class E is break through 
into infected class at a rate α, decreased by testing 
and measles therapy at a rate σ and moderated at a 
rate μ which is natural death rate. The compartment 
I which is class of infected peoples is decreased at 
the infection rate γ and decreased at the mortality 
rate μ. In this model we assumes that both recovered 
and infected peoples and recovered , exposed 
peoples have got the permanently immune from the 
disease where R is the compartment of recovered 
peoples reduced with mortality rate μ (Momoh et al., 
2013). 

Therefore, the flow chart of deterministic measles 
model is shown in Fig. 1. 

 
Fig. 1: The flow chart Of SEIR model 

 

Following are the equations of the model:  
 
𝑑𝑆

𝑑𝑡
= 𝐵 − 𝛽𝑆𝐼 − 𝜇𝑆                        𝑡 > 0                   (1) 

𝑑𝐸

𝑑𝑡
= 𝛽𝑆𝐼 − 𝜇𝐸 − 𝛼𝐸 − 𝜎𝐸         𝑡 > 0                                    (2) 

𝑑𝐼

𝑑𝑡
= 𝛼𝐸 − 𝜇𝐼 − 𝛾𝐼                         𝑡 > 0                                    (3) 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 + 𝛼𝐸 − 𝜇𝑅                       𝑡 > 0                                    (4) 

 

We will assume the total population is constant 
for size N 𝑖. 𝑒., 𝑆 + 𝐸 + 𝐼 + 𝑅 = 𝑁.  

The system is qualitatively analyzed by two ways 
i.e. disease Free Equilibrium and endemic 
Equilibrium. 

3. Qualitative analysis 

3.1. Disease free equilibrium 

Firstly we normalize the model by dividing by N 
for Eqs. 1-4. 
 

𝑠 =
𝑆

𝑁
 , 𝑒 =

𝐸

𝑁
 , 𝑖 =

𝐼

𝑁
 , 𝑟 =

𝑅

𝑁
  

𝑓1 = 𝐵 − 𝛽𝑠𝑖 − 𝜇𝑠                     (5) 
𝑓2 = 𝛽𝑠𝑖 − 𝜇𝑒 − 𝛼𝑒 − 𝜎𝑒                    (6) 
𝑓3 = 𝛼𝑒 − 𝜇𝑖 − 𝛾𝑖                      (7) 
𝑓4 = 𝛾𝑖 + 𝛼𝑒 − 𝜇𝑟                       (8) 
 

When naturally, the disease die out then the 
solution of the above system asymptotically 
approaches a disease free population or equilibrium 
is of the form  
 

𝑆 =
𝛽

𝜇
 , 𝐸 = 0 , 𝐼 = 0  

𝑖. 𝑒 (𝑆, 𝐸, 𝐼, 𝑅) = (
𝛽

𝜇
 ,0,0,0)  

3.2. Endemic equilibrium  

It means that disease never dies out. When 
disease free equilibrium is unstable that is disease 
persist in the population then Endemic equilibrium 
takes the form: 
 

(𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗) = [
(𝜇+𝜎+𝛼)(𝜇+𝛾)

𝛽𝛼
 ,

𝐵

𝜇+𝛼+𝜎
−

 
𝜇(𝜇+𝛾)

𝛼
 ,

𝐵𝛼

(𝜇+𝜎+𝛼)(𝜇+𝛾)
− 𝜇,

1

𝜇
{𝛾 −

𝜎

𝛼
(𝜇 + 𝛾)} {

𝐵𝛼

(𝜇+𝛼+𝜎)(𝜇+𝛾)
−

𝜇}]   

3.3. Reproductive number 

The reproductive number is: 

𝑅0 =
𝐵

𝜇𝑆
=

𝐵𝛽𝛼

𝜇(𝜇+𝜎+𝛼)(𝜇+𝛾)
= 0.00087 < 1  

 

So this is disease free equilibrium. 
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3.4. Stability analysis 

We evaluate the Jacobian matrix to examine the 
local stability of the disease free equilibrium. 

 

(𝑠, 𝑒, 𝑖, 𝑟) = (
𝛽

𝜇
, 0,0,0)  

 

Theorem 1: The given system of non-linear 
differential equation is locally asymptotically stable 
at disease-free equilibrium if this satisfies the 
following condition 𝑅0 < 1 while 𝐸0 is unstable 
saddle point if 𝑅0 > 1. 
 

Theorem 2: If 𝑅0 ≤ 1, then the model (1)-(4) is 
globally asymptotically stable at disease-free 
equilibrium, 𝐸0 = (𝑆0, 0,0,0) and unstable otherwise. 
 

Theorem 3: The endemic equilibrium state E1 = (S_; 
E_; I_; R_) of the model (1)-(4) is globally 
asymptotically stable, if𝑅0 > 1, otherwise unstable. 
Proof of these theorems will be given in. 

3.5. Differential transform method 

This method is transformation technique based 
on Taylor series expansion (Pukhov, 1978; 1981; 
1982; 1986) offers a convenient means for obtaining 
analytic solutions of differential equations. Zhou was 
the first man who introduced this technique in 1986 
(Zhou, 1986), and is commonly used for the solution 
of electric circuit problems, it seems to be largely 
unknown to the research community. After that 
Pukhov (1986) worked in this technique and further 
developed these techniques for partial differential 
equations. This is a semi analytic technique and the 
solution of this technique is in the form of series also 
this method give closed form solution unlike other 
numerical methods. 

 

Definition 1: A differential Transformation 𝑈(𝑘)of a 
function 𝑢(𝑥) is in the form (Chen and Sy-Hong, 
1996; Chen and Wu, 1996; Jang and Chen, 1997; 
Chen and Ho, 1996). 
 

𝑈(𝑘) =
1

𝑘!
[

𝑑𝑘𝑢(𝑥)

𝑑𝑥𝑘 ]
𝑥=𝑥0

                    (9) 

 

here, 𝑢(𝑥) = Original function and 
𝑈(𝑘) =Transformed function. The Inverse of 
differential Transformation is defined as: 
 

𝑢(𝑥) = ∑ 𝑈∞
𝑘=0 (𝑘)(𝑥 − 𝑥0)𝑘                  (10) 

 

when 𝑥0 is taken as zero, then the above original 
function 𝑢(𝑥) will be defined in the form of finite 
series and above function can be expressed in the 
form as: 

 

𝑢(𝑥) = ∑ 𝑈∞
𝑘=0 (𝑘) 𝑥𝑘                                                    (11) 

𝑢(𝑥) = ∑ 𝑈(𝑘)∞
𝑘=0

 𝑥𝑘

𝑘!
[

𝑑𝑘𝑢(𝑥)

𝑑𝑥𝑘 ]
𝑥=𝑥0

.                 (12) 

 

Using the fundamental result of DTM we obtained 
the following equation. From the above equation we 

can see that the basic idea of DTM is based on Taylor 
series. 
 

𝑆(𝑘 + 1) =
1

(𝑘+1)
[𝐵𝛿(𝑘) − 𝛽 ∑ 𝑆(𝑙)𝐼(𝑘 − 𝑙)𝑘

𝑙=0 − 𝜇𝑆(𝑘)]  

                    (13) 

𝐸(𝑘 + 1) =
1

(𝑘+1)
[𝛽 ∑ 𝑆(𝑙)𝐼(𝑘 − 𝑙)𝑘

𝑙=0 − 𝜇𝐸(𝑘) − 𝜎𝐸(𝑘) −

𝛼𝐸(𝑘)]                                     (14) 

𝐼(𝑘 + 1) =
1

(𝑘+1)
[𝛼𝐸(𝑘) − 𝜇𝐼(𝑘) − 𝛾𝐼(𝑘)]                (15) 

𝑅(𝑘 + 1) =
1

(𝑘+1)
[𝛾𝐼(𝑘) + 𝜎𝐸(𝑘) − 𝜇𝑅(𝑘)]                (16) 

 

The inverse differential transform of S(k) is 
defined as: 

 
𝑠(𝑡) = ∑ 𝑆(𝑘)(𝑡 − 𝑡0)𝑘∞

𝑘=0   
 
when 𝑡0is taken as zero, the given function y(x) is 
declared by a finite series and above equation can be 
written in the form 

 
  𝑠(𝑡) = ∑ 𝑆(𝑘)(𝑡)𝑘∞

𝑘=0 . 

 
By solving the above equation for  𝑆(𝑘 + 1), 

𝐸(𝑘 + 1), 𝐼(𝑘 + 1) and 𝑅(𝑘 + 1) up to order 5, we 
get the function of 𝑆(𝑘), 𝐸(𝑘), 𝐼(𝑘) and 𝑅(𝑘) 
respectively  

 
𝑠(𝑡) = ∑ 𝑆(𝑘)(𝑡)𝑘5

𝑘=0                   (17) 
𝑒(𝑡) = ∑ 𝐸(𝑘)(𝑡)𝑘4

𝑘=0                   (18) 

𝑖(𝑡) = ∑ 𝐼(𝑘)(𝑡)𝑘5
𝑘=0                   (19) 

𝑟(𝑡) = ∑ 𝑅(𝑘)(𝑡)𝑘5
𝑘=0                   (20) 

3.6. Nonstandard finite difference scheme (NSFD) 
for SEIR model 

In this section, we design the NSFD scheme that 
replicates the dynamics of continuous model (1)-(4). 
Let 𝑌𝑘 = (𝑆𝑘  , 𝐸𝑘  , 𝐼𝑘  , 𝑅𝑘)𝑡  denoted the 
approximation 𝑋( 𝑡𝑘) where 𝑡𝑘 = 𝑘∆(𝑡) with 𝑘 ∈
𝑁 , ℎ = ∆(𝑡) > 0 be a step size then 
 
𝑆𝑘+1−𝑆𝑘

∅
=  𝐵 − 𝛽𝑆𝑘+1𝐼𝑘 − 𝜇𝑆𝑘+1                  (21) 

𝐸𝑘+1−𝐸𝑘

∅
= 𝛽𝑆𝑘+1𝐼𝑘 − (𝜇 + 𝛼 + 𝜎)𝐸𝑘+1                  (22) 

𝐼𝑘+1−𝐼𝑘

∅
=  𝛼𝐸𝑘+1 − (𝜇 + 𝜎)𝐼𝑘+1                             (23) 

𝑅𝑘+1−𝑅𝑘

∅
= 𝛾𝐼𝑘+1 + 𝜎𝐸𝑘+1 − 𝜇𝑅𝑘+1                                      (24) 

𝑆𝑘+1 =
𝐵∅+𝑆𝑘

1+𝛽∅𝐼𝑘+𝜇∅
  

𝐸𝑘+1 =
𝛽∅𝑆𝑘+1+𝐸𝑘

1+∅(𝜇+𝛼+𝜎)
  

𝐼𝑘+1 =
𝛼∅𝐸𝑘+1+𝐼𝑘

1+∅(𝜇+𝜎)
  

𝑅𝑘+1 =
∅𝛾𝐼𝑘+1+𝜎ℎ𝐸𝑘+1+𝑅𝑘

1+𝜇∅
  

 

Which is the purposed NSFD scheme for the given 
model, where 

 

∅ = ∅(ℎ) =
1−𝑒−(𝛾+𝜇)ℎ

(𝛾+𝜇)
  

 

The discrete method (13 -16) is constructed by 
using Mickens rules (Akinboro et al., 2014) which 
was formalized by Anguelov and Lubuma (2001). 
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3.7. Analysis of the scheme 

Theorem 4: The NSFD scheme (5 - 8) is a dynamical 
system on the biological feasible domain of the 
continuous model (13 - 16). 
 

Proof: First we prove the positivity (13-16). For this 
we take the explicit form. 
 

𝑆𝑘+1 =
𝐵∅+𝑆𝑘

1+𝛽∅𝐼𝑘+𝜇∅
                     (25) 

𝐸𝑘+1 =  
𝛽∅(𝐵∅+𝑆𝑘)+𝐸𝑘(1+∅(𝜇+𝛼+𝜎))(1+𝛽∅𝐼𝑘+𝜇∅)

(1+∅(𝜇+𝛼+𝜎))(1+𝛽∅𝐼𝑘+𝜇∅)
                     (26) 

 

 

𝐼𝑘+1 =  
𝛼∅{𝛽∅(𝐵∅+𝑆𝑘)+𝐸𝑘(1+∅(𝜇+𝛼+𝜎))(1+𝛽∅𝐼𝑘+𝜇∅)}+𝐼𝑘(1+∅(𝜇+𝜎))(1+∅(𝜇+𝛼+𝜎))(1+𝛽∅𝐼𝑘+𝜇∅)

(1+∅(𝜇+𝜎))(1+∅(𝜇+𝛼+𝜎))(1+𝛽∅𝐼𝑘+𝜇∅)
                     (27) 

 
Adding Eqs. 21-22 we get 
 

𝐻𝑘+1(1 + ∅𝜇) = ∅𝐵 + 𝐻𝑘 − (∅(𝜇 + 𝛼 + 𝜎) + 1)𝐸𝑘+1 ≤
∅𝐵 + 𝐻𝑘  
𝐻𝑘+1(1 + ∅𝜇) ≤ ∅𝐵 + 𝐻𝑘  

 

Therefore  
 

𝐻𝑘+1 ≤
𝐵

𝜇
 ,   𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟     𝐻𝑘 ≤

𝐵

𝜇
  

 

The priori bounds for 𝐼𝑘+1 follow readily from the 
fact that 𝐼𝑘+1 and 𝐸𝑘+1 are less than or equal to 𝐻𝑘+1. 
This complete the proof. 

4. Results and discussion 

Case 1: For numerical results, we used the 
followings Table 1 values of parameters are 
considered from Momoh et al. (2013). 

 
Table 1: Parameters values of the model for case 1 

Parameters Values Parameters Values 
𝛽 0.01 𝐵 0.32 
𝜇 0.2 𝛼 0.01 
𝜎 0.25 𝑆(0) 600 
𝛾 0.2 𝐸(0) 250 

𝐼(0) 100 𝑅(0) 50 

 

The tabular form and graphs are shown in Figs. 2-
4. 

 

 
s(t)= 600 −  719.68𝑡 +  544.308 × 𝑡2 − 327.5332 × 𝑡3 +  174.04995𝑡4 −

71.3383 × 𝑡5, t=1.5 

Fig. 2: Susceptible peoples; 𝑠(𝑡), 𝐵 = 0.32, 𝜇 = 0.2, 𝛽 =
0.01, 𝛾 = 0.2, 𝛼 = 0.01, 𝜎 = 0.25 

 

 
𝑒(𝑡) = 250 + 485 × 𝑡 − 583.89 × 𝑡2  + 380.7758 × 𝑡3 −  199.4626 × 𝑡4 , 

t=1.5 

Fig. 3: Exposed peoples; 𝑒(𝑡) , 𝐵 = 0.32, 𝜇 = 0.2, 𝛽 =
0.01, 𝛾 = 0.2, 𝛼 = 0.01, 𝜎 = 0.25 

 
𝑖(𝑡) = 100 − 37.5 × 𝑡 + 9.925 × 𝑡2 − 3.2696 × 𝑡3 + 1.2789 × 𝑡4 −

0.50124 × 𝑡5, t= 1.5 

 
Fig. 4: Infected peoples 𝑖(𝑡),   𝐵 = 0.32, 𝜇 = 0.2, 𝛽 =

0.01, 𝛾 = 0.2, 𝛼 = 0.01, 𝜎 = 0.25 
 

Case 2: For numerical results, we used the 
followings Table 2 values of parameters are 
considered form. The tabular form and graphs are 
shown in Figs. 5-7. 

 
Table 2: Parameters values of the model for case 2 

Parameters Values Parameters Values 
𝛽 0.01 𝐵 0.32 
𝜇 0.2 𝛼 0.01 
𝜎 0.75 𝑆(0) 600 
𝛾 0.2 𝐸(0) 250 

𝐼(0) 100 𝑅(0) 50 
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𝑠(𝑡) = 600 −  719.68𝑡 +  544.308 × 𝑡2 − 326.2832 × 𝑡3 +  170.48215𝑡4 −

82.27416 × 𝑡5 , t=1.5 

Fig. 5: Susceptible peoples; 𝑠(𝑡)   𝐵 = 0.32, 𝜇 = 0.2, 𝛽 =
0.01, 𝛾 = 0.2, 𝛼 = 0.01, 𝜎 = 0.75 

 

 
𝑒(𝑡) = 250 + 360 × 𝑡 − 645.14 × 𝑡2  + 496.4408 × 𝑡3 −  273.3138 × 𝑡4 , 

t=1.2 

Fig. 6: Exposed peoples; 𝑒(𝑡)   𝐵 = 0.32, 𝜇 = 0.2, 𝛽 =
0.01, 𝛾 = 0.2, 𝛼 = 0.01, 𝜎 = 0.75 

 

 
𝑖(𝑡) = 100 − 37.5 × 𝑡 + 9.3 × 𝑡2 − 3.3905 × 𝑡3 + 1.580152 × 𝑡4 −

0.67304 × 𝑡5, t=1.5 

Fig. 7: Infected peoples; 𝑖(𝑡)   𝐵 = 0.32  𝜇 = 0.2, 𝛽 =
0.01, 𝛾 = 0.2, 𝛼 = 0.01, 𝜎 = 0.75 

 

Graphs of S(t) by using NSFD For case 1 are 
shown in Figs. 8-10. Fig. 8 shows that the relation 
between susceptible and time in a year and Fig. 9 

shows the relation between exposed and time in a 
year also Fig. 10 shows the relation between infected 
and time in a year. Graphs of S(t) by using NSFD For 
case 2 are shown in Figs. 11-13. Fig. 11 shows that 
the relation between susceptible and time in a year 
and Fig. 12 shows the relation between exposed and 
time in a year also Fig. 13 shows the relation 
between infected and time in a year.  

 

 
Fig. 8: Susceptible peoples; 𝐵 = 0.32, 𝜇 = 0.2, 𝛽 = 0.01,

𝛾 = 0.2, 𝛼 = 0.01, 𝜎 = 0.25 
 

 
Fig. 9: Exposed peoples; 𝐵 = 0.32, 𝜇 = 0.2, 𝛽 = 0.01, 𝛾 =

0.2, 𝛼 = 0.01, 𝜎 = 0.25 
 

 
Fig. 10: Infected peoples; 𝐵 = 0.32, 𝜇 = 0.2, 𝛽 = 0.01, 𝛾 =

0.2, 𝛼 = 0.01, 𝜎 = 0.25 
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Fig. 11: Susceptible peoples; 𝐵 = 0.32, 𝜇 = 0.2, 𝛽 =

0.01, 𝛾 = 0.2, 𝛼 = 0.01, 𝜎 = 0.75 
 

 
Fig. 12: Exposed peoples; 𝐵 = 0.32, 𝜇 = 0.2, 𝛽 = 0.01, 𝛾 =

0.2, 𝛼 = 0.01, 𝜎 = 0.75 

5. Conclusion 

Many researchers apply many numerical 
techniques to solve many mathematical models. To 
analyze SEIR measles model, we use two different 
techniques Differential transformation method and 
Non Standard finite difference scheme. After 
comparison our results we found that rather DTM is 
very efficient technique, is really worth, offers 
promoting approach and easy to implement also 
reliable for complicated systems of linear and non-
linear equations. Secondly we construct an 
unconditionally convergent nonstandard finite 
difference (NSFD) scheme for SEIR measles model. 
NSFD preserve the positivity of all values of h (step 
size). 

The NSFD scheme is dynamically consistent, easy 
to implement and show a good accidence with 
analytical consequences obtained by dynamics 
analysis of the model. This method proved to be very 
efficient technique for solving epidemic models. To 
analyze SEIR measles model, we use two different 
cases of measles therapy rate 𝜎 and plot the S, E, I 
against time in years. In each case, we discussed two 
different cases for the different values of measles 

therapy rate 𝜎 to analyze for what reason the 
exposed peoples are effected.  

 

 
Fig. 13: Infected peoples; 𝐵 = 0.32, 𝜇 = 0.2, 𝛽 = 0.01, 𝛾 =

0.2, 𝛼 = 0.01, 𝜎 = 0.75 

 
We conclude that, in high measles prevalence 

countries, testing diagnosis and exposed individuals 
at latent period therapy will have a much greater 
impact on the disease burden. By the isolation of the 
infections individuals from the other ones, the 
spread of disease into a population can be controlled 
as the therapy rate 𝜎 will be decreased. For this 
purpose, appropriate measures should be taken so 
that the interaction between infectious and 
susceptible children should be minimized. Moreover, 
the analysis of epidemic models using nonstandard 
finite difference scheme reveals that, the method 
provides rapidly convergent series solution by little 
iteration and avoids the massive computational 
work. 
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