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The aim of this paper is to propose a new design for a glass break detection 
system using LSTM deep recurrent neural networks at an end-to-end 
approach to reduce false positive alarm of state of the art glass break 
detectors. We utilized raw wave audio data to detect a glass break detection 
event in End-to-End learning approach. The key benefit of End-to-End 
learning is avoiding the need for hand-crafted audio features. To address the 
issue of a vanishing gradient and exploding gradient problem in conventional 
recurrent neural networks, this paper proposed deep long short term 
memory (LSTM) recurrent neural network to handle the sequence of the 
input audio data.  As a real-time detection result, the proposed glass break 
detection approach has a clear advantage over the conventional glass break 
detection system, as it yields significantly higher precision accuracy 
(99.999988 %) and suffers less from environmental noise that might cause a 
false alarm. 
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1. Introduction 

*Glasses are increasingly used in the construction 
of offices and residential places because of the 
advantages of comfort, well-being, style and light 
sustainability. Despite its benefits, it is also prone to 
security risks at night or when a person is not 
present, as it would be easy for an intruder to smash 
the glass based door, then reach inside and open the 
latch lock. Therefore, glass break detection plays an 
important role in ensuring the security of offices and 
residential places, as most of the burglars or 
intruders enter the home through glass doors and 
windows. A glass break detector is an electronic 
sensor that detects breakage vibrations or shattering 
sounds of glass panes. A glass break detector can be 
used for the protection of the internal and external 
perimeter building. When the glass pane is shatters 
or breaks, it generates sound over a wide band of 
vibrations and frequencies. These shattering glass 
sounds have a kind of distant frequency. Generally, 
these can range from 3 to 5 kHz, depending on the 
type of glass and the presence of an interconnected 
plastic layer. Most conventional electronic glass 
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break detectors process use pre-determined 
frequency, amplitude and vibration thresholds to 
determine whether the glass has broken. Generally, 
conventional glass break detectors can be grouped 
into three main categories, (such as Activate 
Detectors, Physical Vibration Detectors and Acoustic 
Detectors). Active detectors send a set of frequency 
energies towards the window glass panes and 
receive the reflected frequency energy. Any change 
observed in the reflected frequency energy triggers 
an alarm or activates another circuit (Clark and 
Lewis, 1996; Zidan, 2015). The Physical Vibration 
detector is composed of a piezoelectric element. 
Whenever the glass is broken, there is some 
vibration caused in the molecules. These vibrations 
are noted by the detectors and converted in to an 
electric signal, then the alarm system is triggered 
(Sharapov, 2011).  Acoustic based glass break 
detectors contain one or more acoustic audio 
transducers that can detect an electrical signal in 
response to a high amplitude and frequency sound 
created due to breaking of the glass plate. If a burglar 
is trying to break through a window, the detector 
would pick up on the high-pitched shattering sound 
and a pre-determined frequency composition of 
breaking event to trip the alarm (Cecic and Fong, 
1997; Matesa, 2015; Rickman, 1995). In fact, 
classification of glass breaking sounds and some 
loud anomalous audios (such as, gunshots, thunder, 
and people shouting, dropping and hitting objects) 
remains a challenging task despite decades. The 
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chances of false alarms in glass break detectors are 
high, because shock and anomalous loud sounds 
have similar frequency and vibration thresholds of 
pre-defined glass breaking sounds (Clavel et al., 
2005). The recent development in technology has 
improved towards overcoming this drawback. There 
is an ongoing success in the performance of Artificial 
Intelligence (AI) in dealing with video and audio 
surveillance applications (such as speech 
recognition, computer vision, voice translation, and 
much more in past few years), and  smart security 
surveillance systems are shifting from conventional 
electronic sensor based classification techniques to 
modern machine learning and deep learning 
methods. Among them, Conte et al. (2012) proposed 
abnormal audio event detection in an urban area, 
Mahler et al. (2017) discussed a home interior 
security system, Dufaux et al. (2000) proposed an 
impulsive sound detection system in a public square, 
and Zidan (2015)  studied protection of nuclear 
facilities using hardware sensors. Gestner et al. 
(2007) proposed Digital Signal Processing (DSP) 
based glass break detectors in homes and offices. 
Peng et al. (2014)  focused on impulsive sound 
detection and surveillance system in public 
transport. Aurino et al. (2014) discussed anomaly 
detection in automatic surveillance application. 
Kiktova et al. (2015) proposed a gunshot and shout 
sounds detection system in a city environment which 
can be noted as particular applicable for surveillance 
responsibilities, wherein audio can continually make 
contributions. In this paper, we advocate for a new 
architecture of glass break detection system to 
reduce false detection alarm using long short term 
memory (LSTM) deep recurrent neural network in 
an end-to-end approach. 

2. Outline 

The rest of the paper is organized as follows. 
Section 3 will discuss data acquisition of acoustic 
audio signals. Section 4 will describe the LSTM deep 
recurrent neural network. Section 5 will explain end-
to-end (LSTM) deep recurrent neural network 
approach on glass break detection events. Section 6 
will summarize the experimental result of proposed 
deep learning model, and Section 7 will provide 
conclusions. 

3. Data acquisition 

For data acquisition, we manually collected 
annotated dataset of glass break and non-glass break 
acoustic audio for training, testing, and validation of 
the proposed system. Input audio signals are 
recorded with an acoustic sensing built-in 
microphone from a laptop. Collected audio signals 
for glass break detection is generally at a 44100 
sampling rate per second at 2 sec time frames.  

We collected 5000 audio (.wav) slices samples for 
audio dataset under various noise level 
environments, as shown in Fig. 1. This dataset is 
composed of two types of sound classes consisting of 

2500 slices samples of breaking glass sounds data 
(breaking glass  sounds with different noise level) 
and 2500 non-breaking glass sounds slices from 
environmental sound and noises (combining of 
shouted sounds, cars horn, household, alarm , 
animals, farm and child playing, people conversation 
sounds), as shown in Fig. 2. 

 
Fig. 1: Data acquisition of glass breaking sounds 

 
Fig. 2: Wave form of glass break and non-glass break 

sounds 

4. Methodology 

4.1. Deep recurrent neural network (long short 
term memory - LSTM) 

Primary topics of research on deep learning were 
image and audio analysis. Although these are many 
sources of image data that can be collected in recent 
years, audio analysis has been restrained until lately. 
Few publicly collected sound data and complex 
sequence characteristics of audio data (such as 
frequency features, energy levels) are the causes for 
the limited research in this field (Graves et al., 2013). 
Recurrent networks are a kind of artificial neural 
network intended to understand patterns in 
continuous data (which includes text data, speech 
data or sequence of numerical sensors data, time 
series data of stock exchanges and social networks). 
Recurrent networks (RNNs) vary from conventional 
feed forward neural networks in that the feedback 
loop is associated with their previous decisions and 
takes its own outputs as an input for each 
timestamp. RNN discovers correlations between 
events separated by many timestamps, and these 
correlations can be denote as “long-term 
dependencies” (vanishing gradients) and “short-
term dependencies (exploding gradients)” (Sak et al., 
2014).                                                                    
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The first drawback with conventional recurrent 
neural network is finding the correlation between 
current events and long-term memory of past 
timestamp (vanishing gradients problems). Updated 
weights of RNN are too small (almost unchanged) 
and many iterations are needed to update the new 
weights. The second drawback in RNN is finding the 
correlation between current events and short-term 
memory of recent timestamp (exploding gradients 
problems). Updated weights of RNN are too large 
and the updated weights is too distant from current 
weights (Gers et al., 2000).  

The architecture of an LSTM Network has been 
shown to be particularly effective when stacked into 
a deep configuration, towards handling the vanishing 
gradient and exploding gradient issues of traditional 
Recurrent Neural Network. In the LSTM structure, 
the recurrent hidden layer consists of a set of 
recurrently connected subnets called “memory 
blocks”. Each memory block includes one or more 
self-connected memory cells and three multiplicative 
gates to control the flow of information (Gers et al., 
2000). 

The processes of carrying memory forward of 
LSTM graphically is described in Fig. 3. An 
architecture of (LSTM) RNN is as follows. In the first 
gate, we decide what we need to forget from the data 
(forget gate); in the second gate, new information is 
stored into the cell state throughout the whole 
process (Input Gate); in the final gate, the new 
output is produced based what we decided (output 
gate).  This is what basically how LSTM works to 
handle complex sequences of data at different 
timestamps. 

 

 
Fig. 3: LSTM (RNN) at different timestamps (Edureka, 

2017) 

4.2.   Forget gate 

The first stamp in LSTM is to identify information 
that is not required and will be discarded from the 
cell state. This decision is made by a sigmoid layer 
called a Forget Gate Layer. 

Graphically representation of the Forget Gate is 
shown in Fig. 4. 

 Based on Gers et al. (2000) Eq. 
 

𝑓𝑡 = 𝜕(𝑊𝑓 [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                                                           (1) 

 
the Forget gate is denoted as 𝑓𝑡  and cell state as 𝑐𝑡 . 
The hidden state at a previous timestamp is ℎ𝑡−1, 
and  the current input is denoted as 𝑥𝑡 . The previous 
hidden state ℎ𝑡−1 are cascade together at a same 
timestamp, modified by a Weight matrix 𝑊𝑓  and 

summed with a bias value of the forget gate. The 
result of the function is squashed by the sigmoid 
activation function  𝜕 which is a standard tool for 
considering very large or very small values of the 
Forget gate, as well as rendering gradients workable 
for back propagation through time. The final value of 
forget gate (𝑓𝑡) can be between 0 and 1 according to 
the output of sigmoid activation function. If the value 
of 𝑓𝑡  is 0, then the value of the event is necessary to 
forget; 1 means complete info of previous timestamp 
is needed to remember for current state (Pascanu et 
al., 2013). 

 

 
Fig. 4: Forget gate of LSTM (RNN) block (Edureka, 2017) 

 

4.3.   Input gate 

This step is to decide what new information that 
we are going to store in the cell state.  

Graphical representation of the Input Gate is 
shown in Fig. 5. 

 

 
Fig. 5: Input gate of LSTM (RNN)  

 
Using Eq. 2 from Gers et al. (2000) 
 

𝑖𝑡 =  𝜕(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑡)                                                           (2) 

𝑖𝑡  denotes a sigmoid layer called “input gate 
layer” that decides which value will be updated. And 
from Eq. 3 by Gers et al. (2000) 

 
𝑐𝑡

~ =  𝑡𝑎𝑛ℎ(𝑊𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)                                                  (3) 

 
𝑐𝑡

~denotes a tanh layer that creates a vector of 
“new candidate values” that could be added to the 
state. Then, we’ll combine these two gates to update 
the state.  
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From Eq. 4 (Gers et al., 2000), We then update the 
old cell state (𝑐𝑡−1) into the new cell state(𝑐𝑡 ).  

 
𝑐𝑡 = (𝑓𝑡  ∗ (𝑐𝑡−1)) + (𝑖𝑡  *  𝑐𝑡

~)                                                      (4) 

 
First, we multiply the old state (𝑐𝑡−1) by 𝑓𝑡 , 

forgetting the things we decide to forget earlier. 
Then, we add 𝑖𝑡 *𝑐𝑡

~. This is the new candidate value 
𝑐𝑡 , scaled by how much we decided to update each 
state value.  

4.4.   Output gate  

The Output Gate decides what part of the cell 
state to output.  

Graphical representation of the Output Gate is 
shown in Fig. 6. 

 

 
Fig. 6: Output gate of RNN (LSTM)  

 
From Eq. 5 (Gers et al., 2000), 𝑂𝑡  denotes an 

output Gate that will run as a sigmoid layer that 
decides what part of the cell state going to output. 

From Eq. 6 (Gers et al., 2000) , the updated cell 
state (𝑐𝑡)  will pass through tanh activation function 
to get push values (between -1 and 1), so that LSTM 
(RNN) only produces the new output information 
(ℎ𝑡) related to the goal of coming next (Li and Wu, 
2015).  

 
Ot = ∂(w0 ∗ [ht−1, xt] + b0)                                      (5) 
ℎ𝑡 = 𝑂𝑡 ∗ tanh (𝑐𝑡)                                                                 (6) 

5. Experiments  

In the experiment, 2 second variable-length size 
audio sequences with 50% overlap time frame are 
recorded (glass breaking and non-glass breaking 
sound samples) and the dataset transformed into 
(299 × 299 × 3) shape fixed-length raw temporal 
image form and further reshaped from a fixed-length 
input image into a  bottleneck tensor size (2048 
dimensional) byte vector array form. If sufficient 
training data are available, treating raw temporal 
acoustic audio wave directly to the entire neural 
network works well for target classification, as 
opposed to hand crafted heuristics spectral audio 
features. Before training with LSTM RNN, 5000 
samples of audio in the dataset (2500 glass break, 
2500 non glass break) are randomly split into 10-
fold cross validation form with training (70%), 

validation (10%), and test (10%) sets. Training set 
and validation set data are used in training with 
three time-delay hidden layers LSTM recurrent 
neural net, which computes the sigmoid and tanh 
activation functions of a weighted sum for each 
timestamp. For network training, we tried to set the 
specific initial and final learning rates in a range 
from 0.0005 to 0.001 for stable convergence. To 
prevent over fitting during training, we used the 
early termination method during training and L2 
Regularization dropout. Then, the truncated back-
propagation through time (BPTT) learning algorithm 
is adopted to reduce the cost function and 
optimization process. The gradients are computed 
for each subsequence and back-propagated to its 
start.  After the model finally updates the parameters 
in the LSTM networks, the output gate of the LSTM 
decides the N sequence of audio as a glass break or 
not. All experiments were conducted with tensor 
flow library in the Python environment.  

The system architecture of proposed end-to-end 
glass break detection system using deep LSTM 
(Recurrent Neural Network) and conventional hand-
crafted feature based glass break detection system 
are shown in Fig. 7 and Fig. 8. 

6. Result and discussions 

To measure detection accuracy of the proposed 
LSTM model in offline during training, we split the 
data into 10-fold cross validation form with 
training/validation/test sets. The experiment on 10-
fold cross-validation without replacement can 
prevent the use of sub-segments from the same 
recordings in training and validation. Cross entropy 
and the mean square error rate are used as an 
accuracy measure of the proposed classification 
criteria. Experimental results of proposed glass 
break detection system show that we obtained a 
trained set accuracy of 100%, validation set accuracy 
of 100% and invisible test accuracy of 99.999% 
correct detection result for 5000 samples of audio 
dataset. In the online experiments, a microphone is 
used to record at every 2 sec time frame of audio 
(.wav) with sampling rate (44100 kHz). Recorded 
audio is analyze with proposed LSTM (Deep 
Recurrent Neural Network) end-to-end learning 
approach to detect glass breaking sound using laptop 
built-in microphone. To measure the accuracy of the 
online system, we ran our proposed model on the 
raspberry-pi device and test with non-stop 48 hours 
detection with different noise (such as, human 
speaking, clap sounds, Door opening/Closed, Bell 
sounds, horns).  

During the two days (48 hours) of testing, only 
two false glass break alarm detection alarm is 
occurred (e.g., sensitive to cough sounds). That 
means that online proposed glass break detection 
model correctly detects the glass breaking sound at a 
99.999988% detection accuracy. To solve the false 
positive alarm of new environmental noise (such as 
cough sounds), we recorded and added this false 
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alarm sound to the proposed training system and 
retrained to perform the detection model better.  

 
Fig. 7: End to end glass break detection system using deep 

LSTM RNN 
 

Table 1 describes the experimental results of the 
state of the art and the methodological comparison 
of hand crafted features and sensor based glass 
break detection system. According to the 
experimental results from Table 1, the proposed 
End-to-End glass break detection system can 
perform good detection with the least false alarm 
errors as compared to other conventional electronic 
glass break detectors and hand crafted feature based 
Machine Learning methods.  

7. Conclusion 

The major drawback of conventional glass break 
detectors is false alarms. Sounds such as thunder, 
shouting, gunshot, hitting objects are similar in 
frequency and threshold value to glass breaking 
sounds events that may cause false positives in the 
alarm system. Therefore, this research proposed a 
new architecture for   glass break detection 
approach based on LSTM deep recurrent neural 
network, to improve the correct detection accuracy 

with less false alarms. In this approach, we utilized 
raw wave audio data to detect a glass break 
detection event in End-to-End learning approach. 

 

 
Fig. 8: Conventional glass break detection system using 

hand crafted audio features 
 

The key benefit of End-to-End learning is 
avoiding the need of hand-crafted audio features. To 
address the issue of a vanishing gradient and 
exploding gradient problem in conventional 
recurrent neural networks, this paper proposed 
deep long short term memory (LSTM) recurrent 
neural network to handle the sequence of the input 
audio data.  As a real time detection result, the 
proposed glass break detection approach has a clear 
advantage over the conventional glass break 
detection system, as it yields significantly higher 
precision accuracy (99.999988 %) and suffers less 
from environmental noise that might cause a false 
alarm. With the availability of sufficient 
computational power of embedded applications and 
data, deep learning has become practical and ever 
more present in powerful and intelligence 
applications to security surveillance. 

 
Table 1: Experimental results of different strategies of constructing glass break detection system 

Authors Sensors / Hand crafted Features Classification Accuracy % 

Conte et al. (2012) 
centroid, total, energy ERSB features, Zero 

crossing rate; spectral centroid, spectral 
pitch 

LVQ Neural Network 54.93 

Peng et al. (2014) 
Spectral Features (Audio Spectrum 

Flatness(ASF)) 
HMM (Hidden Markov Model) 80 

Aurino et al. (2014) Mel-Frequency Cepstral Coefficient (MFCC) 
Support Vector Machine 

(SVM) 
91.7 

Zidan (2015) Vibration Threshold data 
Vibration based Glass Break 

Detector(GB) 
65 

Kiktova et al. (2015) Mel-Frequency Cepstral Coefficient (MFCC) 
SVM-1 with Weighted Majority 

Voting (WMV) strategy 
69.93 

Mahler et al. (2017) 
Threshold Based Features from Sensors 

(Vibration threshold, Accelerometer data, 
Magnetometer data, Air pressure data) 

Feed forward Neural Network 
(K-Nearest Neighbors + 
Dynamic Time Warping) 

92 

Proposed Glass Break 
Detection System 

 

End-to-End System based on raw temporal 
audio data 

Long Short Term Memory 
(LSTM) (Deep Recurrent 

Neural Network) 
99.999988 
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