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The practical importance of dynamic response of elements of structures such 
as plates when load moves on them cannot be overemphasized in both 
engineering and applied sciences. The dynamic behavior of an elastic plate 
resting on a subgrade and traversed by uniform partially distributed moving 
load is considered in this paper and its simplified governing equations 
derived. The elastic plate is Mindlin rectangular plate. In particular, the 
model governing such moving load problem is simplified analytically. The 
simplified governing model derived is easier to handle. Numerical methods 
can easily be applied to this simplified model and a lot of computational time 
is saved. 
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1. Introduction 

*The investigation of moving load issue is by and 
large of reasonable significance in Engineering and 
Applied Sciences. Such reviews are significant while 
considering the unwavering quality, wellbeing and 
execution of present day structures over which loads 
like vehicles and train move (Gbadeyan and Agarana, 
2014; Mindlin, 1951). The arrangement of such 
moving load issue under thought, requests the 
displaying of the mechanical conduct of the soil as 
flexible subgrade, and the type of collaboration 
between the plate and the soil. In this sort of 
framework, it is important to couple practical 
models of the foundation with investigation of the 
structure. A few foundation models have been 
accounted for in the writing and examinations on the 
static deflection; the dynamic reaction and the 
dynamic stability of plates on elastic foundation have 
been completed. Many researchers use the Winkler 
model for soil structure interaction in the static and 
dynamic analyses of plate resting on elastic 
foundation where the vertical surface displacement 
of the plate is assumed to be proportional at any 
point to the contact pressure at that point (Gbadeyan 
and Agarana, 2014; Civalek and Yavas, 2006; 
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Nguyen-Thoi et al., 2013; Agarana et al., 2015). In 
Winkler model, it is accepted that the foundation soil 
comprises of straight flexible springs which are 
firmly separated and autonomous of each other 
(Agarana et al., 2015; Amiri et al., 2013; Kerr, 1964). 
A few types of administering conditions of the 
vibration of Mindlin plate under a moving load exist. 
In this paper endeavor is made to rearrange such 
existing representing condition to be anything but 
difficult to deal with by decreasing the 
computational meticulousness and time. In this 
rearrangement, both the inertia and the gravitational 
impacts of the moving load are taken into account 
(Mindlin, 1951; Boay, 1993; Fryba, 1972). The 
following assumptions are made: 

 
 The plate is of constant cross-section.  
 The moving load moves with a constant speed.  
 The moving load is guided in such a way that it 

keeps contact with the plate throughout the 
motion. 

 The plate is continuously supported by a Winkler 
foundation.  

 The moving load is a partially distributed moving 
load.  

 The rectangular Mindlin plate is elastic.  

2. The governing equations  

The set of dynamic equilibrium equations which 
govern the behaviour of Mindlin plate with elastic 
support and traversed by a partially distributed 
moving load can be written as (Gbadeyan and 
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Agarana, 2014; Gbadeyan and Dada, 2001; Agarana 
and Gbadeyan, 2016): 

 
𝑀𝐿𝐵

𝐴
[𝑔 +

𝜕2𝑊

𝜕𝑇2
+ 2𝑈

𝜕2𝑊

𝜕𝑥𝜕𝑇
+ 2𝑈2

𝜕2𝑊

𝜕𝑥2
]  

= 𝑘2𝐺ℎ [−
𝜕2𝑊

𝜕𝑥2
+
𝜕𝜓𝑥

𝜕𝑥
−
𝜕2𝑊

𝜕𝑦2
+
𝜕𝜓𝑦

𝜕𝑦
] − 𝐾𝑊 −𝑀𝑓

𝜕2𝑊

𝜕𝑇2
+

𝜌ℎ
𝜕2𝑊

𝜕𝑇2
                                                                                               (1) 

𝐵𝜌𝐿ℎ1
3

12
[
𝜕2𝜓𝑥

𝜕𝑇2
+ 2𝑈

𝜕2𝜓𝑥

𝜕𝑥𝜕𝑇
+ 𝑈2

𝜕2𝜓𝑥

𝜕𝑥2
] +

𝜌ℎ3

12

𝜕2𝜓𝑥

𝜕𝑇2
  

= 𝐷 [
𝜕2𝜓𝑦

𝜕𝑥2
+ 𝜈

𝜕2𝜓𝑦

𝜕𝑥𝜕𝑦
] +

(1−𝜈)

2
𝐷 [

𝜕2𝜓𝑥

𝜕𝑦2
+ 𝜈

𝜕2𝜓𝑦

𝜕𝑥𝜕𝑦
] −

𝑘2𝐺ℎ (𝜓𝑥 −
𝜕𝑊

𝜕𝑥
)                                                                            (2) 

𝐵𝜌𝐿ℎ1
3

12
[
𝜕2𝜓𝑦

𝜕𝑇2
+ 2𝑈

𝜕2𝜓𝑦

𝜕𝑦𝜕𝑇
+ 𝑈2

𝜕2𝜓𝑦

𝜕𝑦2
] +

𝜌ℎ3

12

𝜕2𝜓𝑦

𝜕𝑇2
  

= 𝐷 [
𝜕2𝜓𝑦

𝜕𝑦2
+ 𝜈

𝜕2𝜓𝑦

𝜕𝑦𝜕𝑥
] +

(1−𝜈)

2
𝐷 [

𝜕2𝜓𝑥

𝜕𝑥𝜕𝑦
+ 𝜈

𝜕2𝜓𝑦

𝜕𝑥2
] −

𝑘2𝐺ℎ (𝜓𝑦 −
𝜕𝑊

𝜕𝑦
)                                                                            (3) 

 
where, 𝜓𝑥(𝑥, 𝑦, 𝑇) and 𝜓𝑦(𝑥, 𝑦, 𝑇) are local rotation 

in the 𝑥 and 𝑦 directions respectively. 𝑊(𝑥, 𝑦, 𝑇) is 
the traversed displacement of the plate at time 
𝑇. 𝐵 = 𝐵𝑥𝐵𝑦  such that 
 
𝐵𝑥 =

{
  
 

  
 1 − 𝐻 (𝑥 − 𝜉 −

𝜀

2
) ,                                             0 ≤ 𝑇 ≤

𝜀

𝑈

𝐻 (𝑥 − 𝜉 +
𝜀

2
) − 𝐻 (𝑥 − 𝜉 −

𝜀

2
),                        

𝜀

𝑈
≤ 𝑇 ≤

𝐿𝑥

𝑈

𝐻 (𝑥 − 𝜉 −
𝜀

2
),                                                       

𝐿𝑥

𝑈
≤ 𝑇 <

𝐿𝑥++𝜀

𝑈

0,                                                                             
𝐿𝑥++𝜀

𝑈
≤ 𝑇  }

  
 

  
 

  

                                                                                                            (4) 

𝐵𝑦 = {𝐻 (𝑦 − 𝑦1 +
𝜇

2
) − 𝐻 (𝑦 − 𝑦1 −

𝜇

2
)}                              (5) 

 
𝐻(𝑥) is the Heaviside function defined as: 
 

𝐻(𝑥) = {
1. 𝑥 > 0
0.5, 𝑥 = 0
0, 𝑥 < 0

                                                                    (6) 

 
𝑈 is the velocity of a load of rectangular dimension 𝜀 
by 𝜇 with one of its lines of symmetry moving along 
𝑌 = 𝑌1. 
Λ = 𝜇𝜀, the area of the load in contact with the plate  

The plate is 𝐿𝑥  by 𝐿𝑦 in dimensions and = 𝑈𝑇 +
𝜀

2
 , 

ℎ and ℎ1 are thickness of the plate and load 
respectively. 
𝜌 and 𝜌𝐿 are the densities of the plate and load 
respectively. 
𝐺 is the modulus of the plate. 
𝐷 is the flexural rigidity of the plate defined by: 
 

𝐷 =
1

2
𝐸ℎ2[(1 − 𝜈3)] = 𝐺ℎ3/6(1 − 𝜈)                                    (7) 

 
𝑘2 is the shear correction factor. 
𝜈 is the poisson’s ratio of the plate. 
𝑔 is the acceleration due to gravity 
𝐸 is Young modulus of elasticity 
𝑀𝐿 is mass of the load. 

2.1. Boundary and initial conditions 

For a complete formulation of the problem, a 
simply supported rectangular Mindlin plate is 

considered as an illustrative example. If the edge 𝑦 =
0 of the plate is simply supported, it then follows 
that the deflection 𝑊 along this edge must be zero. 
At the same time this edge can rotate freely with 
respect to the 𝑥 − axis, i.e., there are no bending (𝑀𝑥) 
along this edge. Therefore, the boundary conditions 
can be stated as follows (Gbadeyan and Dada, 2001; 
Nguyen-Thoi et al., 2013; Amiri et al., 2013; Agarana 
et al., 2016): 
 
𝑊(𝑥, 𝑦, 𝑇) = 𝑀𝑥(𝑥, 𝑦, 𝑇) = 0, for 𝑥 = 0 and 𝑥 = 𝑎

𝑊(𝑥, 𝑦, 𝑇) = 𝑀𝑦(𝑥, 𝑦, 𝑇) = 0, for 𝑦 = 0 and 𝑦 = 𝑏
}           (8) 

 
the corresponding initial conditions are 

 

𝑊(𝑥, 𝑦, 𝑇) = 0 =
𝜕𝑊

𝜕𝑇
(𝑥, 𝑦, 0)                                                     (9) 

3. Simplification of governing equations 

The acceleration 
𝑑2𝑊

𝑑𝑇2
 is defined as follows 

(Agarana et al., 2016; Agarana and Gbadeyan, 2016; 
Agarana and Emetere, 2016): 
 
𝑑2𝑊

𝑑𝑇2
=

𝜕2𝑊

𝜕𝑥2
(
𝑑𝑥

𝑑𝑇
)
2
+
𝜕2𝑊

𝜕𝑦2
(
𝑑𝑦

𝑑𝑇
)
2
+
𝜕2𝑊

𝜕𝑇2
+ 2

𝜕2𝑊

𝜕𝑥𝜕𝑦

𝑑𝑥

𝑑𝑇

𝑑𝑦

𝑑𝑇
+

2
𝜕2𝑊

𝜕𝑥𝜕𝑇

𝑑𝑥

𝑑𝑇
+ 2

𝜕2𝑊

𝜕𝑦𝜕𝑇

𝑑𝑦

𝑑𝑇
+
𝜕𝑊

𝜕𝑥

𝑑2𝑥

𝑑𝑇2
+
𝜕𝑊

𝜕𝑦

𝑑2𝑦

𝑑𝑇2
                                (10) 

 
assuming that 𝑥 = 𝑥(𝑇) and 𝑦 = 𝑦(𝑇).  

Furthermore, assuming the eternal load moves 
along a straight line parallel to x-axis with a constant 
velocity 𝑈, then it follows respectively that (Agarana 
and Gbadeyan, 2016; Agarana and Emetere, 2016) 

 
𝑑𝑦

𝑑𝑇
= 0  

 
and 

 

 
𝑑2𝑥

𝑑𝑇2
= 0.  

 
Hence, Eq. 10 becomes 

 
𝑑2𝑊

𝑑𝑇2
=

𝜕2𝑊

𝜕𝑇2
+ 2𝑈

𝜕2𝑊

𝜕𝑥𝜕𝑇
+ 𝑈2

𝜕2𝑊

𝜕𝑥2
,                                              (11) 

 
similarly, 
 
𝑑2𝜓𝑥

𝑑𝑇2
=

𝜕2𝜓𝑥

𝜕𝑇2
+ 2𝑈

𝜕2𝜓𝑥

𝜕𝑥𝜕𝑇
+ 𝑈2

𝜕2𝜓𝑥

𝜕𝑥2
                                            (12) 

 
𝑑2𝜓𝑦

𝑑𝑇2
=

𝜕2𝜓𝑦

𝜕𝑇2
+ 2𝑈

𝜕2𝜓𝑦

𝜕𝑥𝜕𝑇
+ 𝑈2

𝜕2𝜓𝑦

𝜕𝑥2
,                                          (13) 

 

hence, the expression on the left-hand side of Eq. 1 
finally reduces to 
 

−
1

𝜇𝜀
[−𝑀𝐿𝑔 −𝑀𝐿

𝑑2𝑊

𝑑𝑇2
] 𝐵 = 𝑃(𝑥, 𝑦, 𝑇)                                   (14) 

 

where 𝑃(𝑥, 𝑦, 𝑇) is the moving load.  
Substituting (11), (12) and (13) into (1), (2) and 

(3) respectively we have 
 

−
1

𝜇𝜀
[−𝑀𝐿𝑔 −𝑀𝐿

𝑑2𝑊

𝑑𝑇2
] 𝐵 = 𝑘2𝐺ℎ [−

𝜕2𝑊

𝜕𝑥2
+
𝜕𝜓𝑥

𝜕𝑥
−
𝜕2𝑊

𝜕𝑦2
+

𝜕𝜓𝑦

𝜕𝑥
] + 𝜌ℎ

𝜕2𝑊

𝜕𝑇2
− 𝑘𝑊 −𝑀𝑓

𝜕2𝑊

𝜕𝑇2
                                                (15) 
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𝐵𝜌𝐿ℎ1
3

12
(
𝑑2𝜓𝑥

𝑑𝑇2
) +

𝜌ℎ2

12

𝜕2𝜓𝑥

𝜕𝑇2
= 𝐷

𝜕

𝜕𝑥
[
𝜕𝜓𝑥

𝜕𝑥
+ 𝜈

𝜕𝜓𝑥

𝜕𝑦
] +

𝐷(1−𝜈)

2

𝜕

𝜕𝑦
[
𝜕𝜓𝑥

𝜕𝑦
+
𝜕𝜓𝑦

𝜕𝑥
] − 𝑘2𝐺ℎ (𝜓𝑥 −

𝜕𝑊

𝜕𝑥
)  

                                                              (16) 
𝐵𝜌𝐿ℎ1

3

12
(
𝑑2𝜓𝑥

𝑑𝑇2
) +

𝜌ℎ2

12

𝜕2𝜓𝑥

𝜕𝑇2
= 𝐷

𝜕

𝜕𝑥
[
𝜕𝜓𝑥

𝜕𝑦
+ 𝜈

𝜕𝜓𝑥

𝜕𝑥
] +

𝐷(1−𝜈)

2

𝜕

𝜕𝑥
[
𝜕𝜓𝑥

𝜕𝑦
+
𝜕𝜓𝑦

𝜕𝑥
] − 𝑘2𝐺ℎ (𝜓𝑥 −

𝜕𝑊

𝜕𝑦
)  

                                               (17) 
 

The definitions for moments along 𝑥 and 𝑦 axes, 
twisting moment and shear deformation along 𝑥 and 
𝑦 axes are given as follows respectively (Agarana 
and Emetere, 2016) 
 

𝑀𝑥 = −𝐷 (
𝜕𝜓𝑥

𝜕𝑥
+ 𝜈

𝜕𝜓𝑦

𝜕𝑦
)                                                         (18) 

𝑀𝑦 = −𝐷 (
𝜕𝜓𝑥

𝜕𝑦
+ 𝜈

𝜕𝜓𝑥

𝜕𝑥
)                                                             (19) 

𝑀𝑥𝑦 = −𝐷
(1−𝜈)

2
(
𝜕𝜓𝑥

𝜕𝑦
+
𝜕𝜓𝑦

𝜕𝑥
)                                                    (20) 

𝑄𝑥 = −𝑘
2𝐺ℎ (𝜓𝑥 −

𝜕𝑊

𝜕𝑥
)                                                           (21) 

𝑄𝑦 = −𝑘
2𝐺ℎ (𝜓𝑦 −

𝜕𝑊

𝜕𝑦
)                                                           (22) 

 
Substituting Eqs. 17–21 into Eqs. 14–16, the 

simplified set of the governing equations can now be 
written as 
 

−𝑃(𝑥, 𝑦, 𝑇) = 𝑘2𝐺ℎ [−
𝜕2𝑊

𝜕𝑥2
+
𝜕𝜓𝑥

𝜕𝑥
−
𝜕2𝑊

𝜕𝑦2
+
𝜕𝜓𝑦

𝜕𝑦
] + 𝜌ℎ

𝜕2𝑊

𝜕𝑇2
−

𝑘𝑊 −𝑀𝑓
𝜕2𝑊

𝜕𝑇2
                                                                                (23) 

𝐵𝜌𝐿ℎ1
3

12
(
𝑑2𝜓𝑥

𝑑𝑇2
) +

𝜌ℎ2

12

𝜕2𝜓𝑥

𝜕𝑇2
= −

𝜕𝑀𝑥

𝜕𝑥
−
𝜕𝑀𝑥𝑦

𝜕𝑦
− 𝑘2𝐺ℎ (𝜓𝑥 −

𝜕𝑊

𝜕𝑥
)  

                                                                                                         (24) 
𝐵𝜌𝐿ℎ1

3

12
(
𝑑2𝜓𝑥

𝑑𝑇2
) +

𝜌ℎ2

12

𝜕2𝜓𝑥

𝜕𝑇2
= −

𝜕𝑀𝑦

𝜕𝑦
−
𝜕𝑀𝑥𝑦

𝜕𝑥
− 𝑘2𝐺ℎ (𝜓𝑥 −

𝜕𝑊

𝜕𝑦
).  

                                                                                                         (25) 
 

Eq. 22 can be written as 
 

−𝑘2𝐺ℎ (
𝜕2𝑊

𝜕𝑥2
+
𝜕𝜓𝑥

𝜕𝑥
) + −𝑘2𝐺ℎ (−

𝜕2𝑊

𝜕𝑦2
+
𝜕𝜓𝑦

𝜕𝑦
) − 𝜌ℎ

𝑑2𝜓𝑥

𝑑𝑇2
+

𝑘𝑊 +𝑀𝑓
𝑑2𝑊

𝑑𝑇2
= 𝑃(𝑥, 𝑦, 𝑇)                                                        (26) 

  

which can be expressed as 
 
𝜕

𝜕𝑥
[−𝑘2𝐺ℎ (−

𝜕2𝑊

𝜕𝑥2
+
𝜕𝜓𝑥

𝜕𝑥
)] +

𝜕

𝜕𝑦
[−𝑘2𝐺ℎ (−

𝜕2𝑊

𝜕𝑦2
+
𝜕𝜓𝑦

𝜕𝑦
)] −

𝜌ℎ
𝜕2𝑊

𝜕𝑇2
+ 𝑘𝑊 +𝑀𝑓

𝜕2𝑊

𝜕𝑇2
= 𝑃(𝑥, 𝑦, 𝑇).                                    (27) 

 
Now, substituting Eq. 20 and Eq. 21 into Eqs. 23, 

24, and 26, we have: 
 
𝜕𝑄𝑥

𝜕𝑥
+
𝜕𝑄𝑦

𝜕𝑦
− 𝜌ℎ

𝜕2𝑊

𝜕𝑇2
+ 𝑘𝑊 +𝑀𝑓

𝜕2𝑊

𝜕𝑇2
= 𝑃(𝑥, 𝑦, 𝑇)              (28) 

𝐵𝜌𝐿ℎ1
3

12
(
𝜕2𝜓𝑦

𝜕𝑇2
) +

𝜌ℎ3

12

𝜕2𝑊

𝜕𝑇2
= −

𝜕𝑀𝑥

𝜕𝑥
−
𝜕𝑀𝑥𝑦

𝜕𝑦
+𝑄𝑥                      (29) 

𝐵𝜌𝐿ℎ1
3

12
(
𝜕2𝜓𝑦

𝜕𝑇2
) +

𝜌ℎ3

12

𝜕2𝜓𝑦

𝜕𝑇2
= −

𝜕𝑀𝑥

𝜕𝑦
−
𝜕𝑀𝑥𝑦

𝜕𝑥
+ 𝑄𝑦                     (30) 

3.1. Further simplification 

Eqs. 27, 28, and 29 can further be simplified. 
Firstly Eq. 11 can be written as: 
 
𝑑2𝑊

𝑑𝑇2
=

𝜕2𝑊

𝜕𝑇2
+ 𝑈

𝜕

𝜕𝑇
(
𝜕𝑊

𝜕𝑥
) + 𝑈

𝜕2𝑊

𝜕𝑥𝜕𝑇
+ 𝑈2

𝜕

𝜕𝑥
(
𝜕𝑊

𝜕𝑥
),                 (31) 

 
but from Eq. 20 

𝜕𝑊

𝜕𝑥
= 𝜓𝑥 −

𝑄𝑥

𝛼𝐺ℎ
                                                                    (32) 

 
which leads to 
 
𝑑2𝑊

𝑑𝑇2
=

𝜕2𝑊

𝜕𝑇2
+ 𝑈

𝜕2𝑊

𝜕𝑥𝜕𝑇
+ 𝑈 {

𝜕𝜓𝑥

𝜕𝑇
+ 𝑈

𝜕𝜓𝑥

𝜕𝑥
} −

𝑈

𝛼𝐺ℎ
{
𝜕𝑄𝑥

𝜕𝑇
+ 𝑈

𝜕𝑄𝑥

𝜕𝑥
}  

               (33) 

where = −𝑘2. Solving for 
𝜕𝜓𝑥

𝜕𝑥
  in Eq. 17 and Eq. 18 

we have 
 

𝜕𝜓𝑥

𝜕𝑥
=

𝑀𝑥−𝜈𝑀𝑦

𝐷(𝜈2−1)
,                                                              (34) 

 
substituting Eq. 34 into Eq. 33 yields 
 
𝑑2𝑊

𝑑𝑇2
=

𝜕2𝑊

𝜕𝑇2
+ 𝑈

𝜕2𝑊

𝜕𝑥𝜕𝑇
+ 𝑈 {

𝜕𝜓𝑥

𝜕𝑇
+ 𝑈

(𝑀𝑥−𝜈𝑀𝑦)

𝐷(𝑣2−1)
} −

𝑈

𝛼𝐺ℎ
{
𝜕𝑄𝑥

𝜕𝑇
+

𝑈
𝜕𝑄𝑥

𝜕𝑥
},                               (35) 

 

similarly, we have 
 
𝑑𝜓𝑥

𝑑𝑇2
=

𝜕2𝜓𝑥

𝜕𝑇2
+𝑈

𝜕2𝜓𝑥

𝜕𝑥𝜕𝑇
+ 𝑈

𝜕

𝜕𝑇
(
𝜕𝜓𝑥

𝜕𝑥
) + 𝑈2

𝜕

𝜕𝑥
(
𝜕𝜓𝑥

𝜕𝑥
)  

=
𝜕2𝜓𝑥

𝜕𝑇2
+ 𝑈

𝜕2𝜓𝑥

𝜕𝑥𝜕𝑇
+𝑈

𝜕

𝜕𝑇

(𝑀𝑥−𝜈𝑀𝑦)

𝐷(𝑣2−1)
+ 𝑈2

𝜕

𝜕𝑥

(𝑀𝑥−𝜈𝑀𝑦)

𝐷(𝑣2−1)
            (36) 

 
by virtue of Eq. 34. Therefore, 

 
𝑑𝜓𝑥

𝑑𝑇2
=

𝜕2𝜓𝑥

𝜕𝑇2
+𝑈

𝜕2𝜓𝑥

𝜕𝑥𝜕𝑇
+

𝑈

𝐷(𝜈2−1)
{
𝜕𝑀𝑥

𝜕𝑇
+ 𝑈

𝜕𝑀𝑥

𝜕𝑇
+ 𝑈

𝜕𝑀𝑥

𝜕𝑥
} −

𝑈𝜈

𝐷(𝜈2−1)
{
𝜕𝑀𝑦

𝜕𝑇
+ 𝑈

𝜕𝑀𝑦

𝜕𝑇
}                                  (37) 

 

similarly, Eq. 13 reduces to 
 
𝑑𝜓𝑦

𝑑𝑇2
=

𝜕2𝜓𝑦

𝜕𝑇2
+ 𝑈

𝜕2𝑦

𝜕𝑦𝜕𝑇
+

𝑈

𝐷(𝜈2−1)
{
𝜕𝑀𝑥

𝜕𝑇
+𝑈

𝜕𝑀𝑦

𝜕𝑇
+ 𝑈

𝜕𝑀𝑦

𝜕𝑦
} −

𝑈𝜈

𝐷(𝜈2−1)
{
𝜕𝑀𝑥

𝜕𝑇
+𝑈

𝜕𝑀𝑥

𝜕𝑦
},                                               (38) 

 

recalling Eq. 14, we have  
 

𝑃(𝑥, 𝑦, 𝑇) =
1

𝜇𝜀
[−𝑀𝐿𝑔 −𝑀𝐿

𝑑2𝑊

𝑑𝑇2
] 𝐵,                                      (39) 

 

which reduces to 
 

𝑃(𝑥, 𝑦, 𝑇) =
𝑀𝐿

𝜇𝜀
[𝑔 +

𝑑2𝑊

𝑑𝑇2
] 𝐵                                                      (40) 

=
𝑀𝐿𝐵

𝐴
[𝑔 +

𝑑2𝑊

𝑑𝑇2
],                                                (41) 

 

where 
 
𝐴 = 𝜇𝜀  
 

substituting Eq. 35 into Eq. 41 we have 
 

𝑃(𝑥, 𝑦, 𝑇) =
−𝑀𝐿

𝐴
[{𝑔 +

𝜕2𝑊

𝜕𝑇2
+ 𝑈

𝜕2𝑊

𝜕𝑥𝜕𝑇
} + 𝑈 {

𝜕𝜓𝑥

𝜕𝑇
+

𝑈
(𝑀𝑥−𝜈𝑀𝑦)

𝐷(𝜈2−1)
} −

𝑈

𝛼𝐺𝐻
{
𝜕𝑄𝑥

𝜕𝑇
+ 𝑈

𝜕𝑄𝑥

𝜕𝑥
}] 𝐵                                        (42) 

=
−𝑀𝐿

𝐴
[𝑔 +

𝜕2𝑊

𝜕𝑇2
+𝑈

𝜕2𝑊

𝜕𝑥𝜕𝑇
+𝑈 {

𝜕𝜓𝑥

𝜕𝑇
+

𝑈𝑀𝑥

𝐷(𝜈2−1)
−

𝑈𝜈𝑀𝑥

𝐷(𝜈2−1)
} −

𝑈

𝛼𝐺𝐻
{
𝜕𝑄𝑥

𝜕𝑇
+ 𝑈

𝜕𝑄𝑥

𝜕𝑥
}]𝐵                                           (43) 

 
Therefore the simplified governing equations as 

derived from above are gotten by substituting Eq. 43 
into Eq. 28 with Eq. 29 and Eq. 30.  
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4. Conclusion

Various versions of differential equation(s) 
governing the behaviour of plates under a moving 
load appear in literature. However, almost all of 
them are not easy to handle; a lot of computational 
time is required. Those that are relatively easy to 
handle are with many assumptions, like neglecting 
the effects of both rotatory inertia and shear 
deformation. Others assumed that the plate is not 
supported by any subgrade and the effect of 
damping neglected. The main contribution of this 
paper is to present a simplified set of partial 
differential equations modelling the dynamic 
behaviour of plate under a moving load. In contrast 
to the models of Gbadeyan and Dada (2006), this 
model is simple and was derived analytically. 
Additionally, the exact solution of this model can be 
sort for instead of an approximate solution. Finally, 
this simplified model should be considered as a more 
practical representation of real life situation that is 
easier to solve less computation time and high level 
of accuracy. 
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