
 International Journal of Advanced and Applied Sciences, 6(2) 2019, Pages: 57-64

Contents lists available at Science-Gate

International Journal of Advanced and Applied Sciences
Journal homepage: http://www.science-gate.com/IJAAS.html

57

Adaptive byzantine fault tolerance support for agent oriented systems:
The BDARX

Ayesha Batool Alvi 1, Muhammad Adnan Hashmi 1, *, Zishan Hussain Chuhan 1, Muhammad Atif 1, Ijaz Ahmed 2

1Department of Computer Science and Information Technology, The University of Lahore, Lahore, Pakistan
2Higher Colleges of Technology, Dubai, United Arab Emirates

A R T I C L E I N F O A B S T R A C T

Article history:
Received 6 June 2018
Received in revised form
16 December 2018
Accepted 19 December 2018

Multi-agent systems (MAS) with fault tolerance capabilities have got much
attention during the recent years. Many fault-tolerance mechanisms have
been proposed. Dynamic agent replication scheme (DARX) architecture is
one of the most studied fault-tolerance architectures for multi-agent systems.
It deals with adaptive dynamic replication schemes to make agent systems
more fault tolerant, but it does not handle Byzantine faults in MAS
environments. This paper proposes Byzantine DARX (BDARX) architecture
which endows DARX with the ability to handle Byzantine faults, and thus it
allows the building of complex software systems to deal with arbitrary faults
and make the system more reliable and efficient. The efficiency of the
proposed architecture is demonstrated in an application domain of vehicular
ad-hoc networks (VANET).

Keywords:
Multi-agent systems
Fault tolerance
BDARX
DARX

© 2019 The Authors. Published by IASE. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

*Over the years, multi-agent systems (MAS) have
emerged as an appropriate paradigm for the
development of complex intelligent systems. In MAS,
different agents coordinate and communicate with
each other to attain certain goals and solve problems
which are beyond the capabilities of any individual
agent. These systems are widely used in diverse
kinds of applications like unmanned autonomous
vehicles (Patron et al., 2008), air traffic control,
smart grids and other areas (Khalili et al., 2018).

These systems need to run smoothly without any
failure even in the presence of faulty behavior of
different agents (Briot et al., 2007). In a large scale
MAS, failures ratio grows with the number of agents,
hosts and duration required for agents’ task
execution (Stanković et al., 2017). It is very difficult
to recognize faulty agents in advance to avoid their
crashes (Ductor et al., 2011), so there is strong need
for fault tolerance schemes in such systems. Fault
tolerance is one of the major challenges in multi-
agent systems. It is crucial to design a fault tolerance
structure for large scale multi agent systems which

* Corresponding Author.
Email Address: muhammad.adnan@cs.uol.edu.pk (M. A. Hashmi)

https://doi.org/10.21833/ijaas.2019.02.009
 Corresponding author's ORCID profile:

https://orcid.org/0000-0003-4844-5853
2313-626X/© 2019 The Authors. Published by IASE.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

can detect and resolve failures and provide
continuity of processing.

Adopting corrective and preventive measures are
two key approaches for achieving fault tolerance.
When a host crashes due to sudden disruption or
disconnection from the network then this kind of
situation can be handled by applying fixes at
algorithmic, architectural or platform level. In these
situations, multi-agent systems are usually equipped
with a defense mechanism. An efficient and proved
way to attain fault tolerance in such systems is the
application of replication strategies. For large scale
and open multi-agent systems, resource aware
adaptive replication has been rarely addressed. This
paper tries to fill this gap by proposing an adaptive
replication strategy that provides fault tolerance
under certain resource limits.

Some initial work, to make multi-agent systems
more tolerant to faults, uses the approach of
providing redundancy in the system at different
levels. Tolerance is provided in two different
patterns i.e. non-critical agent and soft response
time. In the former, the system may still be
operational even if one or more agents fail
permanently, while in the latter, a time required for
processing of global functions allows for some
variability.

Dynamic agent replication extension (DARX)
(Almeida et al., 2007) is architecture for achieving
adaptive fault tolerance in MAS environments.
Currently, it does not handle the occurrence of
arbitrary byzantine faults. The main objective of this

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:muhammad.adnan@cs.uol.edu.pk
https://doi.org/10.21833/ijaas.2019.02.009
https://orcid.org/0000-0003-4844-5853
https://orcid.org/0000-0003-4844-5853
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2019.02.009&domain=pdf&

Alvi et al /International Journal of Advanced and Applied Sciences, 6(2) 2019, Pages: 57-64

58

research is to extend the design of current DARX
replication architecture to support, detect and
handle byzantine faults. Our proposed extension
makes existing DARX framework more reliable and
byzantine faults tolerant for complex distributed
MAS environments.

Rest of the paper is structured as follows. In
Section 2, existing approaches towards fault
tolerance are discussed. Section 3 presents detailed
overview of DARX architecture that this paper
extends. Section 4 explains the proposed extension
BDARX. Section 5 demonstrates the application of
BDARX in the domain of VANET. Finally, section 6
concludes the paper.

2. Related works

Intelligent agents based software systems work
in open environments with the ability to behave
autonomously in dynamically changing contexts
(Genza and Mighele, 2013). Due to the inherent
distributed nature, these systems face many
problems like faults due to synchronization issues,
run time node failures, security threats and denial of
services attacks. The understanding of such kind of
issues in dynamic distributed environments and
learning of how to manage them is a challenging
task. Software engineering discipline provides
structures and techniques to manage complexity and
faults in these systems to make them more faults
tolerant. In the following, a review of existing fault-
tolerance techniques in multi-agent systems is
presented.

2.1. Chameleon

Chameleon (Kalbarczyk et al., 1999) is an
adaptive fault tolerance system that functions using
reliable mobile agents.

It works by using embodied techniques based on
a special set of agents that are sustained by a fault
tolerance manager and hosts. These hosts help in
handshaking mechanism with the fault tolerance
manager through agents.

A flexible fault tolerance implies the capability to
dynamically meet the progressing fault tolerance
needs of a software application. Chameleon attains
this purpose by providing a re-configurable
structure. The dynamic re-configuration of
Chameleon allows the component functionalities to
extend or change at run time. Components can be
added or deleted from the system without disturbing
other components in operation. But unfortunately,
due to its centralized fault tolerance manager, this
architecture has many problems as the other
preceding methodologies in literature.

2.2. DimaX

DimaX (Faci et al., 2006) is a multi-agent fault
tolerant architecture, which deals with failures
occurred because of bugs and the ones due to

machine crashes. But it does not handle uncontrolled
byzantine failures. It provides fault-tolerance for
multi-agent applications by means of replication
techniques where replication framework is based on
DARX architecture (Almeida et al., 2007). Several
services like naming, fault detection and fault
recovery are provided by DimaX. Its fault tolerance
mechanism is based on DARX and DIMA (Guessoum
and Briot, 1999). DIMA offers a set of libraries to
form MAS. Its kernel is an organization of proactive
mechanisms which embodies proactive and
autonomous entities. At the same time DARX works
as a middle-ware in the DIMAX platform. DARX and
DIMA both provide components for communication,
execution-control and naming but at diverse levels,
that’s why integration of these architectures
requires a set of extra components.

At the application level, the DIMA messages are
communicated by those agents who are transferred
through the DARX middle-ware. Additionally, DARX
offers a fault detection tool. It handles server
machines crash failures in three steps inside every
replication group. First step reveals ultimate failure
in the group. Next step evaluates the context of
failure and its criticality level. In the third step,
recovery is done if the missing replica is a group
leader. For this purpose, a new agent is elected as a
monitor and is automatically activated. This relies on
the assessment of a new follower or backup which
may or may not be instantiated. However, if some
leader is failing, which do not have any backup or
follower then it cannot be recovered.

Throughout a distributed computation, the
criticality of an agent changes during the process. A
very high criticality level is given to that single agent
who is responsible for combining the results at the
start of an application. To validate the results of
DimaX, multiple series of experiments are made. In
the initial series, experiment evaluation is based on
the performance of the proposed multi-agent
architecture and the intended adaptation algorithms
(Guessoum et al., 2005).

2.3. DARX: An inspiring model

DARX (Almeida et al., 2007) is an architecture
which is intended to develop reliable, adaptive and
scalable faults tolerant MAS. It employs dynamic
adaptive replication methodologies for this purpose.
It provides different active and passive strategies
(Zubair and Manzoor, 2016).

DARX works as a stand-alone middle-ware so the
majority of its fundamental ideology can be reused
independently in other architectures too
(Overeinder et al., 2003). The provision of decision
making support for a comprehensive fault tolerance
support for each agent as per its context and
evolution is the main aspiration of DARX. It includes
several generic classes, as it is based on Java
framework, which helps developers during the
procedure of implementing reliable multi-agent
applications. Furthermore, JVM induces features of
machine independence and portability to this

Alvi et al /International Journal of Advanced and Applied Sciences, 6(2) 2019, Pages: 57-64

59

architecture which is attractive for distributed
systems. Additionally, the provision of remote
method invocation (RMI) support enables suitable
high level abstractions for allowing scalability of
distributed solutions (Marin et al., 2001).

In order to provide long term fault tolerance
support in open and distributed systems, DARX has
multiple dimensions including nodes selection, level
of fault tolerance support, and scalability of overall
system. This model does not handle byzantine faults
through its built in architecture.

2.4. Twin BFT: Virtual technology based fault
tolerant system

Twin BFT (Dettoni et al., 2013) is a solution to
provide byzantine fault tolerance. In this approach
replication schemes are implemented to allow

byzantine faults in omission tasks. This approach
uses 2f+1 replicas to handle f faults at maximum.
Two virtual machines are installed on a host
machine which keep synchronizing with each other
and act as a failure detector of each other. This
architecture is also based on client-server model and
implements fault tolerance at server level only.

The architecture of this model is given in Fig. 1. In
this architecture, the communication among
different hosts in the same node is performed
through shared memory called postbox. Virtual
machines (VM) at different nodes communicate
through LAN. A different platform on each virtual
machine within same node decreases the chances of
simultaneous faults in both VMs. This model handles
byzantine faults but in virtual domains and at server
end only.

Fig. 1: Twin BFT: Twin virtual machines architecture model (Dettoni et al., 2013)

2.5. Vbam: Byzantine atomic multicast in LAN

Vbam protocol (Silva et al., 2013) is designed for
fault tolerant communication among different client
and server nodes in a virtualized environment. This
protocol handles byzantine faults in communication,
among servers and between clients and servers,
using common virtualization and data sharing
technologies as abstractions.

Fig. 2 shows the architecture of this protocol. It
provides fault tolerant architecture for client-server
nodes in virtualized environments. Every physical
machine has a single virtual machine configured. A
shared memory is configured among server nodes,
which is called Distributed Shared Register (DSR). It
maintains the sequence of messages between nodes
and clients with the help of sequencer. This
architecture does not handle autonomous entities
for fault tolerant systems.

2.6. Reliable communication in dynamic network
with byzantine faults

In this work, a byzantine problem is discussed
where two network nodes want to communicate
reliably with each other but some nodes, byzantine,

in between have been compromised or are showing
abnormal behavior.

With the help of constructive proof approach,
optimal, sufficient and necessary conditions for
reliable communication are proved. This work
supports byzantine faults handling for dynamic
network environments but lacks support for
distributed multi-agent environments.

Another approach has been presented in
(Araragi, 2006). This work is based on Castro and
Liskov’s (1999) byzantine fault tolerance method.
Replication strategies are implemented without only
being maintained at server level. Further, this model
resolves synchronization issues of receiving
messages among replicas.

2.7. Byzantine fault tolerance (BFT) for agent
systems

3. The architecture of DARX

DARX consists of generic Java classes which
provide support for implementing agents with fault
tolerance capabilities. It consists of different
components for failures detection, replication, fault
handling and observation as shown in Fig. 3.

Alvi et al /International Journal of Advanced and Applied Sciences, 6(2) 2019, Pages: 57-64

60

Fig. 2: Vbam architecture (Silva et al., 2013)

3.1. Failure detection and naming service

The primary role of naming and failure detection
layer is to maintain a list of valid sites, agents and
their replicas which participate in the application.
Failure detectors and name servers are the
components which play central role in fault
detection. A separate autonomous thread exists in
each DARX server which acts as a fault detector and
name server.

Fig. 3: Application architecture of DARX (Marin et al.,

2003)

Physical faults in servers are detected by the
periodic exchange of heart beat messages, while
software faults are monitored through software
processes. The agents are divided into two types of
groups i.e. local and global groups. The name servers
communicate with each other by piggybacks on
heartbeats used for failure detection. In case of
failure of a DARX server, all agents hosted by it are
released and are replaced by replicas from other
servers. New leaders from these replicas are elected
as the failure notification is initiated from the
naming server.

3.2. Observation service

A good level of knowledge regarding dynamic
characteristics of applications and environments is
gathered for making DARX fault tolerance process
more efficient. An observation service is designed to
gather this kind of knowledge. This service
piggybacks on the flow of heartbeats emissions by
failure detection service. Each local DARX server
contains an integrated Observation Service module.

3.3. Replication management

Fault tolerance in DARX is attained through agent
dependent software replication strategies. Different
fault tolerance strategies exist including optimistic,
pessimistic and the one where agents have no fault
tolerance needs. The selection of these depends
upon the evolution of criticality of agents over time.
For this purpose, replication groups (RG) are
maintained by DARX.

Each RG may have active or passive replication
policies. In active replication policy, all replicas
remain synchronized and participate in calculation
processes, while in passive replication strategy only
one replica remains active and keeps sending state
information to other standby agents. Several
replication policies may co-exist in the same RG.

A replication group can be described on the basis
of following data:

 Criticality of related agents in a replication group.
 The degree of replication that how many replicas it

contains.
 The list of replicas arranged according to the

ordered capability of leadership.
 The list of all replication policies implemented

within a replication group.
 The relationship mapping between replicas and

the policies.

DARX allows for dynamic change of replication
strategy due to which replicas and the replication
strategies acting within a replication group can be
added and removed. As a case for recovering some of
the missing active replicas, the decision may be
taken by activating the backup replica which is most
suitable within the replication group. In case the
backup replica is missed or crashed, then to sustain
the reliability of replication group some new replica
starts working. If the criticality value of some agent
decreases then there is a possibility of either to
suppress a replica or to change the policy of that
replica from active to passive one. Fig. 4 depicts the
architecture of a replica in DARX framework. It
shows DARX message communication with
RemoteTask. A TaskShell consists of a replication
manager having a replication policy and
communication with agent. Every agent inherits
DARX task object to enable the functionalities of
DARX. It is also wrapped by task shell to handle
interaction of agents through inputs and outputs. An
independent thread exists for every task shell and
task manager (Marin et al., 2003).

4. The BDARX: extending DARX to handle
byzantine faults

The proposed model is developed by making
modifications into the DARX fault tolerance
architecture for multi agent systems and by using the
protocol of byzantine fault tolerance (BFT) method
for agent systems. The BDARX architecture as shown

Alvi et al /International Journal of Advanced and Applied Sciences, 6(2) 2019, Pages: 57-64

61

in Fig. 5 helps in making failure model more reliable
to deal with arbitrary faults like byzantine faults.

However dealing with such faults is most
challenging.

Fig. 4: Structure of a replica in DARX (Marin et al., 2003)

The basic assumption is n = 3f+1 (f>=0) is the

least number of replicas that can suffer arbitrary
byzantine attacks without failure of the whole
system. It is also assumed that out of 3f+1 hosts, not
more than f (as well as their replicas) are under
attack and the remaining 2f+1 replicas uphold their
original behavior. If, even out of 2f+1 replicas, f
replicas are not communicating then the behavior of
remaining f+1 will be similar to the behavior of all
the 2f+1 replicas. Because, under control agents
might not indefinitely give results, so we can expect
only 2f+1 results all the time and f+1 in case the
agents who are not faulty are not communicating.

Our approach modifies the DARX architecture by
using above proposed replication strategy instead of
choosing simple active and passive strategies with
any number of replicas. Our bound of 3f+1 replicas
ensure byzantine faults handling in BDARX through
its integrated adaptive replication based
architecture.

In BDARX, a failure detection service is used to
save the valid software elements which contribute to
the supported application and the dynamic lists of all
the running hosts. It also notifies about the supposed
failure occurrences. There are two features of agent
platforms. Firstly, the agents do not have fixed global
organization; they acquire and provide services to
other agents. Secondly, agents are created and
removed dynamically. Therefore these agents
dynamically choose other agents that coordinate
with each other to perform a task properly.
Consequently agents show autonomous behaviour,
they change their behavior with time and may also
exit the system.

The BDARX model is an extension of DARX to deal
with byzantine faults in which replicas are created
on both sides of the communication parties. For
enabling fault tolerance abilities, each agent inherits
the properties of a DARX task object, which enables

BDARX to control the agent’s execution. DARX task is
a Java object that handles and supervises agent
execution like start, end, suspension and resumption.
Every DARX task is itself enclosed in a task shell,
which deals with inputs and outputs of agents.
Consequently for agents BDARX can operate as a
mediator which is responsible for creating an
accurate decision for which messages should be
released or received. Primary replicas are further
wrapped in enhanced shells that consist of an
additional replication manager which acts as an
independent thread. It communicates information
with observation module and performs time by time
re-examination of current replication strategy. If any
strategy modification is being done, replication
manager sends replication policy updates to the
other replicas, so it helps to maintain reliability of
the replication group. Each replica uses replication
policy to find out how the communication should be
handled regarding internal as well as incoming and
outgoing data related to a replication group.

In Fig. 5, BDARX architecture is presented which
is an extension of DARX. It consists of DARX
messages with three elements: sequence no, current
primary (leader replica), and the request. These are
passed to action module. The main module TaskShell
consists of Replication Manager, Replication Policy
and Agreement Protocol. This information is
forwarded to action module. The action represents
different states of message/request which is one of
the following forms: null, send, add and read
(request). As agents behave in a dynamic way, they
sometimes act as a server and sometime as a client.
So, it means that all agents have equal position. In
BDARX, for handling byzantine faults, it is necessary
to create replicas on both sending and receiving
agents. After that the replication manger has to
choose a replication strategy. Byzantine fault
tolerance strategy consists of multiple states

Alvi et al /International Journal of Advanced and Applied Sciences, 6(2) 2019, Pages: 57-64

62

including three phase agreement protocol (pre-
prepare state, prepare state and commit state),
checkpoints and view-change.

Consider there are two agents α and β; as α sends
message towards current primary/ leader replica of
β, it starts sender timer clock, and if before expiry of
sender timer clock of α, it receives f+1
acknowledgements, the replica of α accepts those
acknowledgements. It is necessary that every
dedicated replica of receiving agent β must reply to
replicas of sending agent α. By sending an
acknowledgment message, in pre-prepare state,
there will be no replica having multiple sequence
numbers for the same request, therefore duplication
cannot exist in sequence numbers.

As some replica receives 2f+1 valid pre-prepare
messages from different replicas, it enters into
prepare state and checks sequence number and
request. Afterwards replica broadcasts a commit
message following the contents of the prepare
message. When some replica receives 2f+1 valid
commit messages from multiple replicas, it enters
into commit state, and then it checks sequence
number and request. Afterwards replica executes the
request and returns outcomes to the user.

Checkpoints are useful for making sure that the
request is being processed by fault free replicas.
After receiving 2f+1 checkpoint messages, replicas
maintain the state at which request is being executed
and remove the information kept before request
execution.

After receiving a message/request directly or
indirectly from sender agents, every replica at
receiving agent starts a timer, if that timer expires
before request completion, the replicas try to change
current primary or leader replica of the agent, this
process is called view-change.

During communication between two agents, a
replica cannot send a new message to any agent until
the agent sends back an acknowledgement message
for previously sent message, it works in FIFO order.
View-change mechanism works as follows:

 Replica of α multicasts message to all the available

replicas of β if it does not receive the same f+1
acknowledgment from the replica of β prior to the
expiry of its sender timer.

 When some replica of agent β gets the same f+1
messages from various replicas of α prior to
receiving message from the current primary, then
its receiver timer starts and transmits the message
to the current primary.

 In case receiver timer of replica of agent β expires,
view-change procedure gets started.

Each message through BFT protocol is encrypted

with a secret key from sender replica and is shared
by the use of public keys.

Hence replicas cannot change messages received
from others.

Fig. 5: BDARX replication architecture

5. Case study: VANET (Vehicular ad hoc network)

The vehicular adhoc network (VANET) is a
wireless network of vehicles that communicate with
each other (Samara and Al-Raba'nah, 2017). Such
network helps vehicles in the specific range of 100 to
300 meters to share information on any ongoing
activity. VANETs are based on high bandwidth
wireless communication mechanism. They are used
in different applications like lifeguard services,

rescue services, infotainment and multi-media
sharing services (Chahal et al., 2017). The better
sharing system between rescue services can help to
reduce the time to reach at some location and
provide help at the earliest.

In VANETs, communication is done between road
side unit to vehicle (R2V) and vehicle to vehicle
(V2V) as shown in Fig. 6. This communication is
being done as BDARX architecture. A short range
communication system for safety and infotainment

Alvi et al /International Journal of Advanced and Applied Sciences, 6(2) 2019, Pages: 57-64

63

applications works for both R2V and V2V
environments. VANETs are designed to have a high
data transfer rate and minimize the latency rate in
communication. Agent oriented systems may help
these networks to work in the best way and provide
fault tolerance in such situations so that things
remain as much uninterrupted as possible. BDARX
protocol can be applied in the area of VANET for
handling different fault tolerance related issues.

Fig. 6: Communication patterns in VANET

Some of these issues are discussed below:
Security is one of the major concerns in such open
networks where nodes join and leave on the fly. In
VANETs security becomes a prime issue because it
deals with lifeguard services and any attack on the
system can lead to life threatening vulnerable
situations. BDARX adaptive replication system of

nodes based on their criticality level ensures the
level of security and replication for the nodes. In the
following we have discussed a scenario of highest
criticality where continuous status updates about
the vehicles are required even if some byzantine
fault occurs in the system.

We have taken the scenario of a cash delivery van
on the road with security vans around it. The
company monitors real time coordinates and status
information of security van for any quick response in
case of any emergency. In this extreme critical
situation, BDARX provides solution for efficient
handling of VANET. The software agent installed on
cash van creates replicas on the security vehicles. In
case of any attack on the van or hijacking of the
network, where f (>=0) nodes are under control of
attacker and the other f are not communicating, even
then if company receives f+1 messages about actual
status, the company will respond accordingly. Such
type of implementation ensures a strong fault
tolerance mechanism for the network. The sequence
diagram in Fig. 7, describes the discussed
environment using BDARX architecture for better
communication and fault handling. If main node
‘Cash Van’ faces some issues, its replicas play role for
fault tolerance. Moreover, encrypted messages
flowing among nodes ensure privacy of information
on the open network. Checkpoints are established at
different time intervals so in case of any link failure,
communication data from last check points are
restored and the whole system becomes alive in a
short time.

Fig. 7: Sequence diagram of VANET scenario

6. Conclusion

In this paper, we have proposed BDARX an
extension of DARX architecture for handling
byzantine faults in multi-agent systems. Existing

DARX architecture deals with crash related faults in
networks but does not deal with byzantine faults. We
have induced byzantine support in DARX protocol.
The proposed architecture deals with byzantine
faults in more efficient manner. The effectiveness of

Alvi et al /International Journal of Advanced and Applied Sciences, 6(2) 2019, Pages: 57-64

64

proposed framework is demonstrated in the
application domain of VANETs.

Currently, this work lacks support for complex
distributed MAS architectures on different platforms.
In future, we want to test our architecture on
different environments with extended support for
distributed multi-agent systems.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of
interest.

References

Almeida A, Briot JP, Aknine S, Guessoum Z, and Marin O (2007).
Towards autonomic fault-tolerant multi-agent systems. In The
2nd Latin American Autonomic Computing Symposium,
Petropolis, Brazil.

Araragi T (2006). Byzantine fault tolerance for agent systems. In
the International Conference on Dependability of Computer
Systems, IEEE, Szklarska Poreba, Poland: 232-239.
https://doi.org/10.1109/DEPCOS-RELCOMEX.2006.11

Briot JP, Aknine S, Guessoum Z, Malenfant J, Marin O, Perrot JF,
and Sens P (2007). Multi-agent systems and fault-tolerance:
State of the art elements. Deliverable, FTCAT Project,
EuroControl INO CARE III Programme, Brétigny-sur-Orge,
France.

Castro M and Liskov B (1999). Practical byzantine fault tolerance.
In the 3rd Symposium on Operating Systems Design and
Implementation, New Orleans, USA, 99: 173-186.

Chahal M, Harit S, Mishra KK, Sangaiah AK, and Zheng Z (2017). A
survey on software-defined networking in vehicular ad hoc
networks: Challenges, applications and use cases. Sustainable
Cities and Society, 35: 830-840.
https://doi.org/10.1016/j.scs.2017.07.007

Dettoni F, Lung LC, and Luiz AF (2013). Using virtualization
technology for fault-tolerant replication in LAN. In the New
Results in Dependability and Computer Systems, Springer,
Heidelberg, Berlin, Germany: 131-140.

Ductor S, Guessoum Z, and Ziane M (2011). Adaptive replication in
fault-tolerant multi-agent systems. In the 2011
IEEE/WIC/ACM International Conferences on Web
Intelligence and Intelligent Agent Technology, IEEE Computer
Society, Washington, D.C., USA, 02: 304-307.
https://doi.org/10.1109/WI-IAT.2011.206

Faci N, Guessoum Z, and Marin O (2006). DimaX: A fault-tolerant
multi-agent platform. In the International Workshop on
Software Engineering for Large-Scale Multi-Agent Systems,
ACM, Shanghai, China: 13-20.
https://doi.org/10.1145/1138063.1138067

Genza N and Mighele E (2013). Review on multi-agent oriented
software engineering implementation. International Journal of
Computer and Information Technology, 2(3): 511-520.

Guessoum Z and Briot JP (1999). From active objects to
autonomous agents. IEEE Concurrency, 7(3): 68-76.
https://doi.org/10.1109/4434.788781

Guessoum Z, Faci N, and Briot JP (2005). Adaptive replication of
large-scale multi-agent systems–towards a fault-tolerant
multi-agent platform. In the International Workshop on
Software Engineering for Large-Scale Multi-agent Systems,
Springer, Berlin, Heidelberg, Germany: 238-253.

Kalbarczyk ZT, Iyer RK, Bagchi S, and Whisnant K (1999).
Chameleon: A software infrastructure for adaptive fault
tolerance. IEEE Transactions on Parallel and Distributed
Systems, 10(6): 560-579.
https://doi.org/10.1109/71.774907

Khalili M, Zhang X, Polycarpou MM, Parisini T, and Cao Y (2018).
Distributed adaptive fault-tolerant control of uncertain multi-
agent systems. Automatica, 87: 142-151.
https://doi.org/10.1016/j.automatica.2017.09.002

Marin O, Bertier M, and Sens P (2003). DARX-a framework for the
fault-tolerant support of agent software. In the 14th
International Symposium on Software Reliability Engineering,
IEEE, Denver, USA: 406-416.

Marin O, Sens P, Brio JP, and Guessoum Z (2001). Towards
adaptive fault-tolerance for distributed multi-agent systems.
In the 3rd European Research Seminar on Advanced
Distributed Systems, Spring School and Workshop, Madeira
Island, Portugal: 195-201.

Maurer A, Tixeuil S, and Défago X (2014). Reliable communication
in a dynamic network in the presence of Byzantine faults.
arXiv preprint. Available online at:
https://arxiv.org/abs/1402.0121

Overeinder B, Brazier F, and Marin O (2003). Fault tolerance in
scalable agent support systems: Integrating DARX in the
agentscape framework. In the 3rd IEEE/ACM International
Symposium on Cluster Computing and the Grid, IEEE, Tokyo,
Japan: 688-695.

Patron P, Miguelanez E, Petillot YR, and Lane DM (2008). Fault
tolerant adaptive mission planning with semantic knowledge
representation for autonomous underwater vehicles. In the
IEEE/RSJ International Conference on Intelligent Robots and
Systems, IEEE, Nice, France: 2593-2598.
https://doi.org/10.1109/IROS.2008.4650836

Samara G and Al-Raba'nah Y (2017). Security issues in vehicular
ad hoc networks (VANET): A survey. arXiv preprint. Available
online at:
https://arxiv.org/abs/1712.04263

Silva MRX, Lung LC, Magnabosco LQ, and de Oliveira Rech L
(2013). Vbam–byzantine atomic multicast in LAN Based on
virtualization technology. In the New Results in Dependability
and Computer Systems, Springer, Heidelberg, Berlin,
Germany: 365-374. PMCid:PMC3794961

Stanković R, Štula M, and Maras J (2017). Evaluating fault
tolerance approaches in multi-agent systems. Autonomous
Agents and Multi-Agent Systems, 31(1): 151-177.
https://doi.org/10.1007/s10458-015-9320-6

Zubair M and Manzoor U (2016). Mobile agent based network
management applications and fault-tolerance mechanisms. In
the 6th International Conference on Innovative Computing
Technology, IEEE, Dublin, Ireland: 441-446.
https://doi.org/10.1109/INTECH.2016.7845118

https://doi.org/10.1109/DEPCOS-RELCOMEX.2006.11
https://doi.org/10.1016/j.scs.2017.07.007
https://doi.org/10.1109/WI-IAT.2011.206
https://doi.org/10.1145/1138063.1138067
https://doi.org/10.1109/4434.788781
https://doi.org/10.1109/71.774907
https://doi.org/10.1016/j.automatica.2017.09.002
http://www.madeira-island.com/
http://www.madeira-island.com/
https://arxiv.org/abs/1402.0121
https://doi.org/10.1109/IROS.2008.4650836
https://arxiv.org/abs/1712.04263
https://doi.org/10.1007/s10458-015-9320-6
https://doi.org/10.1109/INTECH.2016.7845118

	Adaptive byzantine fault tolerance support for agent oriented systems:The BDARX
	1. Introduction
	2. Related works
	2.1. Chameleon
	2.2. DimaX
	2.3. DARX: An inspiring model
	2.4. Twin BFT: Virtual technology based fault tolerant system
	2.5. Vbam: Byzantine atomic multicast in LAN
	2.6. Reliable communication in dynamic network with byzantine faults
	2.7. Byzantine fault tolerance (BFT) for agent systems

	3. The architecture of DARX
	3.1. Failure detection and naming service
	3.2. Observation service
	3.3. Replication management

	4. The BDARX: extending DARX to handle byzantine faults
	5. Case study: VANET (Vehicular ad hoc network)
	6. Conclusion
	Compliance with ethical standards
	Conflict of interest
	References

