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The main goal of this work is to obtain the numerical solution for thin film 
flow of MHD an incompressible Eyring-Powell fluid on a vertically moving 
belt. The nonlinear equation governing the flow problem is modeled and 
then solved numerically by means of a successive linearization method 
(SLM). The numerical results are derived in tables for comparisons. The 
important result of this comparison is the high precision of the SLM in 
solving nonlinear differential equations. The solutions take into account the 
behavior of Newtonian and non-Newtonian fluids. Graphical outcomes of 
various non-Newtonian parameters such as Hartman number and Stokes 
number on the flow field are discussed and analyzed. Besides this, the 
present results have been tested and compared with the available published 
results in a limiting manner and an excellent agreement is found. 
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1. Introduction 

*The most phenomena in the field of engineering 
and science that occur are nonlinear. With this 
nonlinearity the equations become more difficult to 
handle and solve. Some of these nonlinear equations 
can be solved by using approximate analytical 
methods such as Homotopy analysis method (HAM) 
proposed by Liao (1992, 2004), Homotopy 
Perturbation method (HPM) it was found by He 
(1999) and Adomain decomposition method (ADM) 
(Esmaili et al., 2008; Makinde and Mhone, 2006; 
Makinde, 2008). However, some of these equations 
are solved via traditional numerical techniques such 
as finite difference method, shooting method and 
Keller box method, Runge-Kutta. Recently some 
studies have presented a new method called 
Successive Linearization Method (SLM). This method 
has been applied successfully in many nonlinear 
problems in sciences and engineering, such as the 
MHD flows of non-Newtonian fluids and heat 
transfer over a stretching sheet (Shateyi and Motsa, 
2010), viscoelastic squeezing flow between two 
parallel plates, (Makukula et al., 2010a), two 
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dimensional laminar flow between two moving 
porous walls (Makukula et al., 2010b) and 
convective heat transfer for MHD boundary layer 
with pressure gradient (Ahmed et al., 2015). 
Therefore, the effectiveness, validity, accuracy and 
flexibility of the SLM are verified among of all these 
successful applications. 

In the recent years, a great deal of interest has 
been gained to fluids applications. Some fluids do not 
express easily to by particular constitutive 
relationship between shear rates and stress and 
which is totally different than the viscous fluids 
(Ellahi et al., 2008; Hayat et al., 2004). Theses fluids 
including many home items namely, toiletries, 
paints, cosmetics certain oils, shampoo, jams, soups 
etc., have different features and are denoted by non-
Newtonian fluids. In general, the categorization of 
non-Newtonian fluid models is given under three 
classes which are named the integral, differential, 
and rate types (Fetecau et al., 2007; Salah et al., 
2011a; 2011b). In the present study, the main 
interest is to discuss the thin-film flow of magneto 
hydrodynamic (MHD) Powell–Eyring fluid on a 
vertically moving belt. The fluid model is considered 
here is too complicate and has preference over the 
power-law fluid in the couple reasons. The First 
reason is it is deduced from kinetic theory of liquid 
rather than empirical relation as in the case of 
power–law mode. Secondly, it correctly reduces to 
the viscous fluid at low and high shear rates. This 
motivates us to choose the Powell–Eyring fluid 
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model in this study (Hayat et al., 2013; Malik et al., 
2013; Siddiqui et al., 2013). Besides that, the 
equations in the non-Newtonian fluids propose some 
big challenges to the researchers to seek their 
solutions. The equations become very difficult when 
non-Newtonian fluid is combined in the presence of 
magneto hydrodynamic. It is the study of the 
interaction of electro conducting fluids with 
phenomena of electromagnetic. The flow of MHD 
fluid in the presence of magnetic field is very 
important in many regions of applied science, 
engineering and technology such as MHD pumps and 
MHD power generation. Due to this fact many 
researchers are still contributing in the field of MHD 
fluids mechanics (Hussain et al., 2010; Husain et al., 
2008; Khan et al., 2007; Wang et al., 2005). 

Presently a new investigation on thin-film MHD 
flow of Eyring Powell – fluid is discussed. The 
governing equations of Powell–Eyring fluid with 
MHD are utilized. The numerical solution to the 
resulting nonlinear problem is computed by using 
the SLM approach. The embedded flow parameters 
are discussed and illustrated graphically.   

2. Governing equations 

The continuity and momentum equations for an 
incompressible fluid, are given by 
 
𝑑𝑖𝑣 𝑽 = 0                                                                                         (1) 

𝜌 [
𝜕𝑉

𝜕𝑡
+ (𝑽. ∇)𝑉] = −∇𝑃 + 𝑑𝑖𝑣 𝑺 + 𝜌𝑔 − 𝜎𝐵0

2𝑽,                   (2) 

 

Here, which 𝜌 is the fluid density, 𝑉 is the velocity 
field, 𝑃 is the pressure, 𝑆 is the Cauchy stress tensor, 
𝑔 is the body force per unit mass, and 𝜎 is electrical 
conductivity of fluid. 

The extra stress tensor 𝑆 for Powell-Eyring fluid 
satisfies the constitutive equations as given in Hayat 
et al. (2013), Malik et al. (2013), and Siddiqui et al. 
(2013) and is in the following form 
 

𝑺 = 𝜇∇𝑽 +
1

𝛽
𝑠𝑖𝑛ℎ−1 (

1

𝑐
∇𝑽)                                               (3) 

 

and 
 

𝑠𝑖𝑛ℎ−1 (
1

𝑐
∇𝑽) ≈

1

𝑐
∇𝑽 −

1

6
(

1

𝑐
∇𝑽)

3
, |

1

𝑐
∇𝑽| ≪ 1,                    (4) 

 

where 𝜇 is the dynamic viscosity of  fluid and 𝛽 and 
 𝑐 are the material constants of the Powell-Eyring 
fluid model.  

Consider the velocity in the following form as 
  

𝑽 = (0, 𝑢(𝑥), 0),  
 

with this choice of velocity, the constraint of 
incompressibility is automatically satisfied. Also 
assume the extra stress tensor is a function of 𝑥 only 
i.e. 𝑺 = 𝑆(𝑥). Substituting Eq. 4 into Eq. 3 and 
keeping in mind that at 𝑡 = 0 the fluid is at rest, we 
obtain 
 
 𝑆𝑦𝑧 = 𝑆𝑦𝑦 = 𝑆𝑧𝑧 = 𝑆𝑥𝑧 = 𝑆𝑥𝑥 = 0  

 

and  
 

𝑆𝑥𝑦 = (𝜇 +
1

𝛽𝑐
)

𝜕𝑢

𝜕𝑥
−

1

6𝛽𝑐3
(

𝜕𝑢

𝜕𝑥
)

3
.                                                (5) 

 
The balance of the linear momentum gives 
 

𝜌
𝜕𝑢

𝜕𝑡
= −

𝜕𝑃

𝜕𝑦
+

𝜕𝑆𝑥𝑦

𝜕𝑥
− 𝜌𝑔 − 𝜎𝐵0

2𝑢(𝑥).                                       (6) 

 
Assume that the pressure is standard 

atmospheric pressure and since the 𝑦 - coordinate 
and gravity force are in the upward direction, then 
for the steady flow the above Eqs. 5 and 6 become 

 

0 = [𝜇 +
1

𝛽𝑐
]

𝜕2𝑢

𝜕𝑥2
−

1

6𝛽𝑐3

𝜕

𝜕𝑥
(

𝜕𝑢

𝜕𝑥
)

3
− 𝜌𝑔 − 𝜎𝐵0

2𝑢(𝑥)               (7) 

3. Formulation of lifting problem 

Here we considering the steady, laminar and 
uniform thin film flow of an incompressible MHD 
Powell–Eyring fluid, which is chosen by a wide flat 
belt moves vertically upward at a constant speed 𝑈0. 
The fluid drains down to the belt due to the gravity 
effects. The thickness 𝛿 of the thin-film is uniform 
and the external pressure is the atmospheric 
everywhere. The 𝑥- axis is perpendicular to the belt 
and the 𝑦 - axis is parallel to the belt, which is moves 
in the upward direction.  

The appropriate boundary conditions for this 
problem are 

 
𝑆𝑥𝑦 = 0  𝑎𝑡  𝑥 = 𝛿       (Free surface)                                       (8) 

𝑢(𝑥) = 𝑈0   𝑎𝑡   𝑥 = 0         (no slip condition)  

 
introducing the following dimensionless quantities  
 

𝜉 =
𝑥

𝛿
, 𝑓 =

𝑢

𝑈0
, 𝑆𝑡 =

𝜌𝑔𝛿2

𝜇𝑒𝑓𝑓𝑈0
  

𝑀 =
𝜎𝐵0

2𝛿2

𝜇𝑒𝑓𝑓
,   𝐻 =

𝑈0
2

2𝛽𝑐3𝛿2
𝜇𝑒𝑓𝑓

                                                (9) 

 

the problem statement reduces to, 
 
𝜕2𝑓(𝜉)

𝜕𝜉2 − 𝐻
𝜕2𝑓(𝜉)

𝜕𝜉2 (
𝜕𝑓(𝜉)

𝜕𝜉
)

2

− 𝑀𝑓(𝜉) − 𝑆𝑡 = 0.                    (10) 

𝑓(𝜉) = 1    𝑎𝑡  𝜉 = 0, 
𝑑𝑓

𝑑𝜉
= 0    𝑎𝑡   𝜉 = 1 .                                                                (11) 

4. Solution of the lifting problem 

The Eq. 10 with the boundary condition Eq. 11 
were solved using a successive linearization method 
(SLM) (Makukula et al., 2010a; 2010b; Ahmed et al., 
2015) for SLM solution we choose the unknown 
function 𝑓(𝜉) in the form  

 
𝑓(𝜉) = 𝑓𝑖(𝜉) + ∑ 𝐹𝑚(𝜉) 𝑖−1

𝑚=0                    (12) 

 
where 𝑓𝑖(𝜉) is unknown function and 𝐹𝑚(𝜉), 𝑚 ≥ 1 
is successive approximation which is obtained by 
recursively solving the linear part of the equation 
those results from substituting Eq. 12 in the 
governing equations. The mean idea of SLM that the 
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assumption of unknown function 𝑓𝑖(𝜉) is very small 
when 𝑖 becomes very large, thus the nonlinear terms 
in 𝑓𝑖(𝜉) and its derivatives are considered to be very 
small and therefore neglected. The intimal guess 
function 𝐹0(𝜉) which is chosen to satisfy the 
boundary condition 𝐹0(𝜉) = 1 𝑎𝑡  𝜉 = 0, 𝐹𝑜

′(𝜉) =
0  𝑎𝑡  𝜉 = 1, which is taken to be in the form  𝐹0(𝜉) =

𝑆𝑡 (
𝜉2

2
− 𝜉) + 1. Therefore, beginning from the initial 

guess, the subsequent solution 𝐹𝑖  is obtained by 
successively solving the linearized from the equation 
which is obtained by substituting Eq. 12 in the 
governing Eq. 10. Then we arrive at the linearized 
equation to be solved is  
 
𝑎1,𝑖−1𝐹′𝑖

′ − 𝑎2,𝑖−1𝐹𝑖
′ − 𝑎3,𝑖−1𝐹𝑖 = 𝑟1,𝑖−1 ,                               (13) 

 
subject to the boundary conditions 
 
𝐹𝑖(0) = 1 𝑎𝑛𝑑 𝐹𝑖

′(1) = 1 ,  

 
where the coefficients parameters 𝑎𝑘,𝑖−1 , (𝑘 = 1,2,3) 

and 𝑟1,𝑖−1 are defined as  
 

𝑎1,𝑖−1 = 1 − 𝐻(∑ 𝐹𝑚
′𝑖−1

𝑚=0 )
2

,  

𝑎2,𝑖−1 = 2𝐻 ∑ 𝐹𝑚
′𝑖−1

𝑚=0 ∑ 𝐹𝑚
′′𝑖−1

𝑚=0   ,  

𝑎3,𝑖−1 = 𝑀 ∑ 𝐹𝑚
𝑖−1
𝑚=0    𝑎𝑛𝑑  

𝑟1,𝑖−1 = 𝑆𝑡 − ∑ 𝐹𝑚
′′𝑖−1

𝑚=0 + 𝐻(∑ 𝐹𝑚
′𝑖−1

𝑚=0 )
2

∑ 𝐹𝑚
′′𝑖−1

𝑚=0 +

𝑀 ∑ 𝐹𝑚
𝑖−1
𝑚=0 .                    (14) 

 

When we solve Eq. 10 iteratively, the solution for 
𝐹𝑖  has been obtained and finally after 𝐾 iterations 
the solution 𝑓(𝜉) can be written as 

 
𝑓(𝜉) = ∑ 𝐹𝑚(𝜉) .𝐾

𝑚=0   

 
In order to apply SLM firstly transform the 

domain solution from (0, ∞] to [−1,1]. SLM is based 
on the Chebyshev spectral collection method. This 
method is depending on the Chebyshev polynomials 
defined on the interval [−1,1]. Thus, using the 
domain truncation technique where the problem is 
solved in the interval [−1, 𝐿] where 𝐿 is scaling 
parameter used to impose the boundary condition at 
infinity. Thus, this can be obtained via the 
transformation  
 

 
𝜉

𝐿
=

𝜂+1

2
  ,      − 1 ≤ 𝜂 ≤ 1.                                                        (15) 

 

By using the Gauss-Lobatto collocation points we 
can discretize the domain [−1,1] as follows 
 

𝜂 = 𝑐𝑜𝑠
𝜋𝑗

𝑁
, 𝐹𝑖 ≈ ∑ 𝐹𝑖(𝜂𝑗)𝑇(𝜂𝑗)𝑁

𝑘=0 , 𝑗 = 0,1, … , 𝑁             (16) 

 

where 𝑁 is the number of collection points and 𝑇𝑘  is 
the 𝑘𝑡ℎ Chebyshev polynomial given by  

 

𝑇𝑘(𝜂) = 𝑐𝑜𝑠[𝑘𝑐𝑜𝑠−1(𝜂)].   
 

The derivatives of the variable at the collocation 
points are in the form 

 
𝑑𝑟𝐹𝑖

𝑑 𝜉𝑟 = ∑ 𝑫𝑘𝑗
𝑟 𝐹𝑖(𝜂𝑘)𝑁

𝑘=0 , 𝑗 = 0,1, … , 𝑁                  (17) 

where 𝑟 is the order of differentiation and 𝑫 =
2

𝐿
𝐷 

with 𝐷 is the Chebyshev spectral differentiation 
matrix. Substituting Eqs. 15 to 17 into Eq. 13 we 
arrive at the matrix equation 
 
𝑨𝑖−1𝑿𝑖−1 = 𝑹𝑖−1                                                                         (18) 
𝑨11 = 𝑎1,𝑖−1𝑫2 − 𝑎2,𝑖−1𝑫 − 𝑎3,𝑖−1𝐼 . 
 

Following the above procedure, we can obtain the 
solution as 

 
𝑿𝑖 = 𝑨𝑖−1

−1 𝑹𝑖−1 .                                                                     (19) 

5. Drainage problem for MHD Eyring-Powell fluid 

Under the same assumptions as in the previous 
problem we consider the steady, laminar and 
uniform MHD Eyring-Powell fluid, dropping on the 
stationary infinite perpendicular wall. The flow is in 
the downward direction due to gravity. The 
thickness 𝛿 of the thin film is uniform and the 
external pressure is standard atmospheric. 

The governing Eqs. 1–3, then become 
 

0 = [𝜇 +
1

𝛽𝑐
]

𝜕2𝑢

𝜕𝑥2 −
1

6𝛽𝑐3

𝜕

𝜕𝑥
(

𝜕𝑢

𝜕𝑥
)

3
+ 𝜌𝑔 − 𝜎𝐵0

2𝑢(𝑥)            (20) 

 

subject to the boundary conditions 
 
𝑑𝑓

𝑑𝜉
= 0    𝑎𝑡  𝜉 = 1 , 

𝑓(𝜉) = 0   𝑎𝑡   𝜉 = 0. 
 

The above equation with these boundary 
conditions is a highly nonlinear second-order 
differential equation for the drainage problem. 
Following the same process in section 4. We use the 
SLM by assuming the intimal guess function 𝐹𝑜(𝜉) 
which is chosen to satisfy the boundary condition 

 
𝐹𝑜(𝜉) = 0 𝑎𝑡 𝜉 = 0  
 
and 

 
𝐹𝑜

′(𝜉) = 0 𝑎𝑡 𝜉 = 1  

 
in the form 

 

 𝐹𝑜(𝜉) =  𝑆𝑡 (𝜉 −
𝜉2

2
),  

 
we can get the solution as 
  
𝑿𝑖 = 𝑨𝑖−1

−1 𝑹𝑖−1 .   

6. Results and discussion  

This section concerns with the variations of 
embedded flow parameters in the solution 
expressions for the lifting and drainage problems 
together with the physical interpretation of the 
problem have been discussed in Figs. 1-11. These 
figures are plotted in order to illustrate such 
variations. Here the graphs have been determined 
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for the MHD thin film flow of steady Eyring-Powell 
fluid on a vertically moving belt. Fig. 1 shows the 
effects of Stokes number parameter 𝑆𝑡  on the 
velocity profile when 𝑀, 𝐻 are fixed and 𝑆𝑡  is an 
increasing. It is of very important to notice that by 
increasing the parameter 𝑆𝑡 , this would lead to 
decreasing in the velocity profile. Physically, it is true 
as increasing Stokes number causes the fluid’s 
thickness and reduces its flow. 

 

 
Fig. 1: Effects of Stokes number  𝑆𝑡 for 𝑓(𝜉) on the in the 

lifting case 
 

Fig. 2 shows that velocity increases in drainage 
flow case when Stokes number 𝑆𝑡  increases. 
Physically, it is because of friction which seems very 
small near to the belt and higher at the surface of the 
fluid.  

 

 
Fig. 2: Effects of Stokes number  𝑆𝑡 for 𝑓(𝜉) on the in the 

drainage case 

 
Fig. 3 is prepared to see the effects of applied 

magnetic field (Hartman number) 𝑀 on the velocity 
profile. Keeping 𝐻, 𝑆𝑡 fixed and varying 𝑀, it is noted 
that the velocity profile decreases by increasing the 
magnetic field parameter 𝑀. From physical side we 
observe that when we increasing the values of 𝑀, the 
flow on velocity profile of 𝑓(𝜉) decreases, in fact this 
is due to the effects of the transverse magnetic field 
on the electrically conducting fluid which gives rise 
to a resistive type Lorentz force which tends to slow 
down the motion of the fluid.  

Fig. 4 shows that velocity in drainage flow case 
when Hartman number increases the magnetic field 
and velocity have a direct relation.  

 

 
Fig. 3: Effects of Hartman number 𝑀 for 𝑓(𝜉) on the lifting 

case 
 

 
Fig. 4: Effects of Hartman number 𝑀for 𝑓(𝜉) on the in the 

drainage case 
 

Fig. 5 shows the effects of the other material 
constant parameter 𝐻 on the velocity profile when 
𝑀, 𝑆𝑡  are fixed. It is worth noticing that by increasing 
the parameter 𝐻 would lead to a decrease in the 
velocity profile (this is much related to increase in 
the boundary layer thickness). This is due to the fact 
that increasing the values of 𝐻 would increase the 
friction forces, and, thus, slow down the motion of 
the fluid.  

 

 
Fig. 5: Effects of  𝐻 for 𝑓(𝜉) on the in the lifting case 

 

Fig. 6 has an inverse relation with the velocity of 
the drainage flow.  
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Fig. 6: Effects of 𝐻  for 𝑓(𝜉) on the in the drainage case 

 
It can be easily seen from Figs. 7-9 that the value 

of velocity 𝑓′(𝜉) near the lower plate surface 
increases regularly with the increase in the value of 
𝐻, 𝑀, 𝑆𝑡 , respectively and as we move away from 
lower plate surface this value increases.  

 

 
Fig. 7: Effects of  𝐻 for 𝑓′(𝜉) on the in the lifting case 

 

 
Fig. 8: Effects of Hartman number 𝑀for  𝑓′(𝜉) on the in the 

lifting case 
 

Furthermore, the velocity profile for the MHD 
Newtonian fluid in the lifting and drainage case is 
shown in Figs. 10 and 11.  

Finally, for the purposes of validation and the 
accuracy the present result is compared with 
published work in Siddiqui et al. (2013) in Table 1 
and Table 2. It is found in an excellent agreement. 

 
Fig. 9: Effects of Stokes number 𝑆𝑡 for 𝑓′(𝜉) on the in the 

lifting case 
 

 
Fig. 10: Velocity profile for the MHD Newtonian fluid in 

the drainage case 

 

 
Fig. 11: Velocity profile for the MHD Newtonian fluid in 

the lifting case 

7. Conclusion 

In this research, the problem of thin film flow of 
MHD Eyring-Powell fluid on a vertically moving belt 
is solved numerically. The numerical solutions are 
well established by SLM. We note that the present 
analysis is more general when compared with the 
analysis presented in Siddiqui et al. (2013). The 
results of Siddiqui et al. (2013) can be recovered as a 
special case by taking 𝑀 = 0, which is the MHD effect 
Eyring-Powell fluid. Furthermore, the results for the 
Newtonian fluid can be obtained by choosing 𝐻 →
0, 𝑀 → 0. This confirms the correctness of our 
mathematical calculations. 
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Table 1: Comparison of numerical values of 𝑓(𝜉) on the 
lifting case with Siddiqui et al. (2013) for several values of 

𝜉 when 𝑀 = 0, 𝐻 = 0.15, 𝑆𝑡 = 1 

 

Table 2: Comparison of numerical values of 𝑓(𝜉) on the 
lifting case with Siddiqui et al. (2013) Newtonian case i.e. 

𝐻 = 0.0 for several values of 𝜉 when  𝑀 = 0, 𝑆𝑡 = 1. 
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