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Analyzing data requires statistical tools to interpret the data information, 
which helps to improve the process. This is the interpretation of the 
qualitative and quantitative status of mixed data. The objective of this paper 
was to study the implementation of principal component analysis on mixed 
data and explain how to handle this type of databases and to make it possible 
to extract statistical information over a population under study. The 
effectiveness of principal component analysis on mixed data was studied 
using data sets available in the R package and simulated data. 
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1. Introduction 

*Most data applications involve dealing with large 
data sets, which contain several measures 
(variables) that can be either numerical or 
categorical. Thus, increasingly, scientific researchers 
such as businesses and members of medical fields 
require powerful visual and analytical tools to 
visualize and analyze data.  

Processing large data becomes more and more 
difficult as the number of dimensions' increases. 
Dimension reduction is a collection of statistical 
methods used to analyze mixtures of big data. This is 
done in two different ways: By selecting the most 
significant features from all features, which is used 
to make model building (this technique is called 
feature selection) or by transforming the high-
dimensional data into low-dimensional and saving 
the most important information. This procedure 
saves the data information that must be processed, 
while still accurately and completely describing the 
original data set (this technique is called feature 
extraction). Principal component analysis (PCA) is 
one of the commonly used dimension reduction 
methods, and it is known as a feature extraction 
method that is used for mixed data. It was invented 
in 1901 by Pearson (1901).  

The central idea is to find a new coordinate 
system in which input data can be expressed but at 
the same time information loss can be minimized. 
The idea of PCA is to reduce the dimension of 
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original data by computing a few numbers of 
orthogonal linear combinations with minimal loss of 
information, which means assigning the principal 
components (PCs) of the original variables with the 
largest variance. PCA is used for many applications, 
for example, image compression, bioinformatics, 
data mining, psychology, and pattern recognition, 
among others (Kalantan et al., 2017; Kalantan, 
2019).  

Practically, principal component analysis (PCA) 
handles numerical variables, while multiple 
correspondence analysis (MCA) handles categorical 
variables. PCA on mixed data is one of the several 
proposed methods to handle large data. This method 
can be seen as a mixture of PCA and MCA. It was 
proposed by De Leeuw and van Rijckevorsel (1980). 
This paper illustrates this method with details and 
discusses the effectiveness using the method 
implementation on a real dataset. 

The paper is organized as follows. Section 2 
presents a brief review of PCA. MCA is discussed in 
Section 3. Section 4 demonstrates how PCA is 
obtained for mixed data. Finally, the interpretation of 
a case study and associated graphics is discussed in 
Section 5. 

2. Principal component analysis 

From an algebraic standpoint, principal 
components are linear combinations of 𝑝 random 
variables, 𝑋1, 𝑋2, … , 𝑋𝑝. We shall look at the 

derivation of population principle components when 
the covariance matrix ∑ is known. Suppose we have 
a mean zero normal random vector �̀� =
[𝑋1, 𝑋2, … , 𝑋𝑝] that has a covariance matrix ∑ with 

eigenvalues 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑝 ≥ 0. Let us now 

consider the following linear combinations (Johnson 
and Wichern, 2002): 
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𝑌1 = 𝑎′
1𝑋 = 𝑎11𝑋1 + 𝑎12𝑋2 + ⋯ + 𝑎1𝑝𝑋𝑝, 

𝑌2 = 𝑎′
2𝑋 = 𝑎21𝑋1 + 𝑎22𝑋2 + ⋯ + 𝑎2𝑝𝑋𝑝, 

⋮ 
𝑌𝑝 = 𝑎′𝑝𝑋 = 𝑎𝑝1𝑋1 + 𝑎𝑝2𝑋2 + ⋯ + 𝑎𝑝𝑝                                 (1) 

 
from the definition of covariance, we have that: 
 
𝑉𝑎𝑟(𝑌𝑖) = �́�𝑖Σ𝑎𝑖         𝑖 = 1,2, … , 𝑝,                                            (2) 
𝐶𝑜𝑣(𝑌𝑖 , 𝑌𝑘) = �́�𝑖Σ𝑎𝑘 = 0            𝑖, 𝑘 = 1,2, … , 𝑝.                     (3) 
 

Principal components are uncorrelated linear 
combinations whose variances are as large as 
possible. Therefore, the first principal component is 
the linear combination with the maximum variance 
or 𝑉𝑎𝑟(𝑌1) = �́�1Σ𝑎1 that has the largest variance. 
Since one can increase 𝑎1 by any constant, we 
impose the restriction that maximizing 𝑉𝑎𝑟(�́�1𝑋) is 
subject to �́�1𝑎1 = 1. Thus, the principal components 
are such that: 
 
1st principal component= linear combination �́�1𝑋 that 
maximizes  𝑉𝑎𝑟(�́�1𝑋) subject to �́�1𝑎1 = 1 
 
2nd principal component= linear combination �́�2𝑋 that 
maximizes  𝑉𝑎𝑟(�́�2𝑋) subject to �́�2𝑎2 = 1 and 
𝐶𝑜𝑣(�́�1𝑋, �́�2𝑋) = 0 
 
3th principal component= linear combination �́�𝑖𝑋 that 
maximizes 𝑉𝑎𝑟(�́�𝑖𝑋) subject to �́�𝑖𝑎𝑖 = 1 and 
 𝐶𝑜𝑣(�́�𝑖𝑋, �́�𝑘𝑋) = 0 for 𝑘 < 𝑖. 

3. Multiple correspondence analysis (MCA) 

Multiple correspondence analysis is a statistical 
technique. It is an extension of simple 
correspondence analysis (CA) which allows one to 
study the association and visualize a data table 
between two or more qualitative variables. It can be 
seen as an analogue of principal components 
analysis (PCA) when the variables to be analyzed are 
categorical variables instead of quantitative 
variables (Abdi and Valentin, 2007). 

There are 𝐾 categorical variables, and each 
categorical variable has 𝐽𝑘 levels where 𝐽 = ∑ 𝐽𝑘𝑗 . 

There are 𝐼 observations. Let 𝑋 be an indicator 
matrix with 𝐼 × 𝐽 dimensions. MCA is performed by 
applying CA on the indicator matrix. Then, the two 
sets of factor scores are obtained for the rows and 
the columns. These factor scores are standardized 
where their variance equals their corresponding 
eigenvalue. 

Firstly, we compute the probability matrix Z =
𝑁−1X, where 𝑁 is the whole number. Let D𝑐 =
𝑑𝑖𝑎𝑔{𝑐}, D𝑟 = 𝑑𝑖𝑎𝑔{𝑟}, where the vector of the row 
totals and the columns totals of Z is denoted by 𝑟 and 
𝑐, respectively. We obtain the factor scores by 
applying the following SVD: 
 

Dr

−
1
2(Z − 𝑟𝑐𝑇)Dc

−
1
2 = PΔQT                                                            (4) 

 

where Δ is the diagonal matrix of the singular values 
and Λ = Δ2 is the matrix of the eigenvalues. 

Then, we obtain the rows factor scores which are 
denoted by F and the columns factor scores which 
are denoted by G as follows (Abdi and Valentin, 
2007): 

 

F = Dr

−
1
2PΔ                                                                                        (5) 

 
and 
 

G = Dc

−
1
2QΔ                                                                                       (6) 

4. Principal component analysis for mixed data 

In this paper, we implemented the PCA on mixed 
data following the approach proposed by Chavent et 
al. (2014). The dataset to be analyzed by PCA mix 
consists of n observations described by 𝑝1 numerical 
variables and 𝑝2 categorical variables. Let X1 be an 
n × 𝑝1 matrix which represents the numerical 
variables and X2 be an n × 𝑝2 matrix that represents 
the categorical variables. Let d denote the total 
number of all variables. An indicator matrix G with 
n × d dimensions contains binary coding from each 
level of categorical variables. A numerical matrix Y =
(Y1|Y2) is constructed with dimension n × (𝑝1 + d) 
where Y1 is the standardized matrix constructed by 
centered and normalized columns of X1, and Y2 
denotes the centered indicator matrix X2. 

Now, let N be the diagonal matrix of the weights 

of the rows of Y, where 
1

𝑛
 represents the weights of 𝑛 

rows, then N =
1

𝑛
Ι𝑛. Suppose D = diag(1, … ,

𝑛

𝑛1
,

𝑛

𝑛𝑠
) is 

the diagonal matrix of the weights of the columns of 
Y and 𝑠 = 1, … , 𝑛 represents the number of 
observations appearing at the 𝑠th level. Then, the 
eigenvalue of Y is obtained using the generalized 
singular value decomposition (GSVD) as:  
 
Y = UΛVT                                                                                        (7) 
 

where Λ = diag(√𝜆1, √𝜆2, … , √𝜆𝑟) is the 𝑟 × 𝑟 

diagonal matrix, such that 𝜆1, 𝜆2, … , 𝜆𝑟  are the 
eigenvalues of Y and 𝑟 denotes the rank of Y. U is a 
matrix with 𝑛 × 𝑟 dimensions, where the first 𝑟 
eigenvectors of ZDZtN such that U𝑇NU = I𝑟 . V is the 
𝑝 × 𝑟 matrix of the first 𝑟 eigenvectors of Z𝑡NZD such 
that V𝑡DV = I𝑟 . Therefore, the principal component 
of PCA mix can be computed as: 
 
Y𝑚𝑖𝑥 = YDV                                                                         (8) 
 
with the dimensions of 𝑛 × 𝑟. The scores of rows 
computed as R = UΛ represent the principal 
component scores. The scores of columns C = DVΛ 
and the standard PCA will be C = VΛ. 

5. Experimental results 

In this section, we discuss the effectiveness of 
PCA on mixed data that contain both numerical and 
categorical data. This is illustrated with a simulation 
case and real data available in R packages. 
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5.1. Simulation case 

A generalized sample of size 500 consists of seven 
variables. The first four are quantitative variables: 
Age, IQ, grade, and height, while the variables race, 
sex, and smoker are considered as qualitative 
variables; the data are available in the ‘Wakefield’ 
package (Rinker, 2018). As a pre-processing step, we 
split the data into two data matrices: A 500 × 4 
numerical data matrix named data A, and data B, 
representing the categorical variables as a matrix of 
500 × 3. We established the analysis with the 

implementation for PCA, and the results are 
summarized in Table 1, which shows that 80.84% of 
the total variance is explained via 10 PCA 
components. 

Fig. 1a displays the graphical output of the results 
of the factor coordinates, absolute contribution, and 
the squared cosinus for all variables. Table 2 
presents the contributions of all variables; the 
contribution squared correlation for each 
quantitative variable and the contribution 
correlation ratio of qualitative variables are shown 
in Fig. 1b in a graphical output. 

 
Table 1: The results of the simulation case 

 Eigen Value Proportion of Variance Cumulative Proportion 
Comp 1 1.2284 0.0945 0.0945 
Comp 2 1.1815 0.0909 0.1854 
Comp 3 1.1296 0.0869 0.2723 
Comp 4 1.0666 0.0820 0.3543 
Comp 5 1.0423 0.0802 0.4345 
Comp 6 1.0257 0.0789 0.5134 
Comp 7 1.0000 0.0769 0.5903 
Comp 8 0.9834 0.0756 0.6660 
Comp 9 0.9547 0.0734 0.7394 

Comp 10 0.8976 0.0690 0.8084 
Comp 11 0.8844 0.0680 0.8765 
Comp 12 0.8109 0.0624 0.9389 
Comp 13 0.7949 0.0611 1 

    

More graphical outputs are presented in Fig. 2a 
and Fig. 2b. Fig. 2a shows the factor coordinates, 
absolute contribution, and the squared cosinus of the 

qualitative variables. The results for the quantitative 
variables are presented in Fig. 2b. 

 

  
a b 

Fig. 1: Simulation case; (a) results for the individuals; (b) results of squared loadings 

 
5.2. Application case 

We implemented the PCA mix method on an R 
dataset from the “ElemStatLearn” package and 
named it “SAheart”. It is a sample of males in a heart-
disease high-risk region of the Western Cape, South 
Africa. The dataset consists of 462 observations on 
the following 10 variables, two of which are 
qualitative variables and the rest are quantitative 
variables, as shown in Table 3. 

As a pre-processing step, we split the data into 
two data matrices: A 462 × 8 numerical data matrix 
named data A, and data B, representing the 
categorical variables as a matrix of 462 × 2. We 
established the analysis with the implementation for 
PCA, and the results are summarized in Table 4, 
which shows that 81.23% of the total variance is 
explained via 6 PCA components. 
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a b 

Fig. 2: Simulation case; (a) results for the levels of the qualitative variables; (b) results of for the quantitative variables 
 
 

Table 2: The levels of contributions for all variables 
 dim 1 dim 2 dim 3 dim 4 dim 5 

Age 0.49461335 0.0253062 0.32267444 0.321041741 0.0156075 
IQ 0.33015349 0.3747271 0.23761784 0.476332544 0.2191435 

Grade 0.07749287 0.0737638 0.69664527 0.200292231 0.1108619 
Height 0.54613751 0.3750766 0.02244047 0.041334596 0.2269596 
Race 0.57441641 0.7621728 0.64928206 0.674168311 0.8426543 
Sex 0.18645019 0.4557888 0.19505485 0.001166874 0.4677109 

Smoker 0.45358812 0.3251022 0.15354866 0.490235036 0.0375936 
 dim 6 dim 7 dim 8 dim 9 dim 10 

Age 0.34787313 7.38404×10-28 0.240260707 0.3127593 0.12191561 
IQ 0.19436481 3.33998×10-24 0.260624551 0.2363748 0.07086126 

Grade 0.10124499 2.17422×10-14 0.037497596 0.1016380 0.56607122 
Height 0.20012710 2.93860×10-14 0.008892727 0.1882476 0.28788321 
Race 0.88367977 1.00000000 0.911678682 0.7032087 0.67709763 
Sex 0.16800716 6.56282×10-14 0.034110589 0.4740927 0.05923535 

Smoker 0.08636048 8.04556×10-15 0.154885059 0.1896927 0.11133049 
 dim 11 dim 12 dim 13   

Age 0.02182873 0.5018176549 0.05972314   
IQ 0.08659104 0.3594158770 0.34047717   

Grade 0.18099061 0.0008429403 0.27504554   
Height 0.38419922 0.2871377599 0.34471365   
Race 0.63658797 0.4260427922 0.59264882   
Sex 0.38996161 0.2905133947 0.08099889   

Smoker 0.37248689 0.2856115243 0.35085572   

 
 

Table 3: The variables’ description 
Variables Types Variable Name Description 

quantitative variables 

Sbp systolic blood pressure 
Tobacco cumulative tobacco (kg) 

Ldl low density lipoprotein cholesterol 
adiposity a numeric vector 

typea type-A behavior 
obesity a numeric vector 
alcohol current alcohol consumption 

Age age at onset 

qualitative variables 
famhist family history of heart disease, a factor with levels Absent and Present 

Chd response, coronary heart disease, a factor with levels 0 and 1 

 
Fig. 3a displays the graphical output of the results 

of the factor coordinates, absolute contribution, and 
the squared cosinus for all variables. Table 5 
presents the contributions of all variables; the 
contribution squared correlation for each 
quantitative variable and the contribution 

correlation ratio of qualitative variables are shown 
in Fig. 3b in a graphical output. 

More graphical outputs are presented in Fig. 4a 
and Fig. 4b. Fig. 4a shows the factor coordinates, 
absolute contribution, and the squared cosinus of the 
qualitative variables. The results for the quantitative 
variables are presented in Fig. 4b. 



Zakiah I. Kalantan, Nada A. Alqahtani/International Journal of Advanced and Applied Sciences, 6(12) 2019, Pages: 99-104 

103 
 

6. Conclusion 

The PCA is a powerful technique for mixed data 

to interpret the variables status for different data 
types. The objective of this process is to reduce the 

number of dimensions by selecting the components 
that describe 80% of the variance of the data. It was 
found that through this method, we can analyze a 
mixture of numerical and categorical variables and 
extract relevant information without having to deal 
with each type separately. 

 
Table 4: The results of the application case 

 Eigen Value Proportion of Variance Cumulative Proportion 
Comp 1 3.0865 0.3086 0.3086 
Comp 2 1.2307 0.1231 0.4317 
Comp 3 1.1462 0.1146 0.5463 
Comp 4 1.0199 0.1020 0.6483 
Comp 5 0.8725 0.0872 0.7356 
Comp 6 0.7676 0.0768 0.8123 
Comp 7 0.6728 0.0673 0.8796 
Comp 8 0.5740 0.0574 0.9370 
Comp 9 0.4551 0.0455 0.9825 

Comp 10 0.1748 0.0175 1 

 

  
a b 

Fig. 3: Application case; (a) results for the individuals; (b) results of squared loadings 

 
Table 5: The levels of contributions for all variables 

 dim 1 dim 2 dim 3 dim 4 dim 5 
Sbp 2.89672 ×10-1 0.0078017394 0.1063237008 1.04341×10-2 3.859448×10-7 

tobacco 2.83864×10-1 0.2219591833 0.0278278381 9.66279 ×10-5 1.55977×10-1 
Ldl 3.24117×10-1 0.0924692414 0.0708663614 2.74967×10-2 1.38961×10-2 

adiposity 7.14502×10-1 0.1160730548 0.0100080553 1.01866×10-2 3.16736×10-3 
typea 6.91093×10-6 0.0005861629 0.5351210938 2.76608×10-1 8.69287×10-2 

obesity 4.02313×10-1 0.3045250723 0.0002482346 9.61208 ×10-2 1.34622×10-2 
alcohol 4.10580×10-2 0.2475114945 0.0326211866 4.28246 ×10-1 9.67767×10-2 

Age 6.21652 ×10-1 0.0203379960 0.0281102874 3.33931 ×10-2 5.15464×10-3 
famhist 1.32839×10-1 0.0626074482 0.1937124803 6.253280e-02 4.62151×10-1 

chd 2.76437 ×10-1 0.1567957227 0.1413710331 7.477092e-02 3.49385×10-2 
 dim 6 dim 7 dim 8 dim 9 dim 10 

Sbp 0.5146484168 0.02641214 0.024686861 0.0199847300 3.52167×10-5 
tobacco 0.0895634567 0.06291979 0.074281783 0.0831068971 4.01776×10-4 

Ldl 0.0487664030 0.34379058 0.077501528 0.0001964012 8.99367×10-4 
adiposity 0.0071836630 0.01489831 0.012032233 0.0116347445 1.00313×10-1 

typea 0.0411248198 0.01990486 0.021200711 0.0182282302 2.90213×10-4 
obesity 0.0059762331 0.03844182 0.031564633 0.0629166662 4.44307×10-2 
alcohol 0.0503818195 0.08833238 0.009722416 0.0051579590 1.91700×10-4 

Age 0.0000495666 0.02726837 0.001947765 0.2339743159 2.81111×10-2 
famhist 0.0007046157 0.03110983 0.046201574 0.0079933407 1.46904×10-4 

chd 0.0092358722 0.01969713 0.274829644 0.0119234272 1.37883×10-7 
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a b 
Fig. 4: Application case; (a) results for the levels of the qualitative variables; (b) results of for the quantitative variables 
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