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Normally discarded as waste, ovine tendon collagen has great potential for 
use as an injectable hydrogel. Typical collagen used for biomedical 
applications is derived from epidermal tissue. Compared to the epidermal 
collagen, tendon collagen consists of collagen fibrils with large diameters. 
This limits the conjugation of phenolic hydroxyl (Ph) groups to tendon 
collagen for the synthesis of an injectable hydrogel. In this study, 
pretreatment process by ultrasonication was used to prevent the aggregation 
of ovine tendon collagen fibril, thus reducing fibril diameters and increasing 
the surface area for effective conjugation of Ph groups to collagen-chitosan 
(Col-Chit) composite. In situ gelation of Col-Chit-Ph composite was achieved 
via peroxidase-catalyzed crosslinking reaction at physiological conditions. 
The collagen to chitosan (Col: Chit) ratio was found to significantly influence 
the physical, mechanical and biological properties of hydrogels. The higher 
composition of chitosan in the hydrogel with 1:1 Col: Chit ratio resulted in 
the shortest gelation time (< 1 minute) and higher mechanical strength (> 
0.35 N) in all conditions. However, the poor cell growth rate of hydrogel at 
this Col: Chit ratio might limit its further use. The hydrogel with 3:2 Col: Chit 
ratio was mechanically stable and has the highest cell growth rate among 
others with difference of cell growth rate of about 94 % compared to the 1:1 
ratio. Taking into account these biological features, hydrogel with 3:2 Col: 
Chit ratio is suggested for potential use in biomedical applications. This study 
shows the feasibility of using ultrasonic pretreatment method for collagen 
with large fibril diameter. 
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1. Introduction 

*Injectable hydrogel, which is also known as in 
situ forming hydrogel, has the ability to undergo an 
in situ solution to gel transition when administrated 
into the body (Liu et al., 2016). When compared to 
preformed hydrogels transplantation, injectable 
systems allow accurate filling of irregular-shaped 
defects by simple injection of the hydrogel precursor 
solution to defect site. The challenges recently being 
addressed in the development of in situ forming 
hydrogels is the use of biomaterials with desired 
properties to meet intended biomedical uses. 
Collagen has been considered as the most popular 
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biomaterials in biomedical fields due to its excellent 
biocompatibility as evidenced by extensive 
investigation on utilization of collagen as wound 
dressings, tissue engineered scaffolds or matrices for 
drug delivery (Ruszczak, 2003; Lee et al., 2001; 
Wallace and Rosenblatt, 2003).  

One of the strategies to obtain injectable collagen 
hydrogel is by crosslinking of phenolic hydroxyl (Ph) 
groups conjugated to collagen. Here, the crosslinking 
reaction could be carried out using horseradish 
peroxidase (HRP) and hydrogen peroxide (H2O2). 
Previous finding proposed an injectable collagen-
phenolic hydroxyl (collagen-Ph) hydrogel derived 
from murine epidermal tissue (Kuo et al., 2015). 
However, in this study, the collagen was extracted 
from ovine tendon, which is typically discarded as 
waste. It is a cheap source of raw materials and large 
quantities can be isolated and purified for research 
purposes. Earlier studies reported that tendon 
collagen fibrils having large diameter than that of 
epidermal collagen fibrils (Gathercole et al., 1987). 
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Hence, a pretreatment process was necessary for the 
tendon collagen to achieve effective conjugation of 
Ph groups for the synthesis of injectable hydrogels.  

Since collagen is known for its weak mechanical 
strength (Yunoki and Matsuda, 2008), in the present 
work, collagen was combined with chitosan to 
improve its physical properties and degradation rate 
(Ma et al., 2003; Chen et al., 2005; Tangsadthakun et 
al., 2007). Other than being mechanically stronger 
than collagen, chitosan is non-toxic, contains 
antibacterial properties and has structural similarity 
to glucosaminoglycans (GAGs) of the extracellular 
matrix (Giri et al., 2012). The synthesis of injectable 
enzymatically crosslinked collagen-chitosan 
hydrogels was mentioned in our previous work (Lau 
et al., 2018). Since collagen-chitosan composite is 
formed by electrostatic interactions between 
carboxyl groups of collagen and amino groups of 
chitosan, the conjugation of Ph groups mostly 
occurred in the amino groups of collagen. In the 
presence of HRP and H2O2, composite hydrogel was 
formed by oxidative coupling of the Ph groups in 
polymer chains. Here, the influence of collagen: 
Chitosan (Col: Chit) ratio to the physical, mechanical 
and biological properties of enzymatically 
crosslinked hydrogels were reported.  

2. Materials and methods  

2.1. Ultrasonic pretreatment of collagen 

Collagen was extracted and purified from ovine 
tendon according to the method described by Fauzi 
et al. (2016). The freeze-dried collagen sponge was 
cut into small pieces and added to 50 mM 
Morpholinoethanesulfonic acid (MES) solution to 
prepare a collagen solution with concentration of 
0.5, 0.6 and 0.8 % (w/v). The mixture of collagen and 
MES solution was pretreated by ultrasonication at 
frequency 50/60 Hz and power 80 W for 10 minutes. 
The mixture was then transferred to ice bath and 
stirred at 500 rpm until homogenized. 

2.2. Preparation of composite with phenol 
moieties 

After collagen pretreatment, chitosan (Primex, 
degree of deacetylation≥ 95%) was added directly to 
the homogenous collagen solution under gentle 
stirring in ice bath. The composites with Ph groups 
at Col:Chit ratio 4:1, 3:2 and 1:1 were synthesized 
using method as decribed by Lau et al. (2018) and 
Sakai et al. (2009). Initially, 3-(4-Hydroxyphenyl)-
propionic acid (ρHP) in 50 mM MES solution was 
added with N-(3-Dimethylaminopropyl)-N’-
ethylcarbodiimide hydrochloride (EDC) and N-
hydroxysulfosuccinimide (sulfo-NHS) before 
transferring to Col-Chit solution. After 3 hours 
stirring, the conjugate solutions were repeatedly 
suspended and precipitated using 90 % ethanol to 
remove the remaining ρHP, EDC and sulfo-NHS, 
followed by centrifuging at 10,000 rpm. The 

conjugate precipitates were air-dried and re-
dissolved in 50 mM MES solution at 1 % (w/v). The 
conjugate solution was brought to pH 7.0 with 1 M 
NaOH for analysis.  

2.3. Transmission electron microscope (TEM) 
analysis of collagen fibrils 

The effect of ultrasonication on collagen fibrils 
was investigated using TEM (Zeiss Libra 120, 
Germany). A modified method has been adapted for 
sample preparation (Tsai et al., 2006). The collagen 
solution was prepared at concentration 0.4 % (w/v) 
and 0.15 % (w/v). A droplet of collagen solution was 
placed on 400 mesh size copper grid. Then, the 
fibrils were negatively stained by adding a droplet of 
2 % phosphotungstic acid to the surface of copper 
grid. After TEM analysis, the percentage of reduction 
in fibril diameter of collagen was determined using 
ImageJ. 

2.4. Gelation time of Col-Chit-Ph 

The injectable properties of hydrogels were 
determined based on gelation time of conjugates 
using a test tube inverting method. The conjugate 
solutions were transferred to test tubes at 500 µl/ 
tube. To each tube, 50 µl HRP solution was added, 
followed by addition of 50 µl H2O2. The mixture was 
then mixed well. The effect of concentration of HRP 
on the gelation was studied by varying the 
concentration of HRP (1-5 unit/ml) at constant H2O2 
(1 mM) concentration. On the other hand, the effect 
of H2O2 concentration were investigated by varying 
the H2O2 (1-25 mM) concentration at fixed 
concentration of HRP (3 unit/ml). The time when no 
fluidity was observed upon inverting the tube was 
regarded as gel formation.  

2.5. Mechanical studies of hydrogels 

The bloom strength measurement of hydrogels 
was performed with TA. XT-Plus texture analyzer 
(Stable Micro System, UK). Cylindrical gels were 
prepared in 12-well plate by addition of 3 ml 
conjugate solutions to each well. The concentration 
of HRP (1-5 unit/ml) added to samples were varied 
at fixed 1 mM H2O2. Hydrogels were left for 1 hour in 
incubator prior to compression by using 5 g 
cylindrical probe P/0.5 (0.5 mm diameter) at speed 
of 30 mm/min. 

2.6. Studies on cell growth rate 

Human dermal fibroblast (HDF) was seeded in 
each hydrogel samples in 96-well at 2,500 cells/well 
with 200 μl F12: DMEM culture medium. Hydrogels 
containing cells were incubated for 5 days at 37 oC in 
5% CO2. The cell growth rate was evaluated using 
MTT cell proliferation assay (Thermo Fisher 
Scientific, US) according to the manufacturer’s 
instruction. The absorbance measurement was 
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performed using spectrophotometer (Bio-Tek Power 
Wave XS, US) at 570 nm. The cell growth rate was 
defined as follows: 
 

Growth rate (h-1) =
𝐼𝑛 (𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑛 5𝑡ℎ 𝑑𝑎𝑦/𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 1𝑠𝑡 𝑑𝑎𝑦)

(𝐹𝑖𝑛𝑎𝑙 𝑐𝑢𝑙𝑡𝑢𝑟𝑒 𝑡𝑖𝑚𝑒− 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑢𝑙𝑡𝑢𝑟𝑒 𝑡𝑖𝑚𝑒)  
 

                                                                                                            (1) 

2.7. Porosity studies of hydrogels 

The porosity of hydrogels was determined using 
solvent replacement method. After fabrication, the 
hydrogels were dried using freeze dryer. The dried 
hydrogels were weighted before being immersed in 
absolute ethanol for 24 hours. Excess ethanol on 
surface of hydrogel was blotted prior to weight 
measurement. The porosity was calculated as 
follows: 
 

Porosity=
𝑀2− 𝑀1 

𝜌 × 𝑉 
× 100%                                                           (2) 

 

where M1 and M2 were the mass of hydrogel before 
and after immersion in ethanol, respectively, ρ is the 
density of absolute ethanol, and V is the volume of 
the hydrogel.  

2.8. Swelling properties of conjugate hydrogels 

Cylindrical gels were prepared in 24-well plate by 
addition of 1 ml of conjugate solutions to each well. 
Horseradish peroxidase (3 unit/ml) and H2O2 (1 
mM) were added at 100 µl/well followed by mixing. 
The hydrogels were removed from well plate and 
water; the by-product of the gelation was absorbed 
using filter paper. The initial weight of hydrogels 
was recorded (W1) before immersing in 5 ml 
simulated body fluid (SBF) at 37 oC. For every 10 
minutes, the hydrogel samples were removed, then 
gently wiped with filter paper to expel the surface 
water and weighted (W2). The percentage of swelling 
was being calculated as follows:  

 

Percentage of swelling=
𝑊2− 𝑊1 

𝑊1 
× 100%                               (3) 

 
where W2 and W1 are water-swollen and initial 
weight of hydrogel samples respectively. 

2.9. Degradation studies of hydrogels 

Cylindrical gels were prepared in 24-well plate by 
addition of 1 ml conjugate solutions to each well. 
Horseradish peroxidase (3 unit/ml) and 1 mM H2O2 
were added to conjugate solutions at 100 µl/well 
and left to gel for 30 minutes before hydrogels were 
taken out from well plate. The initial weight of 
hydrogels was recorded. The hydrogels were 
transferred to containers having simulated body 
fluid and incubated at 37 oC. The hydrogels samples 
were taken out for weighing weekly until the 
hydrogel disintegrated. The degree of degradation 
was calculated as follows:  
 

Degree of degradation=
𝑊1− 𝑊2 

𝑊1 
× 100%                               (4) 

 

where W1 and W2 were the initial and final weight of 
hydrogel. 

2.10. Statistical analysis 

All data are expressed as mean values with 
standard deviation. The statistical significance 
between two groups of experimental data was 
assessed using Student's t-test. 

3. Results and discussion  

3.1. Ultrasonication effect on collagen fibrils 

The TEM analysis showed that the diameter of 
collagen fibrils with ultrasonic treatment was 
significantly smaller as compared to collagen fibrils 
without ultrasonic treatment (Fig. 1).  

The average reduction in fibril diameter of 
ultrasonic pre-treated collagen at 0.15 % (w/v) was 
77.4 % whereas at 0.4 % (w/v) was 52.5 %. In 
addition, the ultrasonic treated collagen fibrils were 
homogeneously distributed and non-aggregated. The 
result is in concurrence with findings reported by 
Jiang et al. (2016) on collagen derived from grass 
carp skin. In that study, the collagen fibrils treated 
with ultrasonication possess smaller diameters and 
D-periodicity lengths compared to untreated fibrils. 
The ultrasonic energy transfers mechanical wave 
through a process called cavitation, where gas 
bubbles rapidly form and collapse in water. This 
cavitation could produce strong shock wave within 
the cavitation bubbles and surrounding area, thereby 
preventing the collagen fibrils from aggregating. 
Hence, this smaller diameter and uniformly 
distributed collagen fibrils effectively increase the 
surface area for attachment of Ph groups.  

3.2. Gelation time of hydrogels 

Previous work showed that Col-Chit-Ph was 
crosslinked to form hydrogels within 5 minutes via 
HRP-catalyzed crosslinking reaction (Lau et al., 
2018). Here, the influence of Col: Chit ratio on 
gelation time of hydrogels was studied. The gelation 
time considerably decreased with increasing HRP 
concentration (Fig. 2), which was similar to those 
obtained by Jin et al. (2007) and Lee et al. (2013). 

The gelation time increased linearly with the 
concentration of H2O2 (Fig. 3). The result was 
consistent with the findings of Kuo et al. (2015), 
which showed that increasing H2O2 concentrations 
resulted in a longer gelation time required for 
collagen Ph hydrogel formation. The longer gelation 
time was needed as H2O2 concentration increased 
due to inactivation of HRP by the excess amount of 
H2O2, thereby reducing the efficiency of crosslinking 
(Sakai and Kawakami, 2007; Jin et al., 2014). The 
heme group in HRP irreversibly destroyed when 
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H2O2 was in excess, causing HRP losing its catalytic activity (Lee et al., 2013).  
 

 
Fig. 1: The effect of ultrasonication on collagen fibrils at collagen concentrations (w/v) of 0.15% (a, b) and 0.4% (c, d). The 
collagen fibrils as shown in (a, c) were without ultrasonic treatment and (b, d) were treated with ultrasonic. The scale bar 

shows 2 µm 
 

 
Fig. 2: The gelation time of conjugate hydrogels with 4:1, 3:2 and 1:1 Col: Chit ratios at different concentration of HRP 

 

Since H2O2 is an oxidant that could harm cells and 
surrounding tissues, a relatively faster gelation 

involving the minimum use of H2O2 is necessary for 
biomedical applications (Ogushi et al., 2007). For 
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instance, conjugate with Col: Chit ratio of 3:2 was 
able to achieve gelation within 10 seconds with the 

minimum use of H2O2 (1 mM) under fixed HRP 
concentration (3 unit/ml). 

 

 
Fig. 3: The gelation time of conjugate hydrogels with 4:1, 3:2 and 1:1 Col: Chit ratios at different concentration of H2O2 

 
Significant findings were obtained from the 

hydrogel with 1:1 Col: Chit ratio, which had the 
shortest gelation time (< 10 seconds) as compared to 
the other ratios in all parameter variations. This is 
because the higher composition of chitosan provides 
additional amino groups (Ma et al., 2003) to function 
as binding sites for phenolic hydroxyl groups, hence 
enhancing the hydrogel formation via HRP-mediated 
crosslinking reaction. 

Hydrogel with 1:1 Col: Chit ratio could potentially 
be applied as haemostat as the gelation needed to be 
fast (< 5 seconds) in order to stop wound bleeding 
(Ghobril and Grinstaff, 2015). Meanwhile, the 
gelation time of 3:2 Col: Chit ratio (> 5 seconds) is 
attractive for application as instant wound dressing, 
in order to allow accurate filling of conjugate 
solutions to defect site before gelation and to achieve 
cohesion with surrounding tissue (Lee et al., 2008).  

3.3. Mechanical properties of hydrogels 

Mechanical properties are of great importance in 
maintaining structural stability of hydrogels for the 
biological functions of cells within the hydrogel 
matrix. The hydrogel with 4:1 Col: Chit ratio 
deformed and caused no resistance to trigger force. 
As shown in Fig. 4, the bloom strength of hydrogels 
with 1:1 Col: Chit ratio was significantly higher than 
3:2 Col: Chit ratio. The greatest difference between 
these hydrogels was about 41 % at 3 units/ml of 
HRP. 

These results confirmed that a higher 
composition of chitosan in Col-Chit-Ph enhanced the 

mechanical properties of hydrogels. Besides, 
chitosan could act as GAG analog in intertwining 
with the fibrous collagen to attain mechanical 
stability (Tan et al., 2001). The mechanical strength 
of hydrogels correlates with its gelation time, 
whereby hydrogel with 1:1 Col: Chit ratio with the 
shortest gelation time (5 seconds) yielded the 
highest mechanical strength (0.49 N) as compared to 
the 3:2 Col: Chit ratio (0.28N).  

3.4. Cell growth rate on hydrogels 

The biological characterization of hydrogels 
showed that the cell growth rate of hydrogel with 3:2 
Col: Chit ratio was 87 % higher than 4:1 Col: Chit 
ratio and 94 % higher than the 1:1 Col: Chit ratio 
(Fig. 5). The synergistic interaction between this 
hydrogel and secreted proteins from cells had 
created a favourable environment for cell growth 
(Tan et al., 2001). 

Although previous work found that the hydrogel 
with 4:1 Col: Chit ratio presented the highest 
efficiency of cell attachment, the poor mechanical 
stability of this hydrogel limited the cell growth (Ma 
et al., 2003). The most significant difference was 
observed between hydrogel with 1:1 and 3:2 Col: 
Chit ratios due to the insufficient diffusion of 
nutrients and metabolites to cells within the high 
matrix density hydrogel with 1:1 ratio (El-Sherbiny 
and Yacoub, 2013). Hence, in term of biological 
features, hydrogel with 3:2 Col: Chit ratio is 
suggested for potential use in biomedical 
applications. 
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Fig. 4: The bloom strength of conjugate hydrogels with 3:2 and 1:1 Col:Chit ratios at different concentration of HRP. Student’s 

t-test indicate a significant difference (*p < 0.01) 
 

 
Fig. 5: The cell growth rate on conjugate hydrogels after 5 days incubation. Student’s t-test indicate a significant difference 

(*p < 0.01) 
 

3.5. Porosity of hydrogels 

The porosity of hydrogels has a prominent effect 
on cell functions, such as cell attachment, migration 
and proliferation. The hydrogel with 3:2 Col: Chit 
ratio had porosity 42 % higher than 1:1 ratio (Fig. 6). 

The porous hydrogel enabled more effective 
diffusion of nutrients and metabolites to cells. The 
porosity of hydrogel with 1:1 Col: Chit ratio was 
found to be 28 % lower than 4:1 Col: Chit ratio. This 
could be due to the higher composition of chitosan in 
hydrogel contributed to higher degree of 
crosslinking, hence resulted in a lower porosity of 
the hydrogel (Tan et al., 2001). The lower porosity in 
hydrogel matrix with 1:1 Col: Chit ratio had 

minimized its cell proliferative capacity 
(Heydarkhan-Hagvall et al., 2008). 

3.6. Swelling properties of injectable hydrogels 

The swelling behaviour of injectable hydrogels 
was measured every 10 minutes (Fig. 7) to evaluate 
its potential to build up pressure if injected in the 
wound area.  

In general, all conjugate hydrogels showed a low 
percentage of swelling, which ranged from 2 % to 6 
%, with conjugate hydrogel with Col: Chit ratio of 3:2 
showed the highest percentage of swelling (5.3 %) in 
initial 10 minutes. This result revealed that 
conjugate hydrogels did not swell markedly after 
soaking in SBF. The low percentage of swelling 
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indicated that the injectable hydrogels would not 
cause the loss of a large amount of body fluid at the 
desired site, hence preventing the build-up of 
pressure around the wound that might cause pain to 
the patient (Muktar et al., 2018). In addition, the 

hydrogels could maintain almost similar size and 
shape without generating shear stress to cells 
around wound as cells are easily damaged by forces 
caused by swelling of hydrogels (Sakai and 
Kawakami, 2007). 

 

 
Fig. 6: The porosity of conjugate hydrogels, where hydrogel was formed using 3 unit/ml HRP and 1 mM H2O2. Student’s t-test 

indicate a significant difference (*p < 0.01, **p < 0.05) 
 

 
Fig. 7: The percentage of swelling of conjugate hydrogels with Col:Chit ratio of 4:1, 3:2 and 1:1 for period of 120 minutes. The 

data represent the mean values with standard deviation from triplicate experiments 
 

3.7. Degradation of hydrogels 

The injectable hydrogels should be designed to 
degrade within a period of time. The degradation 
measurement of hydrogel was performed per week 
as hydrogel showed insignificant degradation when 
measured per day. Since the hydrogel with 4:1 Col: 
Chit ratio was easily ruptured by trigger force, 
degradation study was only conducted for hydrogels 
with 3:2 and 1:1 Col: Chit ratios. The hydrogel with 
3:2 Col: Chit ratio degraded significantly faster than 
that with 1:1 ratio for the 1st and 2nd weeks (Fig. 8), 
indicating that highly crosslinked hydrogel matrix 
could result in slower degradation rate because of 
limited accessibility to the cleavage sites of this 

hydrogels (Lee et al., 2013). Besides, chitosan 
degraded slower than that of collagen, thus the 
incorporation of chitosan not only improved the 
mechanical properties but also reduced the 
degradability of hydrogels (Ding et al., 2008). All 
hydrogels were ruptured in the 3rd week, where bulk 
degradation had occurred in hydrogels leading to the 
breakdown of the interior network structure of 
hydrogels. 

4. Conclusion 

Pretreatment by ultrasonication has successfully 
prevented aggregation of collagen fibrils, thereby 
resulting in smaller fibril diameter and increasing 
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the surface area for attachment of Ph groups. 
Furthermore, injectable enzymatically synthesized 
collagen-chitosan hydrogel with 3:2 Col: Chit ratio 
has potential to be used as biomaterial such as 

wound dressing due to its ability to form rapid 
gelation, biodegradability and mechanically stable 
for cell growth on hydrogel matrix.  

 
 

 
Fig. 8: The percentage of degradation of conjugate hydrogels with 3:2 and 1:1 Col:Chit ratios at 1st and 2nd week. Student’s t-

test indicate a significant difference (*p < 0.01, **p < 0.05) 
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