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In this paper, we deal with the maximum power point tracking problem for 
wind generator in a standalone installation. The aim is to develop a new 
algorithm to get the value of optimal power. So, we intend to use fuzzy logic 
to exploit its robustness in presence on not certainties and its simplicity of 
design. In order to improve human expertise, we aim to use two evolutionary 
algorithms as Particle Swarm Optimization and Genetic Algorithms. Lots of 
simulation results are introduced to show the obtained improvement. 
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1. Introduction 

*An excellent way to get green energy is Wind 
turbines. In spite of the high cost associated, a lot of 
time, energy and money has been invested to reduce 
that cost, and make them more affordable, and more 
efficient in their function. A lot of parameters affect 
the amount of energy produced, so an adaptation 
unit based on a DC-DC converter is needed between 
the turbines and the load. The Maximum Power 
Point (MPP) is tracked using either a direct or an 
indirect approach (Hui and Bakhshai, 2008; Moor 
and Beukes, 2004; Xia et al., 2011; Yaoqin et al., 
2002).  

The indirect method is unsuitable for our aim 
because it needs large amounts of memory for the 
storage of environmental data, which are easily to 
get. However; the direct method has no need for 
information about climatic conditions (Ram et al., 
2017; Zou et al., 2011), and it based on direct 
measures of power from the generator. This action is 
usually done with Perturb and Observe (Camblong et 
al., 2006; Meghni et al., 2017), through perturbation 
of the duty cycle to move the function point on the 
generator characteristics curve i.e. the voltage is 
adjusted by a small amount and the power is 
measured; then, provided that the power increases, 
further adjustments are made in the same direction 
until power no longer increases. Unfortunately, this 
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method creates a constant oscillation around the 
maximum power point. 

The fuzzy logic adoption gives us a suitable 
solution to many of the difficulties presented by 
P&O, thus creating a system is so only fast in 
calculation, but more robust, yielding more precise 
results. However human expertise is still an essential 
need for setting the rules (Ahmed et al., 2008; 
Belmokhtar et al., 2014; Eltamaly and Farh, 2013). 
To solve this problem, we intend to use two 
optimization algorithms: particle swarm (PSO) and 
genetic algorithms (GA). Several simulation results 
are introduced to show the improvement due to 
using evolutionary algorithms.   

2. System description 

Fig. 1 shows the block diagram of the wind 
energy system which used in our research, where a 
PMSG is driven by a Variable-speed wind turbine to 
feed the extracted power from wind resources to the 
dc-link, using a rectifier and DC-DC converter. This 
DC-DC converter is used to get the largest amount of 
energy show Table 1.  

3. Maximum power point tracking approach 

Based on Fig. 2, we notice that each wind speed, is 
found in a specific point in the wind generator 
output power versus rotating-speed characteristic 
where the output power reach to its maximized 
point. Its control loads result in a variable-speed 
wind generator operation, this maximum power 
always comes from the wind (MPPT control). 

In the next, we propose to approaches to attain 
the maximum power point.  
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3.1. Fuzzy logic controller 

It was developed by Zadah (1965), it is 
mathematical form of reasoning depend on degrees 
of truth. Instead of traditional ‘Boolean logic’ that 
only allows for ‘True’ or ‘False, using fuzzy logic 
makes space for partial truths, for example ‘quite 
true’ or ‘quite false’. It is possible to imitate human 
reasoning, by interpreting the knowledge of human 
experts into rules that can be interpreted by the 

computer, managing it to issue commands based on 
this information.  

 
Table 1: Wind turbine characteristics 

Power range 1kw 
Start wind 3m/s 

Nominal power 1000w 
Rotor dimension 2.5m 

Blade control fixed 
Nominal speed 11m/s 

 

 

Converter Load

PMSG

Wind Turbine

Controller

 
Fig. 1: System architecture 

 
 

 
Fig. 2: Wind generator power curves at various wind speeds 

 

However, it is only possible to use fuzzy logic if 
the exact functioning of the system used is 
understood, meaning expert knowledge is basic 
when conceiving a flexible and robust controller. The 
FLC system consisted of three steps: They are the 
fuzzification, Inference and defuzzication: 

 
 The Fuzzification: The numeric is transformed into 

thee linguistic 
 Inference: Human expert rules are applied 
 Defuzzification: Numeric is switched to linguistic. 

3.1.1. Fuzzification 

This is the process of moving from real to Fuzzy, 
for which the enrollment degree of an input 
changeable must be persistent, for a membership 
function. The simplest of the many types of function 
is the triangular form, where two functions will be 
effective for each input at any moment given to it. In 
this method the calculation times of all parameters 
are limited, and the command is simplified. The 
number of functions used is important, a higher 



Alnufaie Lafi/International Journal of Advanced and Applied Sciences, 6(10) 2019, Pages: 73-82 

75 
 

number of functions means the controller will be 
more sensitive and have a higher set of rules. 
Normalizing the discourse universe by using the 
interval -1, +1 further simplifies the system, with the 

extreme membership functions being fixed to these 
limits Fig. 3 (Kazmi et al., 2010; Kumar and 
Chatterjee, 2016; Zeng et al., 2008). 

 

 
Fig. 3: Membership function 

 
3.1.2. Inference 

This type has to be set before the rules; in this 
case it is Takagi-Sugeno. The human expertise is 
translated to set the rules, according to the variation 
of the maximum power point. Using this type of 
system allows a crisp output, and equipment 
calculation, making the both rapid and precise 
command show Table 2 (Lin et al., 2010; Varzaneh et 
al., 2014). 

 
Table 2: Inference parameters 

  d2P/dV2 

  Negative Zero Positive 

dP/dV 
Negative Decrease V Decrease V Null 

Zero Null Null Null 
Positive Null Increase V Increase V 

3.1.3. Defuzzification 

It describes the step of moving f the Fuzzy to the 
real domain. The membership function introducing 
our output is used to calculate a number of values for 
the final output. The most common method used to 
find this value simply and rapid the Gravity center, 
which calculates an average estimate of the value. 
Furthermore, we can optimize the fuzzy controller 
with more fine-tuning to improve MPP tracking, for 
example by using a Genetic algorithm, from the 
evolutionary family. It can be used to appoint and 
form the parameters of the membership tasks in the 
discourse universe. Optimization algorithms 
includes: 

3.1.4. Particle swarm optimization 

Particle swarm optimization or PSO, is an 
imaginary development technique that developed by 

Eberhart and Kennedy (1995). Population based, it is 
stimulated by the social behavior of bird-flocking, 
where the population is initialized with a collection 
of irregular solutions and then looks for optima by 
adding generations. PSO has some stark differences 
when compared with GA, for example it hasn’t any 
evolutionary operatives, such as crossover or 
variation. In PSO the wide range of possible solutions 
are called particles, which fly through the problem 
space by following the current optimum particles. 

There are some benefits in using PSO instead of 
GA. There are not many parameters to adapt and it 
has been applied successfully in many areas, from 
function optimization to neural network training 
(Lin et al., 2010). 

3.2. PSO algorithm 

In PSO each single solution or particle in the 
search space has a fitness value, which is evaluated 
by the fitness function to be optimized, and a 
velocity, which directs the flying of the particle. PSO 
is initialized with a group of random particles 
(solutions), and then searches for optima by 
updating generations. In every iteration, each 
particle is updated by following two best values.  

The first one is the best solution (fitness), it has 
achieved so far. The fitness value is also stored; this 
value is called P best. 

The other best value that is tracked by the 
particle swarm optimizer is the best value obtained 
so far by any particle in the population. This best 
value is a global best, and is called g best. When a 
particle takes part of the population as its topological 
neighbors, the best value is a local best and is called l 

best. After finding the two best values the particle 
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updates its velocity and position with the following 
equations: 

 
𝑉𝑖 = 𝑉𝑖 + 2 ∗ 𝑟𝑎𝑛𝑑( ) ∗ (𝑃𝑏𝑒𝑠𝑡 − 𝑋𝑖) + 2 ∗ 𝑟𝑎𝑛𝑑( ) ∗
(𝑔𝑏𝑒𝑠𝑡 − 𝑋𝑖)                                                                                     (1) 
𝑋𝑖 = 𝑋𝑖 + 𝑉𝑖                      (2) 
 
where; 
Xi: Position vector 

Vi: Velocity vector 
Pbest: Each particle has even updated to their best 
encounter position 
gbest: Any particle has even updated to their best 
encounter position 

 
The Particle Swarm Optimization algorithm is 

shown in Table 3.  

 
Table 3: PSO 

For each particle 
Initialize particle 

END 
Do 

For each particle 
Calculate fitness value 

If the fitness value is better than the best fitness value (𝑃𝑏𝑒𝑠𝑡) in history 
Set current value as the new 𝑃𝑏𝑒𝑠𝑡 

END 
Choose particle with the best fitness value of all the particles as the 𝑔𝑏𝑒𝑠𝑡 

For each particle 
Calculate particle velocity according to first equation 

Update particle position according to the second equation 
END 

While maximum iterations or minimum error criteria isn’t attained 
Particles velocities on each dimension are clamped to a maximum velocity 𝑉𝑚𝑎𝑥, which is a parameter specified by the user, then the velocity on 

the dimension is limited to 𝑉𝑚𝑎𝑥. 

 
3.3. Genetic algorithms 

Genetic algorithms were inspired by the work of 
Charles Darwin, who gradually developed the theory 
over time through survival of the fittest, by passing 
on whatever characteristics that best adapted to 
their environment. In this way a feature that 
occurred as a result of an unplanned genetic 
mutation may gradually become more prominent in 
a population, if it was advantageous to the individual 
that first had it. This is where GAs come in, the 
algorithm imitates this random mutation element, 
working to create better adapted individuals that 
will help the system to work better. The working of 
the algorithm is depending on a set of chromosomes 
that are encoded using a string of possible values, 
which can be made up of either real values or binary 
strings (Damousis et al., 2002). A population is 
consisting of a group of prepared potential solutions. 
Every member of the group is an individual, encoded 
using the parameter values from the chromosomes, 
and applied to the problem. The aim is to achieve an 
optimal or near-optimal solution, and this 
determines the fitness. To create the next 
population, the individuals are selected based on 
their fitness rate, thereby imitating nature’s 
preference for a better-adapted individual in the 
wild. Random mutations must also be included, but 
kept at a low probability, allowing the creation of 
new individuals and new characteristics. 

3.3.1. Selection algorithm 

Based on a stochastic sampling with replacement, 
this algorithm establishes a fitness rate for every 
chromosome. An individual is selected in proportion 
to the fitness rate and using a random number 
generator, i.e., a high fitness rate means a high 

selection rate and vice versa. This technique has its 
limits, there is no guarantee that fitter individuals 
will necessarily be represented in the following 
generation. This problem may be remedied by the 
use of another algorithm, which specifically 
identifies above average chromosomes, thus 
ensuring those individuals will be selected as their 
fitness allows (Lin et al., 2010; Thongam and 
Ouhrouche, 2011; Zeng et al., 2008). 

3.3.2. Crossover algorithms 

Mixing the strings of two individuals creates new 
ones. Many algorithms pair individuals for mating, 
the most basic of which is the single point crossover 
shown in Table 4. 

 
Table 4: Single point crossover 

Parent 1 1 0 1 1 1 1 0 0 
Parent 2 1 1 0 1 0 0 1 0 
Child 1 1 0 1 1 0 0 1 0 
Child 2 1 1 0 1 1 1 0 0 

 

A multiple crossover point works by selecting 
multiple crossover points, as shown in Table 5.  

 
Table 5: Multiple crossover point 

Parent 1 1 0 1 1 1 1 0 0 
Parent 2 1 1 0 1 0 0 1 0 
Child 1 1 0 0 1 1 1 1 0 
Child 2 1 1 1 1 0 0 0 0 

 

Based on a random string of the same length as 
the parent, a uniform crossover is a more 
complicated crossover algorithm. It functions in this 
way: if the bit of the string is 1, it takes a bit from the 
first parent and gives it to the first child, and if it is 
zero it gives it to the second child, as shown Table 6. 
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This is the best performing algorithm shown in 
Table 6. 

 
Table 6: Uniform crossover point 

Parent 1 1 0 1 1 1 1 0 0 
Parent 2 1 1 0 1 0 0 1 0 
Child 1 1 0 0 1 1 1 1 0 
Child 2 1 1 1 1 0 0 0 0 

3.3.3. Mutation algorithms 

A random number generator creates new 
individuals with new characteristics through 
mutation. The mutation method used is simple: for 
each bit, we generate a random number, and if it is 
less than the specified mutation probability, flip the 
bit, if it is 1, change it to zero, and vice versa. It is 
important to keep the mutation rate low, and 
constant throughout the lifetime of the GA, since, as 
in nature, only a small percentage of mutations will 
be beneficial. 

3.3.4. Crossover and mutation rate set-up 

There are two different techniques to set the 
crossover and mutation rates, the first one is using 
the standard parameters, the most common of which 
(Zeng et al., 2008) is shown in the Table 7 and the 
second most common parameter from (Belmokhtar 
et al., 2014; Lin et al., 2010) is shown in Table 8.  

 
Table 7: Standard parameters for GA 

Population size 50 
Number of generations 1,000 

Crossover type Typically two point 
Crossover rate 0.6 
Mutation types Bit flip 
Mutation rate 0.001 

 
Table 8: Standard parameters for GA 

Population size 60 
Number of generations Not specified Crossover 

Crossover type Typically two point 
Crossover rate 0.9 
Mutation types Bit flip 
Mutation rate 0.01 

 

Another technique uses a generic scheme for 
adapting the crossover and mutation probabilities, in 
which they are altered as a result of the offspring 
evaluation. This too has proved efficient and 
improved the performance of the algorithm (Zeng et 
al., 2008). The algorithm was run more than 200 
times for this work, and we changed the parameters 
until we had the best result using an 85% crossover 
rate, and 7% mutation rate, then these parameters 
were fixed. 

4. Set-up simulation and results 

4.1. System set-up 

4.1.1. Optimization using GA and PSO 

The algorithms are introduced in different ways 
to the Fuzzy Logic, where there is a fixed point 

simultaneously controlling the size and width of all 
the membership functions. Secondly, multiple points 
are used, giving more freedom for the membership 
functions to move. As shown in the flowchart 
describing the genetic algorithm execution below, in 
each iteration the simulation is run for every 
member of the population, and the energy calculated 
from the surface. As, we will see later in 
experimentation and result, different parameters 
must be considered for the GA and the Fuzzy Logic 
Controller shown in Fig. 4. 

The second chart explains the introduction of PSO 
to our system with the same set-up as for the GA, and 
multiple parameters are set. The fact that PSO does 
not need as much computation as the GA is the main 
difference between the two set-ups shown in Fig. 5. 

4.2. Simulink 

The simulations were achieved using Simulink 
library in MATLAB environment. The system wind 
turbine diagram is given in Fig. 6. 

In order to control the DC-DC converter we 
should use a fuzzy system with two inputs 𝑑2𝑃/
𝑑𝑉2and 𝑑2𝑃/𝑑𝑉2 and the variation of the duty cycle 
of the converter ΔD as output. We should think about 
five fuzzy membership functions for each input, 
which gives us 25 fuzzy rules summarized in Table 9. 

In order to test the robustness of the proposed 
algorithms, we think about the wind and load 
variations. The simulation results are given in Fig. 7. 
It should be noted that the system follows the 
reference power (theoretical maximum power) but 
only reaches 87.23% of the production capacity. 

4.3. Approach 1: Optimization of fuzzy system 
with GA 

In this approach, we used two methods to 
optimize the system, with genetic algorithms. The 
first method consists in using a point of the first 
membership function to move and thus to modify 
the width of the other membership functions by 
calculating all the other points of the functions with 
respect to the movement of the latter. Indeed, the 
membership functions used intersect at the same 
degree of belonging and are symmetrical with 
respect to zero, the calculation of the motion of the 
point allows us to keep this same configuration, and 
thus to deduce the position of the other vertices. For 
optimization, we have treated the inference table via 
our genetic algorithm. Since our fuzzy system uses 
two inputs and 25 fuzzy rules, we will have 27 
variables to optimize in this method. 

The second method consists of taking 5 points 
which represent the characteristic points of each 
membership function. Since the variation of these 
points can lead to redundancy between fuzzy sets 
and loss of information, we have imposed that the 
point of intersection (degree of belonging) between 
two adjacent functions is fixed.  
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Fig. 4: GA and fuzzy systems flow chart 
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Fig. 5: PSO algorithm flow chart 

 
 

 
Fig. 6: Simulation of a wind turbine system 
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Table 9: Table of inference 

 
𝑑2𝑃/𝑑𝑉2 

Very Negative Negative Zero Positive Very Positive 

𝑑2𝑃/𝑑𝑉2 
𝑑𝑝 𝑑𝑣⁄  

Very Negative +3% +3% +1% 0% 0% 
Negative +3% +1% +1% 0% 0% 

Zero 0% 0% 0% 0% 0% 
Positive 0% 0% -1% -1% -3% 

Very positive 0% 0% -1% -3% -3% 
 

This choice gives us ten points to manipulate by 
the genetic algorithm. As in the previous case, we 
also integrated the rules in our algorithm to optimize 
them. In total, we will have 45 parameters to 

optimize. Such an increase will allow us to refine our 
results and it has no effect on the implementation in 
real time since the optimization is done off-line 
shown in Table 10. 

 
Fig. 7: Results with type 1 fuzzy system 

 
Table 10: GA parameters 

 No. of iterations Population 
No. of 

Variables 
Probability of crossover Mutation rate 

Approach 1 method 1 1000 150 27 0.8 0.02 
Approach 1 method 2 1000 300 35 0.8 0.02 

 
Fig. 8 displays the simulation results. We note 

that the use of genetic algorithms allows us to 
improve the efficiency of our installation, especially 
the second method since we use more parameters 
and therefore better accuracy. So, the first method 
allows us to reach 90.2% and the second method 
90.95% which represents an increase of 2.97% and 
3.72% respectively. In spite of this small increase 
relatively, it is important because the overall 
efficiency of a wind turbine does not exceed 70%. 

4.4. Approach 2: Optimisation of Fuzzy system 
using PSO  

Similarly, the way that we used genetic 
algorithms to optimize the fuzzy system, we will use 
the PSOs to try to improve the performance of our 

wind system. The simulation parameters are given in 
the following Fig. 9. 

5. Conclusion 

A lot of approaches were done to maximize the 
production of a wind system. To improve the power 
production, we should use the genetic algorithms 
and the PSO. We can easily see from the results that 
the particle swarm optimization can converge 
toward the best solution in a shorter time, even 
delivering almost the same results. The PSO displays 
that it achieves its best solution needing less repeat, 
so it shows a shorter processing time. On the other 
side the GA indicates its accuracy and the fact that it 
has a higher robustness value. In next works, we will 
do the true time implementation to confirm the 
results we get by simulation. 
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Fig. 8: Results using GA 
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Fig. 9: PSO results 
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