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In this paper a new approach to project the time varying index 𝑘𝑡  for the Lee-
Carter (LC) model by using a machine learning technique known as Neural 
Network (NN) is proposed for forecasting Malaysian male and female 
mortality rates. To evaluate the forecasting performance of the proposed 
model, the conventional LC model which uses ARIMA to forecast 𝑘𝑡  is used as 
a benchmark. However unlike previous studies were done in Malaysian, we 
employed 9 different ARIMA models and evaluated the AIC and BIC to obtain 
the best fit model to forecast 𝑘𝑡 . The forecasting performance of the two 
methodologies were then compared using 3 performance indicators Root 
Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute 
Percentage Error (MAPE). In this study, findings showed that the proposed 
NN model outperformed the conventional ARIMA model for forecasting both 
Malaysian male and female mortality rates. 
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1. Introduction 

*Over the last few decades as a result of an 
unprecedented increase in mortality rates around 
the world and the potential risk this increase pose 
towards population size and structure, social 
security systems, life insurance, and pensions 
industry worldwide. Modelling and forecasting 
mortality rates accurately has become an essential 
research area for practitioners of actuarial science 
and demography in many countries.  

Several mortality forecasting models have been 
proposed in the past. However, the most successful 
model was introduced by Lee and Carter (1992) 
which incorporated stochastic forecasting.  

The Lee-Carter (LC) model has been said to be the 
leading statistical model of mortality forecasting 
(Deaton and Paxson, 2004). It has become one of the 
most favorable models to be used for modelling and 
forecasting mortality in many counties, such as US 
(Lee and Carter, 1992), Chile (Lee and Rofman, 
1994), China (Jiang, 1995), Japan (Wilmoth, 1996), 
the seven most economically advanced nations (G7) 
(Tuljapurkar et al., 2000), the Nordic countries 
(Koissi et al., 2006), India (Yadav et al., 2012), Sri 
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Lanka (Aberathna et al., 2014), Thai (Yasungnoen 
and Sattayatham, 2016) and Malaysia (Ngataman et 
al., 2016). Furthermore, it has also become a model 
that is utilized by policy analysts around the world 
for forecasting all-cause and cause-specific mortality 
(Girosi and King, 2007). 

Although the LC model has its advantages such as, 
simplicity of parameter estimation, ease of 
parameter interpretation, ability to acquire all values 
of a countries life table and also having the capability 
to produce probabilistic intervals. The LC model also 
has some disadvantages which has caused it to 
become a basis model for which many modifications 
and extension have been proposed. Wilmoth (1993) 
introduced two methods to improve the fitting of the 
LC model by employing weighted Singular Value 
Decomposition (SVD) and by using Maximum 
Likelihood Estimation (MLE). Lee and Miller (2001) 
proposed a variant of the LC model which restricted 
the fitting period, adjusted the time varying index of 
the LC model by matching life expectancy and 
eliminated the jump off errors by forecasting from 
the observed rates. Booth et al. (2002) introduced a 
method to ascertain the optimum fitting period 
based on the assumption of recent trends are bound 
to be linear, and also fitted the time varying index to 
the age distribution of death after finding systematic 
departures from linearity in the Australian mortality 
decline. Brouhns et al. (2002) proposed a variant 
where the LC model is embedded in a Poisson 
regression model, suited for fitting and forecasting 
age sex specific mortality rates. Li and Lee (2005) 
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proposed an extension for modelling group 
population. While an extension for modelling log 
death rates to forecast age specific mortality and 
fertility rates was proposed by Hyndman and Ullah 
(2007), using the functional data paradigm 
framework of Ramsay and Silverman (2005). De Jong 
and Tickle (2006) introduced a more flexible model 
using the state space framework by Harvey (1990) 
for modelling the log death rates. Koissi and Shapiro 
(2006) implemented a fuzzy formulation of Lee-
Carters model to overcome the violations of the Lee-
Carter assumption of constant error variance across 
age. Yue et al. (2008) applied a similar approach by 
Bell (1997) and Hyndman and Ullah (2007), 
proposing an age-shift model using principal 
component analysis, which included two second-
order interaction terms to overcome an unsupported 
assumption of LC in various countries (i.e., 
parameters are dimed to be constant). Recently 
another extension was introduced by Neves et al. 
(2017), which adopted the general framework of the 
LC model. But, considered several competing 
conditional distributions for different outcome 
variables and a new class of time series models, 
known as, Generalized Autoregressive Score model 
(GAS) by Creal et al. (2008; 2013), for estimating, 
forecasting and simulating mortality rates. 
Furthermore, recent advances in fast computation 
and numerical methods have enabled a more 
widespread use of the Bayesian approach in many 
fields of application, including population forecasting 
(Wiśniowski et al., 2015). Wiśniowski et al. (2015) 
presented a fully integrated and dynamic Bayesian 
approach which is embedded to LC type models to 
forecast populations by age and sex, it also could be 
used to handle different data types and sources of 
information. For more on Bayesian LC extensions, 
see Wong et al. (2018), Antonio et al. (2015) and 
Raftery et al. (2013). 

Many of the models developed by extending or 
modifying the LC model had one thing in common, 
which is the need to forecast the time varying index. 
Typically, this is done by using the Box Jenkins 
strategy for autoregressive integrated moving 
average (ARIMA) models (Box et al., 2015). However 
due to the limitation of this approach, such as, not 
being able to forecast over long term interval (Girosi 
and King, 2007). Carter (1996) proposed a state 
space approach to model and forecast the time 
varying index, however it was pointed out by Lee 
and Miller (2001) that the proposed model was 
barely distinguishable from the original model.  

This study aims to propose the use of an 
alternative method to model and forecast time 
varying index for LC type models by using a machine 
learning model known as Neural Network (NN). 
Neural network models have been prevailing as a 
forecasting method in both theoretical and empirical 
works (Kourentzes and Crone, 2010a). Over the 
years, NN models have attracted vast amount of 
attention in the Time Series and Forecasting (TSF) 
community due to its superior performance in 
classification and regression problems in machine 

learning (Yan, 2012). In contrast to statistics-based 
forecasting techniques the neural network 
approaches have several unique characteristics such 
as: 1) being non-parametric, hence, not having the 
need to rely on any underlying model, 2) being both 
nonlinear and data driven and 3) being more 
applicable to complicated models due to its flexibility 
(Zhang et al., 1998). As a result, NN models have 
been acknowledged by many experts to be a rising 
technology in TSF (Yan, 2012).  

Prior to this study, as per our knowledge only one 
paper has been published concerning the forecasting 
of the time varying index using NN, which was by 
Safitri et al. (2018), and it was found in their study 
that the NN model performed well in long term 
forecasting with low errors.  

The rest of this paper will be structured as 
followed. Section 2 will provide information on the 
dataset used. Section 3 will give a brief overview on 
their LC model. Section 4 will discuss the fitting and 
forecasting methods for the time varying index. 
Section 5 will present information on the 
performance measures. In Section 6 numerical 
results will be presented and in section 7 the 
conclusion. 

2. Data 

For both male and female five-year age group life-
tables are acquired from Department of Statistics 
Malaysia (DOSM) separated into 18 age groups: (<1), 
(1-4), (5-14), (15–24), so on till (75–84) and then 
(>85) for each year from 1991 till 2016. The 
collected lifetables are broken down into single age 
groups (e.g., 0, 1, 2,…>89) by employing the 
methodology provided by Wilmoth et al. (2007). This 
is done by utilizing R program package MortHump 
by Remund et al. (2018). 

The acquired single age dataset will be divided 
into two, where one portion will be the “training set” 
spanning from 1991 to 2012 and the other portion 
will be the “testing set”, spanning from 2013 to 2016. 

3. Lee-Carter model 

The basic assertion of the LC model is that, there 
is linear relationship between the explanatory 
variables age 𝑥 at time 𝑡 and the logarithm of the 

age-specific death rate for age 𝑥 at time 𝑡, ln(mx,t). 

Lee and Carter (1992) proposed model is as follows:  
 

ln(mx,t)  =  ax + bxkt + εx,t                                                 (1) 
 

where, 𝑚𝑥,𝑡  is the central death rates relative to age 
𝑥 at time 𝑡, 𝑎𝑥  represents the general shape of the of 
the mortality curve, 𝑘𝑡  is the time varying index at 
time 𝑡, 𝑏𝑥  is the deviation from the age profile as 𝑘𝑡  
varies for each age 𝑥 and 𝜀𝑥,𝑡  is the error term which 

is assumed to be homoscedastic. Due to the LC model 
being over parameterized, as a result of being 
invariant to the following transformations: 
 
{ ax, bx, kt }  →  { ax, bx c⁄ , ckt }                                               (2) 
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{ ax, bx, kt }  →  { ax − cbx, bx, kt + c }                                   (3) 
 

The model is not able to be fitted using ordinary 
regression methods. However, it is able to be 
identified using a two-step procedure proposed by 
Lee and Carter (1992). In the first step the 
parameters 𝑏𝑥  and 𝑘𝑡  are evaluated by imposing the 
following constraint, which is normalizing 𝑏𝑥  to sum 
to unity, ∑𝑏𝑥  = 1 and 𝑘𝑡  to sum to nought, ∑𝑘𝑡  = 0, 

then 𝑎𝑥  can be acquired by averaging 𝑙𝑛(𝑚𝑥,𝑡) over 

time, 𝑎𝑥 = 
1

𝑛
 ∑ 𝑙𝑛(𝑚𝑥,𝑡)

𝑛
𝑡=1 . Following with the use of 

SVD to estimate 𝑏𝑥  and 𝑘𝑡 . To do so, SVD is applied to 
the following matrix Z: 

 
Z =  ∑ (ln(mx,t) − âx)

n
t=1                                                            (4) 

Z 

[
 
 
 
 
 
 ∑(𝑙 𝑛(𝑚0,1991) − �̂�0)

𝑛

𝑡=1

⋯ ∑(l n(m0,2016) − â0)

n

t=1

⋮ ⋱ ⋮

∑(l n(m85+,1991) − â85+)

n

t=1

… ∑(l n(m85+,2016) − â85+)

n

t=1 ]
 
 
 
 
 
 

 

 

In the second step, 𝑘𝑡  is refitted to the total 
observed death rates to give more weight to ages 
which have higher deaths. As a result, it compensates 
the effects of using the logarithm of rates in the LC 
model. Once 𝑘𝑡  is refitted we would have acquired 
the appropriate 𝑘𝑡  values to be forecasted.  

4. Forecasting  

Once the model has been fitted and estimates of 
the parameters are acquired. To forecast using the 
LC model, all that has to be done is to forecast 𝑘𝑡 . In 
this section a brief overview of the methods used is 
provided. 

4.1. ARIMA 

The time varying index is generally forecasted by 
employing a random walk with drift ARIMA model, 
which was originally used by Lee and Carter (1992). 
However, it is explicitly mentioned in Lee and Carter 
(1992) that different population may have to use 
different ARIMA models to fit the mortality index. On 
the contrary, studies done in Malaysia did not 
consider other ARIMA models. For this reason, in 
this study we adopt the methodology suggested by 
Chavhan and Shinde, (2016), where 9 different 
possible choices of ARIMA models are fitted to the 
mortality index and compared to acquire the best 
fitted model using two most commonly used model 
selection criterions, Akaike Information Criterion 
(AIC) and Bayesian Information Criterion (BIC) 
(Burnham and Anderson, 2004). 

4.2. Neural network 

To model and forecast the time varying index we will 
be using a feed forward multilayer perceptron (MLP) 
neural network. The MLP network is made up of 
three portions interconnected by connection weights 
as shown in Fig. 1. The first portion consist of a set of 
input nodes, which represents the input layer, this is 
where the inputs are supplied to the network, in 
general for a time series forecasting neural network 
the inputs used are either lagged observations or 
other predictor variable. The second portion is one 
or more layers of computational nodes known as 
hidden layers, this layers help the network learn 
complex task by extracting progressively more 
meaningful features from the inputs as they are 
passed on through each layer and the last portion 
consist of the output layer.  

 
Fig. 1: General MLP neural network 
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ŷT+h|T = β0 + ∑ βj
J
j=1 φ(γ0i + ∑ γjipi

I
i=1 )                           (5) 

 
To compute a one step ahead forecast �̂�𝑇+1|𝑇, 

equation 5 is used. The biases of each neuron which 
act as an intercept in a regression are denoted as 𝛽0 
and 𝛾0. While the network weights are denoted as 
𝑤 = (𝛽, 𝛾), where 𝛽 and 𝛾 are the output of the 
hidden layers. I denotes the number of input 𝑝𝑖  of the 
network and the activation function which can be in 
the form of a sigmoid, bipolar sigmoid or a 
hyperbolic tangent, is denoted by 𝜑(. ). J represents 
the number of hidden nodes in the network 
(Kourentzes et al., 2014). To model and forecast the 
time varying index, we will be using an automated 
fitting and forecasting neural network algorithm by 
Kourentzes and Crone (2010b). This will be done by 
employing R package “nnfor” by Kourentzes (2017). 
For detailed methodology see Kourentzes and Crone 
(2010a; 2010b) and Kourentzes et al. (2014). 

5. Performance measures 

After acquiring the best fitted forecasting models 
for 𝑘𝑡 , of both ARIMA and Neural Network. The time 
varying index can be now forecasted on to the 
testing set. 

 

eT+h = yT+h − ŷT+h|T                                                                 (6) 

 

To evaluate the forecast performance for both 
models, the “errors” will be acquired using equation 
6. Which is the difference between the forecasted 
values of the training set �̂�𝑇+ℎ|𝑇 and the testing set 

𝑦𝑇+ℎ. Once the errors are obtained, several different 
performance measures can be used to assess the 
forecast. However only three measures will be used 
in this study, which are the Root Mean Square Error 
(RMSE), Mean Absolute Error (MAE) and Mean 
Absolute Percentage Error (MAPE) as they provide 
sufficient information to evaluate the forecast 
accuracy.  

5.1. Root mean square error (RMSE) 

Root Mean Square Error measures how spread 
forecasted data is from the actual values.  

 

√mean(eT+h)
2                                                                               (7) 

 

RMSE close to 0 shows that the forecasted data is 
closer and concentrated near the actual line 
indicating high performance forecast. Therefore, low 
RMSE values are more desired. 

5.2. Mean absolute error (MAE) 

MAE measures the average magnitude of the 
errors in a set of predictions, without considering 
their direction. 

 
mean( |eT+h| )                                                                                (8) 
 

It’s the average over the test sample of the 
absolute differences between prediction and actual 
observation where all individual differences have 
equal weight. As a result, a smaller MAE is preferred. 

5.3. Mean absolute percentage error (MAPE)  

Mean absolute percentage error is unit free 
measure of forecast error. Which measures the 
relative overall fit.  

 

mean (|
eT+h

yt
|)                                                                          (9) 

 
It measures the accuracy of forecast error in 

percentage. Hence, making it easier to interpret. A 
more desired MAPE when comparing forecast is the 
one closer to 0%. 

6. Numerical results and discussion  

6.1. Components of Lee-Carter model  

After unabridging, 26 male and female abridged 
lifetable spanning from 1991 to 2016. LC model was 
fitted to both male and female data. Once the model 
was fitted, the SVD analysis showed that 86.7% and 
92.6% variation was explained by fitted LC models 
for Malaysian male and female mortality data 
respectively. 

SVD analysis showed that 86.7% and 92.6% 
variation was explained by fitted LC models for 
Malaysian male and female mortality data 
respectively.  

Fig. 2a shows the plot for the average values of 
the central death rate over time 𝑎𝑥 . It can be 
observed that for both male and female 𝑎𝑥  has the 
similar general pattern, mortality tends to decrease 
at lower ages, following with an exponential increase 
as the age increases. 

Fig. 2b shows the plot for age-specific constant 𝑏𝑥  
describing the relative speed of mortality changes 
across ages. It can be seen that male mortality is 
much more sensitive compared to female mortality, 
especially for ages less than 16, ages between 20–34, 
and higher ages more than 77. Furthermore it can be 
observed, 𝑏𝑥  for male are almost zero for age 36 to 
45, this shows that during this ages mortality rate for 
male is not responsive to change in time.  

Fig. 2c shows the plot for time varying index 𝑘𝑡 , 
describing the general mortality for different times 
and captures the most important trends in death 
rates across all ages. In general, 𝑘𝑡  is supposed to be 
decreasing as mortality is a decreasing factor and 
this is seen for both male and female. 

6.2. Evaluating goodness of fit 

To evaluate how well the LC model fitted to both 
male and female mortality data. The actual values 
and the fitted values were plotted for the following 
age groups 0, 1-10, 11-20, 21-30, 31-40, 41-50, 51-
60, 61-70, 71-80, and 81-84+. 
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Analyzing Fig. 3 and Fig. 4, both male and female 
log mortality rate fitted values follow closely to the 
actual values across all age groups and years. There 
are slight over estimation for age groups 1-10 and 

11-20. However, it can be inferred that the LC model 
fits well to both Malaysian male and female mortality 
data. 

 
 

(a) 

 
 

(b) 

 
 

(c) 

 
Fig. 2: Components of fitted male and female LC model 
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Actual 0 Actual 1-10  Actual 11-20 Actual 21-30 Actual 31-40   

Fitted 0 Fitted 1-10   Fitted 11-20   Fitted 21-30   Fitted 31-40   
Actual 41-50   Actual 51-60    Actual 61-70 Actual 71-80 Actual 81-84+ 
Fitted 41-50    Fitted 51-60    Fitted 61-70   Fitted 71-80   Fitted 81-84+   

Fig. 3: Male fitted and actual plots 

 
Actual 0 Actual 1-10  Actual 11-20 Actual 21-30 Actual 31-40   

Fitted 0 Fitted 1-10   Fitted 11-20   Fitted 21-30   Fitted 31-40   
Actual 41-50   Actual 51-60    Actual 61-70 Actual 71-80 Actual 81-84+ 
Fitted 41-50    Fitted 51-60    Fitted 61-70   Fitted 71-80   Fitted 81-84+   

Fig. 4: Female fitted and actual plots 

 
This finding is supported by Ngataman et al. 

(2016) who fitted Malaysian male and female 
mortality data to LC model from year 1981 to 2010.  

6.3. Fitting ARIMA model 

We now refit the entire dataset to the training set 
and obtain the time varying index 𝑘𝑡  for both male 
and female, and further use this estimates to acquire 

the best forecasting models using ARIMA and Neural 
Network. 

6.3.1. ARIMA 

Table 1 shows all the nine considered models, 
together with their Akaike Information Criteria (AIC) 
and Bayesian Information Criteria (BIC) to assess 
and obtain the best fit model for forecasting the 𝑘𝑡 . 
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According to the values in Table 1, it was found that, 
for male ARIMA(0,1,0) with drift and for female 
ARIMA(0,2,0) without drift are the best fitted models 
for the 𝑘𝑡 . 

This results, together with the results of studies 
done on the Peruvian population and Indian 
population by Cerda-Hernández and Sikov (2018) 
and Chavhan and Shinde (2016) respectively, 
confirm the importance of finding an appropriate 
model for modelling the motility index before 
forecasting. 

6.4. Neural network  

After employing the “nnfor” package to acquire 
the best fitted MLP network. Fig. 5 and Fig. 6 were 
produced, which show the best fitted NN structures 
for the training set data of both male and female 
respectively.  

It was found that a 1 input, 20 hidden node and 1 
univariate lag combined forecast using a median 
operator was the best neural network fitted for male 
𝑘𝑡 . While for female 𝑘𝑡 , the best fit model had 3 
input, 20 hidden node and 1, 3, 4 univariate lags 
combined forecast using a median operator was the 
best neural network fitted for male 𝑘𝑡 . Both fitted 
models were acquired at a MSE’s of 2.7556 and 
2.8088 for male and female respectively. 

 

 
Fig. 5: Male neural network structure 

 

 
Fig. 6: Female neural network structure 

 
Table 1: Male and female AIC & BIC 

Model 
Male Female 

AIC BIC AIC BIC 
ARIMA(2,1,2) with drift 89.3 95.56 98.43 104.70 
ARIMA(2,1,1) with drift 86.73 91.96 96.48 101.70 
ARIMA(1,1,2) with drift 87.61 92.83 96.53 101.75 
ARIMA(1,1,1) with drift 87.69 91.86 98.59 102.77 
ARIMA(1,1,0) with drift 86.13 89.26 96.59 99.73 
ARIMA(0,1,1) with drift 85.69 88.82 97.53 100.66 
ARIMA(0,1,0) with drift 85.69 87.78 97.91 100.00 

ARIMA(1,2,0) without drift 88.61 90.60 95.05 97.04 
ARIMA(0,2,0) without drift 87.33 88.33 94.36 95.35 

 
6.5. Evaluating forecasting model accuracy 

Now that the best fit forecasting models have 
been acquired. The time varying index can now be 
forecasted onto the testing set and errors between 
the forecast mortality rates and actual mortality 
values may be evaluated.  

Table 2 show the three error measures used to 
evaluate the forecast between the two models. 
Looking across the years for both male and female 
error tables it can be observed, as the time horizon 
increases the size of errors increases for both 
models. However, for the Neural Network model the 
size of the errors increase at a lower rate, showing 
better performance over a larger time horizon. 
Similar results were reported by Safitri et al. (2018) 
for the Indonesian population. 

Furthermore, it can also be noted that the Neural 
Network model out performs the ARIMA method by 
consistently showing lower RMSE, MAE and MAPE 
values for both male and female over the years. As a 
result this confirms that the NN model is a better 

forecasting method for the time varying index 𝑘𝑡  
compared to the conventional ARIMA method. 

7. Conclusion  

In this paper, LC model was fitted to Malaysian 
male and female mortality data, following with the 
use of two models to forecast the time varying index 
(𝑘𝑡). The two models used were the conventional 
ARIMA model, and a new approach which has been 
prevailing as a forecasting method known as Neural 
Network. Unlike previous studies done in Malaysian, 
to obtain the best fit ARIMA model to forecast 𝑘𝑡 , 9 
different ARIMA models were compared and the best 
fitted model was obtained through evaluating the 
AIC and BIC of the 9 models. The best fit ARIMA 
model obtained was then used as a benchmark 
model, and its forecast performance was compared 
with the Neural Network models forecast using 3 
performance measures; Root Mean Square Error 
(RMSE), Mean Absolute Error (MAE) and Mean 
Absolute Percentage Error (MAPE). 
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Table 2: Error for male ARIMA and neural network models (top) and error for male ARIMA and neural network models 
(bottom) 

FEMALE 
2013 2014 2015 2016 

ARIMA NN ARIMA NN ARIMA NN ARIMA NN 
RMSE 0.14202 0.13442 0.16016 0.14520 0.18785 0.16435 0.20991 0.17878 
MAE 0.11074 0.10446 0.13061 0.11835 0.15438 0.13606 0.17348 0.14835 

MAPE 1.71005 1.62468 2.02643 1.85786 2.37918 2.13245 2.65132 2.31726 

MALE 
2013 2014 2015 2016 

ARIMA NN ARIMA NN ARIMA NN ARIMA NN 
RMSE 0.09755 0.09412 0.11561 0.10714 0.18091 0.17803 0.13448 0.10857 
MAE 0.07444 0.07136 0.08542 0.07931 0.13325 0.12875 0.10087 0.08265 

MAPE 1.22508 1.16879 1.38515 1.28442 2.10533 2.01810 1.62148 1.35175 

 
The finding in this paper firstly showed that the 

LC model fitted well for both Malaysian male and 
female data with 86.7% and 92.6% variation being 
explained by both male and female fitted models 
respectively. This results were in line with Ngataman 
et al. (2016) who fitted Malaysian male and female 
mortality data to LC model from year 1981 to 2010. 

Secondly, moving on to fitting the time varying 
index, for the ARIMA model, it was found that for 
Malaysian male data the time varying index 𝑘𝑡  fitted 
best to ARIMA (0,1,0) with drift, while for Malaysian 
female data the time varying index 𝑘𝑡  fitted best with 
ARIMA (0,2,0) without drift. Therefore, justifying the 
importance of testing ARIMA models before 
forecasting the time varying index as mentioned by 
Lee and Carter (1992). On the other hand, for the 
neural network model it was found that 1 input, 20 
hidden nodes and 1 univariate lag combined forecast 
using a median operator was the best neural 
network fitted for male 𝑘𝑡 . While for female 𝑘𝑡 , the 
best fit model had 3 input, 20 hidden nodes and 1, 3, 
4 univariate lags combined forecast using a median 
operator was the best neural network fitted for male 
𝑘𝑡 . 

Lastly, coming to the evaluation of forecast for 
both models, our finding showed that overall the 
Neural Network model outperforms the 
conventional ARIMA model in forecasting mortality 
rates. The Neural Network model consistently 
showed lower errors against actual values and the 
size of errors increased at a lower rate as time 
horizon increases, compared to the forecast of the 
ARIMA model. 
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