
 International Journal of Advanced and Applied Sciences, 6(1) 2019, Pages: 59-67

Contents lists available at Science-Gate

International Journal of Advanced and Applied Sciences
Journal homepage: http://www.science-gate.com/IJAAS.html

59

Supporting software documentation with source code summarization

Ra'Fat Al-Msie'deen *, Anas H. Blasi

Department of Computer Information Systems, Faculty of IT, Mutah University, P.O. Box 7, Mutah 61710, Karak, Jordan

A R T I C L E I N F O A B S T R A C T

Article history:
Received 11 August 2018
Received in revised form
17 November 2018
Accepted 18 November 2018

Source code summarization is a process of generating summaries that
describe software code, the majority of source code summarization usually
generated manually, where the summaries are written by software
developers. Recently, new automated approaches are becoming more useful.
These approaches have been found to be effective in some cases. The main
weaknesses of these approaches are that they never exploit code
dependencies and summarize either the software classes or methods but not
both. This paper proposes a source code summarization approach (Suncode)
that produces a short description for each class and method in the software
system. To validate the approach, it has been applied to several case studies.
Moreover, the generated summaries are compared to summaries that
written by human experts and to summaries that written by a state-of-the-
art solution. Results of this paper found that Suncode summaries provide
better information about code dependencies comparing with other studies.
In addition, Suncode summaries can improve and support the current
software documentation. The results found that manually written summaries
were more precise and short as well.

Keywords:
Software engineering
Software documentation
Source code summarization
Software comprehension
Summary

© 2018 The Authors. Published by IASE. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

*Software developers are concerning about good
software documentation that involves summaries of
its code to efficiently comprehend software code
(Forward and Lethbridge, 2002). In fact, Code
summary is a short description about a particular
identifier of software (e.g., class and method). For
example, the class summaries in the JavaDocs which
written by human experts. The manually written
summaries such as JavaDocs help software
developers to comprehend small sections of code
(e.g., method) with no need to comprehend the
whole software code (Roehm et al., 2012). The
process of writing the source code summaries is
expensive and may be incomplete. In addition, code
summaries may become out dated as the code
evolves (McBurney and McMillan, 2016a), and may
be inaccurate as they were written by human
experts, who may be influenced by stress and other
factors (McBurney and McMillan, 2016b). The
manually written summaries did not contain any
contextual information, which shows how the

* Corresponding Author.
Email Address: rafatalmsiedeen@mutah.edu.jo (R. Al-Msie'deen)

https://doi.org/10.21833/ijaas.2019.01.008
 Corresponding author's ORCID profile:

https://orcid.org/0000-0002-9559-2293
2313-626X/© 2018 The Authors. Published by IASE.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

software identifier interacts with other ones.
Software summaries reflect the features (Al-
Msie’deen et al., 2014b) or functionalities it offers to
the user.

Program maintenance is the most expensive and
time-consuming phase in the program life cycle (Yau
and Collofello, 1980). If there is no previous
information about software code, programmers can
have problem understanding which section of code
need change (Dave et al., 2014). Software developers
are making a lot of efforts to comprehend software
source code. In this case, the code summaries are
very important for software developers in order to
document legacy software and comprehend its code.
Software developers face several problems with
legacy software systems due to absence of software
documentation.

Source code summarization aims to create
documentation for legacy software by analyzing its
code. Legacy programs are usually documented
based on its available artifacts such as: source code
and design documents like use-case diagram (Al-
Msie’deen et al., 2014c). Several studies have found
that code summaries help software developers
comprehend code better (McBurney and McMillan,
2014). The difficulties in writing summaries of
program code have encouraged researchers to
design numerous approaches as alternatives to
writing code descriptions manually (cf. Section 2).
This paper proposes an automatic approach

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:rafatalmsiedeen@mutah.edu.jo
https://doi.org/10.21833/ijaas.2019.01.008
https://orcid.org/0000-0002-9559-2293
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2019.01.008&domain=pdf&

Ra'Fat Al-Msie'deen, Anas H. Blasi/International Journal of Advanced and Applied Sciences, 6(1) 2019, Pages: 59-67

60

(Suncode†) to produce summaries of software
classes and methods.

The source code summarization process is a
critical issue in the software engineering domain, so
numerous methods have been suggested to
summarize the software code (cf. Section 2). The
source code summarization process is a tedious job
and costly procedure but the majority of source code
summarization generators are still manual
(McBurney and McMillan, 2014) which produced by
human experts. However, these summaries often
incomplete (Moreno et al., 2013a) and must be
updated constantly (Shi et al., 2011).

Human experts spend a lot of time reading and
browsing the software source code (Ko et al., 2006;
LaToza et al., 2006). Thus, there is a need to propose
Suncode approach to summarize the software code
and overcome the limitations of existing approaches.
In the context of this paper, summary is a text
generated from software source code contains
important information in the original text (i.e.,
source code), moreover, the summary text does not
exceed half of the original text (Radev et al., 2002).

Suncode is a unique approach, where it
summarizes the software classes and methods. Also,
it focuses on the context of the identifier. In this
paper, context means how the software identifier
(e.g., class, attribute and method) interacts with
other ones via code dependencies such as:
inheritance, method invocation and attribute access.
Suncode produces a readable English summary of
the context for each class and method in the
software system.

Several approaches have been proposed to
summarize the software source code. One approach
presented by Haiduc et al. (2010b) returns a list of
keywords from the method. A different method
presented by Sridhara et al. (2010) produces
descriptive summary comments for software
methods. Moreno et al. (2013b) presented an
approach to summarize the software classes.
McBurney and McMillan (McBurney and McMillan,
2014) suggested an approach to generate summaries
of the context of Java methods.

This paper proposes an approach to summarize
the software classes and methods based on their
textual and structural information (Suncode accepts
as input software code and produces as outputs a set
of summaries). Based on the static code analysis,
Suncode extracts the software source code. Then,
Suncode generates rapid summary messages
(McBurney and McMillan, 2014) for each class and
method and, at last, Suncode aggregates all rapid
summary messages into a single document.

Suncode approach is detailed in this paper as
follows: Section 2 discusses the related work
relevant to Suncode contributions. Section 3 shows
an overview of Suncode. Section 4 presents the
source code summarization process step-by-step.
Section 5 describes the experiments that were

† Suncode stands for Supporting Software Documentation with
Source Code Summarization.

conducted to validate Suncode proposal, while
section 6 concludes and provides perspectives for
this work.

2. Related works

This section presents the related work closest to
Suncode approach. McBurney and McMillan (2016b,
2014) presented a source code summarization
method that generates descriptions of the context of
Java methods – that is, where the method is called.
They use static code analysis. In their work, the
context of the method is limited to method
invocation. Suncode presents an automatic approach
to summarize the software classes and methods. The
context of the class is how the class interacts with
other ones. While the context of method is how the
method interacts with other methods and attributes.
Suncode helps software developers understand the
role the class (resp. method) plays in the software.
Suncode uses static code analysis.

A different work was developed by Sridhara et al.
(2010). Sridhara et al. (2010) presented a new
method to automatically produce descriptive
summary comments for software methods. Based on
the method’s signature and body, their comment
generator found the content of the summary and
produced the natural language text that summarizes
the method.

Another method offered by Haiduc et al. (2010b)
produced a list of keywords from the method code
using the vector space model. Haiduc et al. (2010b)
proposed using a vector space model method to
mine important keywords from method and
presented those keywords to software developers. In
fact, their approach helps software developers to get
some contextual information through listing the
main keywords from method code.

Moreno et al. (2013a) suggested a new method to
automatically produce natural language summaries
for software classes by using stereotype of class. In
another paper, Moreno et al. (2013b) presented an
Eclipse plugin named jSummarizer‡ to produce the
natural language summaries for software classes
based on a stereotype of class. In their work, the
produced summaries used to re-document the class
code. Moreover, the extracted summaries used to
help programmers to easier comprehend complex
software classes.

Suncode developed to document legacy software
systems. For each class and method in the software
there is a summary. The produced summary for the
class or method contains textual and structural
information based on its code. Suncode used static
code analysis to parse the software code. Suncode
accepts as inputs the software code and produces a
summary for each class and method in the software.
Al-Msie'deen (2014) approach relied on generating
rapid summary messages for each class and method
in the software. The rapid summary message is a
predefined template. This template is a natural

‡ JSummarizer: http://www.cs.wayne.edu/~severe/jsummarizer/

http://www.cs.wayne.edu/~severe/jsummarizer/

Ra'Fat Al-Msie'deen, Anas H. Blasi/International Journal of Advanced and Applied Sciences, 6(1) 2019, Pages: 59-67

61

language sentence describing a particular kind of
rapid summary message. Each template is filled in
with keywords selected from the extracted code.
Suncode approach constructs summaries by
combining the rapid summary messages.

3. Approach overview

This section presents the main ideas used in
Suncode. It also provides an overview of the source
code summarization process. Then, it introduces the
drawing shapes software that illustrates the
remaining of the paper.

Various papers in the domain of software
understanding show that software developers rely
on good software documentation. In general,
manually-written documentation is incomplete,
time-consuming and it must be updated periodically
(McBurney and McMillan, 2014). Thus, Suncode
comes to overcome these problems regarding
manually-written documentation. Suncode
automatically document software code by producing
a useful summary.

Suncode aims to provide software developers
with meaningful summary for software classes and
methods. It uses static code analysis to parse
software code. The source code summarization
process takes the software's code as its inputs and
generates a set of summaries as its outputs.
Furthermore, the code summaries are important to
document and understand legacy software systems.

Suncode exploits software identifiers and code
dependencies to produce a useful summary. Names
of software identifiers consider as textual
information. On the other hand, the dependencies
between code elements consider as structural
information. Software functionality is presented by
its classes and methods. Thus, Suncode produces two
types of summaries one for class and another for
method.

The basic point that distinguishes Suncode's
approach from other approaches is that it deals with
the context of the class and method, which contains
textual and structural information of the class and
method. The context of the class being summarized
includes the class signature and its body. On the
other hand, the context of the method being
summarized contains the method signature and its
body. The context of class or method is important
because it helps software developers to know the
behavior and the role of the class or method in the
software system.

Fig. 1 shows the source code summarization
process. Suncode approach creates a summary for
given software in three steps: 1) Extract the software
source code using static code parser. Then, 2)
Identify rapid summary messages for software
classes and methods. Finally, 3) Generate English
readable sentences to summarize each class and
method in the software system. The summarization
process is automatic; as long as the software
contains classes and methods, the summaries will

describe the main information of a given software
class or method.

As an illustrative example, this paper considers
the drawing shapes software§. However, this
software system uses to draw several types of
shapes (Al-Msie’deen, 2018; Al-Msie’deen and Blasi,
2018). This toy software used for better explanation
for the remaining of this paper. Suncode only uses
the software code as input for the software code
summarization process.

4. Source code summarization process

This section presents the source code
summarization process step-by-step. Suncode
identifies code summaries in three steps as detailed
below.

4.1. Extracting the software source code

Suncode uses static code analysis to parse
software source code. Suncode parser** produces an
XML file for each software system. The XML file
contains main code elements such as: package, class,
attribute and method. Also, it contains the main
dependencies between code elements such as:
inheritance, method invocation and attribute access.
The extracted XML file contains textual and
structural information about software code. XML
format is readable by the human experts and its
representation is independent of any programming
language (Kanellopoulos et al., 2006).

To document the legacy software system by
summarizing its code there are needs to extract main
code elements and main dependencies between
those elements. Fig. 2 shows the format of the XML
file which uses to express the object-oriented source
code.

4.2. Identifying rapid summary messages for
each class and method

Based on the extracted XML file from the previous
step, Suncode produces different types of messages
that represent information about a class’s/method’s
context. These messages are called rapid summary
messages. Suncode creates six different types of
rapid summary messages that represent information
about a class’s context. These rapid summary
messages are briefly described in Table 1.

The goal of these rapid summary messages is to
determine the content of each class in a software
system. First, a name message gives the name of the
class. The access level message is a message created
to reflect the access level of the class (e.g., public).
Another type of message is the package message.
The idea behind a package message is to give
software developers the package to which the class
belongs. A fourth message type is the inheritance
message. This message presents information about

§ Drawing shapes: https://sites.google.com/site/ralmsideen/tools
** Suncode parser https://sites.google.com/site/ralmsideen/tools

https://sites.google.com/site/ralmsideen/tools
https://sites.google.com/site/ralmsideen/tools

Ra'Fat Al-Msie'deen, Anas H. Blasi/International Journal of Advanced and Applied Sciences, 6(1) 2019, Pages: 59-67

62

the class that the class inherits from. Another type of
message is the attribute message. This message
mentions all attributes that belong to the class. The
last message type is the method message. This

message serves to mention all methods that belong
to the class. These messages are briefly shown in Fig.
3.

Fig. 1: Source code summarization process

Fig. 2: XML as a format of expression of object-oriented source code

Moreover, Suncode generates eight different

kinds of rapid summary messages that give
information about a method’s context. These rapid
summary messages are briefly described in Table 2.

Ra'Fat Al-Msie'deen, Anas H. Blasi/International Journal of Advanced and Applied Sciences, 6(1) 2019, Pages: 59-67

63

Table 1: Rapid summary messages that Suncode creates for class's context

Message type Description
1 Name message Gives the name of the class
2 Access level message Gives the access level of the class
3 Package message Gives the name of the package to which the class belongs
4 Inheritance message Gives the name of the class that the class inherits from
5 Attribute message Gives the names of attributes that belong to the class
6 Method message Gives the names of methods that belong to the class

Fig. 3: Rapid summary messages that Suncode creates for class's context

Table 2: Rapid summary messages that Suncode creates for method's context

Message type Description
1 Name message Gives the name of the method
2 Access level message Gives the access level of the method
3 Return type message Gives the return data type of the method
4 Class message Gives the name of the class to which the method belongs
5 Parameter message Gives the names, data types and order of the parameters
6 Variable message Gives the names and data types of local variables
7 Access message Gives the names of the attributes that the method accesses
8 Invocation message Gives the names of the methods that the method calls

The main objective of these rapid summary
messages is to determine the content of each method
in the software product. The first message is the
name message. This message gives the name of the
method. Then, the access level message aims to
return the access level of method (e.g., public, private
or protected). A third message type is the return
type message. The return type message is a message
created to give the return data type of the method.
Another type of message is the class message. The
idea behind a class message is to give programmers
the class to which the method belongs. The
parameter message is a message created to return
the number of parameters, names, data types and
order of the parameters in the method signature.
While, the variable message is a message conveys

information about the names and data types of local
variables inside the method body. The access
message returns the names of the attributes that the
method accesses and, at last, the final message type
is the invocation message. This message is used to
say what methods a given method calls or invokes.
The method's rapid summary messages are shown in
Fig. 4.

Suncode accepts the software source code. Then,
extracts the software code based on the static code
analysis (Al-Msie’deen, 2015). After that, the
approach identifies the rapid summary messages
that summarize the software classes and methods.
For example, in the drawing shapes software, the
rapid summary messages for myoval class are shown
in Table 3.

Table 3: An example of rapid summary messages produced by Suncode for class's context (e.g., myoval class)

Message kind Message text
1 Name message The name of this class is MyOval.
2 Access level message The access level for this class is public.
3 Package message The package to which this class belongs is coreElements.
4 Inheritance message This class inherits from the MyShape class.
5 Attribute message This class contains the following attribute: example.
6 Method message This class contains the following methods: MyOval and draw.

Ra'Fat Al-Msie'deen, Anas H. Blasi/International Journal of Advanced and Applied Sciences, 6(1) 2019, Pages: 59-67

64

For method’s context, Suncode generates
different message types to give a summary for each
method in the software system. For instance, in the

drawing shapes software, the rapid summary
messages for main method are shown in Table 4.

Fig. 4: Rapid summary messages that Suncode creates for method's context

Table 4: An example of rapid summary messages generated by Suncode for method's context (e.g., main method)

Message kind Message text
1 Name message The name of this method is main.
2 Access level message The access level for this method is public.
3 Return type message The return data type for this method is void.
4 Class message The class to which this method belongs is drawingShapes.

5 Parameter message
This method contains 1 parameter.

This method consists of the following parameter: args and its data type is string.
6 Variable message This method contains the following local variable: application and its data type is drawingShapes.
7 Access message This method accesses the following attributes: application and exit_on_close.
8 Invocation message This method invokes the following method: setDefaultCloseOperation.

The main goal of the code summarization is to
describe the source code of any software system. The
functionalities of any software implemented through
its classes and methods. Thus, Suncode focuses on
the class and method summaries.

4.3. Generating a readable English description
for each class and method

Suncode creates a summary of a given identifier
(class or method) in three steps: a) extracting
software code, then, b) generating rapid summary
messages and, at last, c) aggregating all rapid
summary messages into a single document. Suncode
summarizes software classes and methods as
readable English text and generates a document for
each class and method, where messages occur in a
predefined order as in Tables 1 and 2. This ordering
was decided based on the importance of the
messages from the author's point of view. The code
summary contains textual and structural
information (Al-Msie’deen et al., 2013). The main
dependencies between source code elements (i.e.,
inheritance, method invocation and attribute access)
represent structural code information, while the

software identifiers and their properties (e.g., name
and access level) consider as textual code
information.

In the last step of the code summarization
process, Suncode aggregates the rapid summary
messages into a single document. For example, the
summary of myoval class (Table 3) is "The name of
this class is MyOval. The access level for this class is
public. The package to which this class belongs is
coreElements. This class inherits from the MyShape
class. This class contains the following attribute:
example. This class contains the following methods:
MyOval and draw".

As another example, consider the main method
from the drawing shapes software. The Suncode
summary is "The name of this method is main. The
access level for this method is public. The return
data type for this method is void. The class to which
this method belongs is drawingShapes. This method
contains 1 parameter. This method consists of the
following parameter: args and its data type is string.
This method contains the following local variable:
application and its data type is drawingShapes. This
method accesses the following attributes:
application and exit_on_close. This method invokes

Ra'Fat Al-Msie'deen, Anas H. Blasi/International Journal of Advanced and Applied Sciences, 6(1) 2019, Pages: 59-67

65

the following method: setDefaultCloseOperation".
Moreover, the fully combined summary of draw
method is shown in Fig. 5 (McBurney and McMillan,
2016a).

Software developers need an efficient method to
help them to understand the legacy software code.
Reading the complete code of software takes too

long time. In addition, the reading of method (or
class) signature does not tell us enough information
about the purpose of the code. Thus, Suncode aims to
create a brief description for software code by using
textual and structural information in software
classes and methods.

Fig. 5: An example of a summary generated by Suncode approach (e.g., draw method)

5. Experimentation

To validate Suncode, the experiments were
conducted on two Java open-source software
systems: i.e., NanoXML†† and ArgoUML‡‡. NanoXML
software is a Java program for parsing XML file.
ArgoUML is an open source tool for UML diagrams.
The two software systems show different sizes:
NanoXML (medium system) and ArgoUML (large
system).

The different complexity levels display the
scalability of Suncode to dealing with such case
studies. NanoXML and ArgoUML software is well
documented and their code summaries are available
for comparison to Suncode summaries and
validation of its proposal.

Suncode summaries are compared to summaries
written by human experts such as Javadocs. Javadoc
is a type of software documentation which is a
summary written by the software developers. Table
5 shows the obtained summary for getResult method
through Suncode approach and Javadoc.

Moreover, Suncode summaries are compared to
summaries written by a state-of-the-art solution
(McBurney and McMillan, 2014; 2016a). Table 6
shows the obtained summary for read method
through Suncode approach and McBurney tool
(McBurney and McMillan, 2016a).

Table 7 presents the extracted summary of the
ArgoStatusEvent class from ArgoUML software using
Suncode prototype§§. In addition to the summary
from JavaDocs.

Results note that there is a difference between
the summaries written by software developers, and
summaries generated by Suncode approach.
Comparing to manually written summaries and the
state-of-the-art summaries, results found that
Suncode summaries provide better contextual
information. Suncode summaries can improve the

†† http://nanoxml.sourceforge.net/orig/index.html
‡‡ http://argouml-downloads.tigris.org/argouml-0.28.1/
§§ https://sites.google.com/site/ralmsideen/tools

current software documentation by combining
Suncode summaries with other summaries. In
contrast, manually written summaries were more
precise and short.

Based on the Suncode results, it appears the
summary is generated based on the class (resp.
method) signature and its body. The extracted
summary is clear, precise and brief. The extracted
summary tells programmers, where the method is
called. The produced summary tells software
developers where the class is inherited. The
summary contains too many details and helps
programmers to understand what the class and
method do. In addition, summaries provide helpful
contextual information about the software classes
and methods. The generated summaries can be used
to improve existing documentation.

One threat to the validity of Suncode approach is
that it considers only the Java software systems. This
represents a threat to prototype validity (Al-
Msie’deen, 2014) that limits Suncode
implementation ability to deal only with systems
that developed based on the Java language. In
addition, Suncode does not include the class and
method comments in the summarization process.
Moreover, Suncode does not split identifier name
into their constituent words where it appears as it is
in the summary (should be improved by using
identifier splitting algorithms).

6. Conclusion and future directions

This paper has presented a new approach for
automatically generating summaries of software
classes and methods. Suncode approach differs from
other approaches in that it summarizes the software
classes and methods. Moreover, Suncode exploits
textual and structural information (Haiduc et al.,
2010a) to summarize software classes and methods.
The only input of the approach is the software code
and the output is a set of English paragraphs
describing software classes and methods. Suncode

Ra'Fat Al-Msie'deen, Anas H. Blasi/International Journal of Advanced and Applied Sciences, 6(1) 2019, Pages: 59-67

66

used rapid summary messages to identify the most
important information in the class and method
context. Then, Suncode aggregated messages to

create an English paragraph of this context. The
authors have implemented Suncode and evaluated
its generated results on three case studies.

Table 5: The extracted summary from the getResult method in NanoXML software
Software NanoXML

Class StdXMLBuilder Method getResult ()
Method signature public Object getResult () Method body return this.root;

Javadoc summary
“This method returns the result of the building process” (NanoXML Javadocs:

http://nanoxml.sourceforge.net/orig/NanoXML-2-JavaDoc/index.html)

Suncode summary
The name of this method is getResult. The access level for this method is public. The return data type for this

method is object. The class to which this method belongs is StdXMLBuilder. This method accesses the
following attribute: root.

Results showed that all summaries were
identified. The authors have compared the
summaries produced from Suncode to summaries
written by human specialists (e.g., Javadocs) and to

summaries written by a state-of-the-art approach.
The authors have found that Suncode provided
better contextual information than manually written
and the state-of-the-art summaries.

Table 6: The mined summary from the read method in NanoXML software
Software NanoXML

Class StdXMLReader Method read ()
McBurney

tool
summary

“This method reads a character and returns the character. That character is used in methods that add child XML elements
and attributes of XML elements. This method calls a method that skips the whitespace. This method can be used in an

assignment statement; for example: char ch = reader.read();” (McBurney and McMillan, 2016a).

Suncode
summary

The name of this method is read. The access level for this method is public. The return data type for this method is character.
The class to which this method belongs is StdXMLReader. This method contains the following local variable: ch and its data
type is int. This method accesses the following attributes: currentReader, pbReader and readers. This method invokes the

following methods: read, empty, close, pop and read.

Furthermore, authors can improve the current
software documentation by combining Suncode
summaries with the manually written summaries or
the state-of-the-art summaries. In contrast, manually
written summaries were more precise and short. For
future work, Suncode plans to split the names of

software identifiers (e.g., package, class, attribute
and method) into words by using the camel-case
splitting algorithm (Al-Msie’deen et al., 2014a). It
also plans to use the class and method comments in
the summarization process.

Table 7: The extracted summary from the ArgoStatusEvent class of ArgoUML software
Software ArgoUML

Class ArgoStatusEvent
Javadoc

summary
“The status event is used to notify interested parties of a status change” (ArgoUML Javadocs: http://argouml-

stats.tigris.org/nonav/javadocs/javadocs-0.28/)

Suncode
summary

The name of this class is ArgoStatusEvent. The access level for this class is public. The package to which this class belongs is
org.argouml.application.events. This class inherits from the ArgoEvent class. This class contains the following attribute: text.

This class contains the following methods: ArgoStatusEvent, getEventStartRange and getText.

Compliance with ethical standards

Conflict of interest

 The authors declare that they have no conflict
of interest.

References

Al-Msie’deen R (2014). Reverse engineering feature models from
software variants to build software product lines: REVPLINE
approach. Ph.D. Dissertation, Universite Montpellier II-
Sciences et Techniques du Languedoc, France.

Al-Msie’deen R (2015). Visualizing object-oriented software for
understanding and documentation. International Journal of
Computer Science and Information Security, 13(5): 18–27.

Al-Msie’deen R (2018). Automatic labeling of the object-oriented
source code: The lotus approach. Science International-
Lahore, 30(1): 45–48.

Al-Msie’deen R and Blasi A (2018). The impact of the object-
oriented software evolution on software metrics: The iris
approach. Indian Journal of Science and Technology, 11(8): 1–

8.
https://doi.org/10.17485/ijst/2018/v11i8/121148

Al-Msie’deen R, Huchard M, Seriai A, Urtado C, and Vauttier S
(2014a). Automatic documentation of [mined] feature
implementations from source code elements and use- case
diagrams with the REVPLINE approach. International Journal
of Software Engineering and Knowledge Engineering, 24(10):
1413–1438.
https://doi.org/10.1142/S0218194014400142

Al-Msie’deen R, Huchard M, Seriai A, Urtado C, and Vauttier S
(2014b). Reverse engineering feature models from software
configurations using formal concept analysis. In the Eleventh
International Conference on Concept Lattices and Their
Applications, Košice, Slovakia: 95–106.

Al-Msie’deen R, Seriai A, Huchard M, Urtado C, and Vauttier S
(2013). Mining features from the object-oriented source code
of software variants by combining lexical and structural
similarity. In the IEEE 14th International Conference on
Information Reuse and Integratio, IEEE Computer Society, San
Francisco, CA, USA: 586–593.
https://doi.org/10.1109/IRI.2013.6642522

Al-Msie’deen R, Seriai A, Huchard M, Urtado C, and Vauttier S
(2014c). Documenting the mined feature implementations
from the object-oriented source code of a collection of

http://nanoxml.sourceforge.net/orig/NanoXML-2-JavaDoc/index.html
http://argouml-stats.tigris.org/nonav/javadocs/javadocs-0.28/
http://argouml-stats.tigris.org/nonav/javadocs/javadocs-0.28/
https://doi.org/10.17485/ijst/2018/v11i8/121148
https://doi.org/10.1142/S0218194014400142
https://doi.org/10.1109/IRI.2013.6642522

Ra'Fat Al-Msie'deen, Anas H. Blasi/International Journal of Advanced and Applied Sciences, 6(1) 2019, Pages: 59-67

67

software product variants. In The 26th International
Conference on Software Engineering and Knowledge
Engineering, Vancouver, Canada, 138–143.

Dave N, Davis D, Potts K, and Asuncion HU (2014). Uncovering file
relationships using association mining and topic modeling. In
the 6th International Conference on Information, Process, and
Knowledge Management, Barcelona, Spain: 105–111.

Forward A and Lethbridge TC (2002). The relevance of software
documentation, tools and technologies: A survey. In the 2002
ACM Symposium on Document Engineering, ACM, McLean,
Virginia, USA: 26-33.
https://doi.org/10.1145/585058.585065

Haiduc S, Aponte J, and Marcus A (2010a). Supporting program
comprehension with source code summarization. In the 32nd
ACM/IEEE International Conference on Software Engineering,
ACM, Cape Town, South Africa, 2: 223-226.
https://doi.org/10.1145/1810295.1810335

Haiduc S, Aponte J, Moreno L, and Marcus A (2010b). On the use of
automated text summarization techniques for summarizing
source code. In the 17th Working Conference on Reverse
Engineering (WCRE), IEEE, Beverly, USA: 35-44.
https://doi.org/10.1109/WCRE.2010.13

Kanellopoulos Y, Dimopulos T, Tjortjis C, and Makris C (2006).
Mining source code elements for comprehending object-
oriented systems and evaluating their maintainability.
SIGKDD Explorations, 8(1): 33–40.
https://doi.org/10.1145/1147234.1147240

Ko AJ, Myers BA, Coblenz MJ, and Aung HH (2006). An exploratory
study of how developers seek, relate, and collect relevant
information during software maintenance tasks. IEEE
Transactions on software Engineering, 32(12): 971-987.
https://doi.org/10.1109/TSE.2006.116

LaToza TD, Venolia G, and DeLine R (2006). Maintaining mental
models: A study of developer work habits. In the 28th
International Conference on Software Engineering, ACM,
Shanghai, China, 492–501.
https://doi.org/10.1145/1134285.1134355

McBurney PW and McMillan C (2014). Automatic documentation
generation via source code summarization of method context.
In the 22nd International Conference on Program
Comprehension, ACM, Hyderabad, India: 279-290.
https://doi.org/10.1145/2597008.2597149

McBurney PW and McMillan C (2016a). Automatic source code
summarization of context for java methods. IEEE Transactions

on Software Engineering, 42(2): 103-119.
https://doi.org/10.1109/TSE.2015.2465386

McBurney PW and McMillan C (2016b). An empirical study of the
textual similarity between source code and source code
summaries. Empirical Software Engineering, 21(1): 17-42.
https://doi.org/10.1007/s10664-014-9344-6

Moreno L, Aponte J, Sridhara G, Marcus A, Pollock L, and Vijay-
Shanker K (2013a). Automatic generation of natural language
summaries for java classes. In the IEEE 21st International
Conference on Program Comprehension, IEEE, San Francisco,
USA: 23-32.
https://doi.org/10.1109/ICPC.2013.6613830

Moreno L, Marcus A, Pollock L, and Vijay-Shanker K (2013b).
Jsummarizer: An automatic generator of natural language
summaries for java classes. In IEEE 21st International
Conference on Program Comprehension, IEEE, San Francisco,
USA: 230-232.
https://doi.org/10.1109/ICPC.2013.6613855

Radev DR, Hovy EH, and McKeown KR (2002). Introduction to the
special issue on summarization. Computational Linguistics,
28(4): 399–408.
https://doi.org/10.1162/089120102762671927

Roehm T, Tiarks R, Koschke R, and Maalej W (2012). How do
professional developers comprehend software?. In the 34th
International Conference on Software Engineering, IEEE,
Zurich, Switzerland: 255-265.
https://doi.org/10.1109/ICSE.2012.6227188

Shi L, Zhong H, Xie T, and Li M (2011). An empirical study on
evolution of API documentation. In the International
Conference on Fundamental Approaches to Software
Engineering, Springer, Berlin, Heidelberg, Germany: 416-431.
https://doi.org/10.1007/978-3-642-19811-3_29

Sridhara G, Hill E, Muppaneni D, Pollock L, and Vijay-Shanker K
(2010). Towards automatically generating summary
comments for java methods. In the IEEE/ACM International
Conference on Automated Software Engineering, ACM,
Antwerp, Belgium: 43-52.
https://doi.org/10.1145/1858996.1859006

Yau SS and Collofello JS (1980). Some stability measures for
software maintenance. IEEE Transactions on Software
Engineering, 6(6): 545-552.
https://doi.org/10.1109/TSE.1980.234503

https://www.researchgate.net/conference-event/eKNOW_International-Conference-on-Information-Process-and-Knowledge-Management_2014/10898
https://doi.org/10.1145/585058.585065
https://doi.org/10.1145/1810295.1810335
https://doi.org/10.1109/WCRE.2010.13
https://doi.org/10.1145/1147234.1147240
https://doi.org/10.1109/TSE.2006.116
https://doi.org/10.1145/1134285.1134355
https://doi.org/10.1145/2597008.2597149
https://doi.org/10.1109/TSE.2015.2465386
https://doi.org/10.1007/s10664-014-9344-6
https://doi.org/10.1109/ICPC.2013.6613830
https://doi.org/10.1109/ICPC.2013.6613855
https://doi.org/10.1162/089120102762671927
https://doi.org/10.1109/ICSE.2012.6227188
https://doi.org/10.1007/978-3-642-19811-3_29
https://doi.org/10.1145/1858996.1859006
https://doi.org/10.1109/TSE.1980.234503

	Supporting software documentation with source code summarization
	1. Introduction
	2. Related works
	3. Approach overview
	4. Source code summarization process
	4.1. Extracting the software source code
	4.2. Identifying rapid summary messages for each class and method
	4.3. Generating a readable English description for each class and method

	5. Experimentation
	6. Conclusion and future directions
	Compliance with ethical standards
	Conflict of interest
	References

