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Approximations are the alternative way of obtaining the Quantile function 
when the inversion method cannot be applied to distributions whose 
cumulative distribution functions do not have close form expressions. 
Approximations come in form of functional approximation, numerical 
algorithm, closed form expressed in terms of others and series expansions. 
Several quantile approximations are available which have been proven to be 
precise, but some issues like the presence of shape parameters, 
inapplicability of existing methods to complex distributions and low 
computational speed and accuracy place undue limitations to their effective 
use. Quantile mechanics (QM) is a series expansion method that addressed 
these issues as evidenced in the paper. Quantile mechanics is a generalization 
of the use of ordinary differential equations (ODE) in quantile approximation. 
The paper is a review that critically examined with evidences; the 
formulation, applications and advantages of QM over other surveyed 
methods. Some issues bothering on the use of QM were also discussed. The 
review concluded with areas of further studies which are open for scientific 
investigation and exploration. 
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1. Introduction

*In probability, statistics and stochastic analysis,
quantile function (QF) is one of the ways of 
characterizing probability distributions. Probability 
distributions can be discrete, continuous or mixed. 
Other probability functions are probability density 
function (PDF), cumulative distribution function 
(CDF), survival function, inverse survival function, 
hazard function, odd function and reversed hazard 
function.  

Quantile function is the inverse cumulative 
distribution. The details of the mathematical 
formulation, theories, description, estimation and 
properties can be seen in the works of Parzen (2004) 
and the references therein. The QF is unique 
irrespective of the mode orientation of the 
distribution (unimodal, bimodal or multimodal). 
Research on the QF is fueled by their wide 
applicability in modeling real life phenomena. This is 
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extended to simulation of physical and other related 
systems. This assumes the form of random number 
generation, Monte Carlo simulation, copulas and 
other uses. 

The inversion method is the simplest method of 
obtaining the QF from CDF. This is however limited 
to the case where the CDF and QF have closed form 
expressions. Some important distributions do not 
have closed form representations. Some of the 
distributions are: normal, beta, Erlang, MacDonald, 
chi, Lévy, hyperbolic, beta prime, chi-square, gamma, 
student’s t, F distribution and others.  

The alternative route followed by researchers 
when the inversion method cannot be applied are 
approximations which may come in the form of 
series expansions, closed form or functional 
approximation, numerical algorithm and the closed 
form expression drafted in terms of the quantile 
function of another distribution. 

Several rational and closed form approximations 
have been obtained for some distributions which are 
shown in Table 1. 

Despite the progress made in finding analytic 
expression and approximation of the quantile 
functions of probability distributions as shown in 
Table 1, several issues bothering on the methods of 
quantile approximations are yet to be discussed. The 
issues arose from the inability of the age-long 
“inversion method” to estimate the quantile function 
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of some probability distributions with intractable 
cumulative distribution functions (CDF). Secondly, 
the presence of shape parameters in distributions 
like the Chi-square, gamma, Erlang, Beta makes 
approximation of quantile functions very tedious 

and challenging. Thirdly, all those methods of the 
approximations are fast, efficient but failed when 
applied to complex distributions and lastly, the 
available methods have issues bothered on 
convergence and precision.  

 
Table 1: Survey of contributions to quantile approximation 

Distribution Details 
Chi-square Lin (1994), Ittrich et al. (2000). 

Beta Thomson (1947), Gil et al. (2017). 
Behrens-Fisher Patil (1969), Davis and Scott (1973). 

F Abernathy and Smith (1993a, b), Torigoe (2011). 
Gamma Withers and Nadarajah (2014), Gil et al. (2015). 

Nakagami Bilim and Develi (2015), Kabalci (2018). 
Non-central chi-

square 
Torigoe (1996), Sahai and Ojeda (2009). 

Non-central student t Akahira (1995), Sahai and Ojeda (1998). 

Normal (probit) 
Odeh and Evans (1974), Beasley and Springer (1977), Wichura (1987, 1988), Lin (1990), Acklam (2003), Soranzo 

and Epure (2014). 
Pearson(general) Bowman and Shenton (1979). 

Student t Shaw (2006), Schluter and Fischer (2012). 

 

This review is to survey how quantile mechanics 
(QM) has addressed the aforementioned issues. Also 
the advantages, limitations of the QM and areas of 
further studies are included. Quantile Mechanics 
(QM) introduced by Steinbrecher and Shaw (2008) is 
relatively a recent series expansion method of 
quantile approximation. The approach is a departure 
from the use of CDF to the use of the derivative of the 
reciprocal of the PDF of the given distribution in the 
estimation of the quantile function. The outcome is a 
second order nonlinear ordinary differential 
equation (ODE) whose solution, in series form 
determines the quantile function of the given 
distribution. The solution of the ODE has been often 
in the form of Taylor series, power series and 
asymptotic expansions of the given quantile 
function. The availability of those series and 
expansion can present interesting possibilities in the 
applications of the quantile function. The details on 
the applications of the quantile functions are 
included in the paper. Evidences from different 
contributions to the use of QM showed that the 
approach is a major improvement over other 
methods in terms of efficiency and quantile 
approximation of complex distributions. Quantile 
mechanics can also be extended to distributions with 
known characteristic functions, but unknown or 
partially known PDF and CDF. Quantile mechanics 
can be applied to the quantile approximation of 
multivariate probability distributions. Recently, the 
concept of the QM has been applied to the 
development of efficient and robust algorithms for 
quantile approximations. The algorithms are found 
to be an appreciable improvement over the existing 
ones. Quantile mechanics are the formalization and 
generalization of using the ODE to approximate the 
QF of probability distributions. 

In general, before the advent of QM, a look at the 
earlier research done on the ODE of probability 
functions showed that the emphasis was on models 
and not on probability distributions. The use of ODE 
comes in form of the following: 

 

a) Modeling of probability of events, Probability 
density function (PDF) and cumulative 
distribution function (CDF) of distributions; (Xiao 
et al., 2015) amongst other authors. 

b) Modeling of CDF of probabilistic or random 
models (Lee and Taubman, 2006). 

c) Modeling of PDF of probabilistic models  
(Popkov and Dubnov, 2016). 

d) Modeling of hazard function (HF) and survival 
function (SF) of probabilistic models (Wang et al., 
2016). 

e) Modeling of other aspects of probabilistic models 
for example, the moment, generating functions 
and so on (Csenki, 2015). 

 
The few works on the use of ODE for QF are the 

key foundation of the QM.  
However, some gaps remain unfilled in the 

utilization of the QM approach. Now that the QM 
approach has proved to be an efficient method as 
verified by the researchers, it remains to be seen if 
other similar distributions to the uniform 
distribution like u-quadratic, triangular, rectangular 
and trapezoidal distributions can be used in lieu of 
the uniform distribution, especially in random 
number generation where it is used. Quantile 
mechanics is plagued with inconsistencies in the 
solution of the second order nonlinear ODE obtained 
as the output of the approach. Different series 
solution methods can be used with different levels of 
comparative results. It remains to be shown what 
the derivative of the reciprocal of different 
probability functions will look like since the QM is 
based on the derivative of the reciprocal of the PDF 
of the given distribution. Quantile mechanics is a 
very complex method for simple distributions. This 
is due to the procedure of the QM that depends on 
the creating and finding a definite solution to the 
nonlinear ODE that characterize the given 
distribution. 

In order to fully understand the progress made in 
the creation of the QM, there is a need to compare 
and measure the solutions (approximation) obtained 
through the first and second order nonlinear ODEs 
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obtained via the QM. Further comparison may come 
in the way of assessing the QM with the ODE 
obtained through the simple differentiation of the 
quantile function of the given distribution. This of 
course can be possible if the QF of the distribution is 
differentiable. Inconsistencies in the initial or 
boundary conditions that define the nonlinear ODE 
obtained through ODE has been noticed and noted. 
This amongst others has created difficulty in the 
extension of the QM approach to target distributions, 
for example, in finding the base distribution needed 
to find the approximation of the base distribution. 
Moreover, the QM and other methods are yet to be 
applied in the quantile approximation of convoluted, 
ratio and product probability distributions. These 
mentioned distributions are very important in the 
statistical modeling. In the same vein, the search 
continues for the method that can be used in the 
quantile approximation of discrete distribution. This 
is because the nature of the discrete distributions is 
incompatible with QM approach and as such the QM 
joins the queue of methods that are helpless in the 
quantile approximation of discrete distributions. 

In reliability studies, it is important to determine 
the nature of the quantile function at specific 
quartiles especially in management or decision 
analysis. This is another area that most of the 
methods perform badly since the solutions are 
produced firstly before the quartiles are considered. 
This is cumbersome, especially when a specific result 
is desired in particular and not in the totality. Since 
QM depends heavily on ODE, it is also important to 
study the existence and uniqueness of the 
anticipated solution on a given domain. The 
approach could also be designed in a way to explain 
the instances where analytic solutions are possible 
in a distribution with intractable CDF.  

The paper is organized as follows: section one is 
the introduction, section two is the details of the 
quantile function, their mathematical expression, 
examples and applications. Section three is the 
description and the importance of the inversion 
method. Section four gives the different methods of 
quantile approximation. Section five contains the 
historical development, applications, contributors, 
examples, advantages of the QM. Section six contains 
various critics and possible research areas of the QM 
approach. The paper ends with concluding remarks 

2. Quantile function 

The quantile function is the inverse cumulative 
distribution function (CDF). Cumulative distribution 
function of a random variable X, evaluated at a given 
point x is the probability that the random variable X 
will assume values less than or equal to the given 
point x. 

Mathematically, the cumulative distribution 
function can be expressed as; 

 
𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥), 𝑥 ∈ Ɍ                                                             (1) 

 

Apart from the relationship between the CDF and 
quantile function, CDF can be used in the cumulative 
frequency analysis and statistical hypothesis testing. 

For both discrete and continuous random 
distribution, the quantile function is generally 
known to be given as: 
 
 𝑤(𝑝) = 𝐹−1(𝑝) = inf{𝑥 ∈ Ɍ: 𝑝 ≤ 𝐹(𝑥)}                                (2) 
 

with 𝑝 ∈ (0, 1) and the cumulative distribution 
defined on the real line. 

If the function F exists, continuous and is strictly 
monotone increasing, then the infinium function can 
be replaced by the minimum function, Eq. 1 
becomes; 

 
𝑄(𝑝) = 𝐹−1(𝑝)                                                                               (3) 

 
It must also be noted that the relationship 

between the CDF and quantile function is not like the 
one between a function and its respective inverse 
because the mapping of the CDF is not a one-to-one. 
This is because in general, the CDF is not necessarily 
monotone increasing, but only non-decreasing and 
as such, does not fully admits the inverse function. 
But most of the distributions are characterized with 
the CDF that is strictly monotone increasing.  

The definitions are valid based on the assumption 
of the existence and uniqueness of the quartiles. This 
is due to that fact that the CDF that gave birth to 
them are right continuous and the measure of 
discontinuity is zero. Five-number summary 
(𝑎, 𝑞1, 𝑞2, 𝑞3, 𝑏) is obtained from the quantile 
function, where a and b are the minimum and 
maximum values of X. The five-number summary 
contains vital information about the center, spread, 
skewness and detection of outliers of the 
distribution of X.     

The quantile functions of some distributions are 
enumerated. 

 
1. Normal Distribution 

 
𝑄(𝑝) = 𝜇 + 𝜎√2𝑒𝑟𝑓−1(2𝑝 − 1)                                    (4) 

 
2. Standard Normal Distribution 

 
𝑄(𝑝) = √2𝑒𝑟𝑓−1(2𝑝 − 1)                                     (5) 

 
3. Exponential Distribution 
 

𝑄(𝑝) = −
1

𝜆
ln (1 − 𝑝)                                                       (6) 

4. Cauchy Distribution 

𝑄(𝑝) = 𝜇 + 𝜎𝑡𝑎𝑛 [𝜋(𝑝 −
1

2
)].                                                     (7) 

 
Another aspect of QF is the conditional QF 

defined by Parzen (2004). Given a random vector (X, 
Y); 

 
𝑄𝑌|𝑋 = inf{𝑥:  𝐹𝑌|𝑋 ≥ 𝑝}, 0 ≤ 𝑝 ≤ 1                                         (8) 
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where 𝐹𝑌|𝑋  is the conditional CDF for the random 

vector (X, Y). 
Quantile function is the most studied probability 

function, largely because of the following: 
  

i. It can be used to model and predict the 
percentiles, the quartiles especially median, 
which is more robust and resistant to outliers 
(Hampel, 1974). 

ii. Measurements involving the QF are often less 
influenced by outliers or extreme observations. 

iii. QF can be seen as an alternative to the CDF in 
analysis of lifetime probability models with 
heavy tails. 

iv. Probability distributions whose statistical 
reliability measures do not have a close or 
explicit form can be conveniently represented 
through the QF. 
 
Details of more on the theoretical and general 

applications of the QF can be found in Gilchrist 
(2007).  

 Generally, there seems to be three major areas 
where QF is mostly apply. These are; a) Value at risk 
(VAR): It is very useful in measuring risk in 
computational finance. For a given portfolio of a 
risky asset defined over a fixed time horizon t, let l 
denote the potential loss of the portfolio with a CDF 
given as; 𝐹𝑙(𝑥) = 𝑃(𝑙 ≤ 𝑥), the VAR can be defined, 
for a given confidence interval, 0 < 𝛼 < 1, as the 
smallest number x such that the probability of that 
the potential loss of the portfolio of a risky asset 
exceeds x is less than 1 − 𝛼 for the given fixed time 
horizon t. This can be represented mathematically 
as; 

 
VAR = inf{𝑥 ∈ Ɍ ∶ 𝑃(𝑙 > 𝑥) ≤ 1 − 𝛼}                                     (9) 
VAR = inf{𝑥 ∈ Ɍ ∶ 𝑃(𝑙 ≤ 𝑥) ≥ 𝛼} = inf{𝑥 ∈ Ɍ ∶ 𝐹𝑙(𝑥) ≥ 𝛼} 

               (10) 
 

It can be seen that the VAR is the 𝛼 quantile of the 
loss CDF. VAR can be used with caution as its 
derelictions can manifest in several ways (McNeil et 
al., 2005). 

b) Monte Carlo simulations. This arises from the 
fact that the quantile function of a given distribution 
maps the uniform variates to that given distribution 
and this has found substantial applications in 
computational finance and insurance (Luu, 2016). 

The Quantile function of the following 
distribution can be simulated by replacing the p in 
Eqs. 4, 5, 6 and 7 with the standard continuous 
uniform distribution u = U (0, 1).  

 
𝑄(𝑢) = 𝜇 + 𝜎√2𝑒𝑟𝑓−1(2𝑢 − 1)                                  (11) 

𝑄(𝑢) = √2𝑒𝑟𝑓−1(2𝑢 − 1)                                                        (12) 

𝑄(𝑢) = −
1

𝜆
ln (1 − 𝑢)                                                                (13) 

𝑄(𝑢) = 𝜇 + 𝜎𝑡𝑎𝑛 [𝜋(𝑢 −
1

2
)].                                (14) 

 
The inversion method is often used in this 

method. 

This can be established with the following 
equations;  
 

𝑃(𝑋 ≤ 𝑥) = 𝑃(𝑄(𝑢) ≤ 𝑥) = 𝑃(𝑢 ≤ 𝐹(𝑥)) = 𝐹(𝑥).         (15) 

 

c) Copulas: It is used to describe the dependence 
between random variables. It can be used to define 
the extent of which the marginal probability 
distributions may be linked, that is, the marginal 
probability distribution of each random variable is 
uniform. This forms the basis of the importance of 
quantile in copulas since the marginal distributions 
are uniform and can be linked to the quantile. This 
was a common assertion found in Franke et al. 
(2004).  

Moreover, copulas are often used in quantitative 
finance such as price volatility analysis; price spread 
options analysis, value at risk forecasting, portfolio 
optimization, improving returns on investment 
estimation and statistical arbitrage (Low et al., 
2013). 

Other areas of applications are also available, 
such as: engineering and hydrology (Cai and Reeve, 
2013), warranty data analysis (Wu, 2014), modeling 
turbulent combustion (Ruan et al., 2014), medicine 
(Eban et al., 2013), meteorology (Laux et al., 2011) 
and random vector generation (Bandara and 
Jayasumana, 2011).  

Despite the usefulness of the QF, it cannot be used 
to model time dependent events unless it is either 
transformed or induced and also a measure of 
variability is restricted to inter-quartile range. 
Interpretation of multivariate quantile functions has 
been often cumbersome. Also simulation is often 
limited to uniform continuous distribution (Machado 
and Mata, 2005).  

3. Inversion method 

Evidence from scientific literature revealed that 
the inversion method is most sought after method of 
obtaining the QF (Korn et al., 2010). The inversion 
method is used mainly when the CDF of the 
distribution has closed form representations and the 
presence of shape parameters that defined such 
distribution does not have a computational effect on 
the outcome of the QF. 

Some of the merits of the inverse methods are 
listed: 

 
a) It is very simple method employed to generate 

random variables from given distributions.  
b) Only one uniform distribution is required to 

generate non-uniform variates assuming that the 
CDF is continuous and monotone increasing.  

c) Inversion method creates room for sampling 
from conditional probability distribution 
(Glasserman, 2013). 

d) Inversion method is believed to be the only 
transformation technique method adaptable with 
various variance reduction methods such as 
sampling, random numbers generation and 
arithmetic random calculations (Gentle, 2003). 
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This further explains the role of the inversion 
method in inducing correlation among variates 
required in variance reduction techniques (Law 
and Kelton, 2000). 

e) The inversion method enables the researcher to 
generate the maximum of a given sample and the 
order statistics in a proficient manner. 

f) Researchers have unanimously concluded that 
the inversion method is the best available and 
scientifically proven method that preserves the 
structure of quasi random numbers better than 
other known methods like the Box Muller 
transform and Marsaglia transform (Galanti and 
Jung, 1997). However, Ökten and Göncü (2011) 
had rejected the assertion. 
 
However, inversion method is handicapped when 

the CDF does not have a closed form representation. 
Some of the distributions whose CDF have no closed 
form includes: Normal, chi-squared, beta, gamma, 
student’s t, F and so on. Secondly, the inversion 
method seems to be less computation feasible when 
compared with rejection sampling (Luu, 2016). 

4. Quantile approximation 

The unavailability of the closed form of the CDF of 
continuous probability distributions is the main 
rationale for several approximations available in 
scientific literature. 

Generally, research on quantile approximation is 
divided into four categories, namely; series 
expansions, closed form or functional 
approximation, numerical algorithm and the closed 
form expression drafted in terms of the quantile 
function of another distribution. 

It should be noted that aside from the 
aforementioned four categories, researchers have 
devised other inspiring and innovative means of 
approximating the quantile function based on the 
models they are working on. They can be regarded 
as hybrid methods that combine different methods 
of approximation with optimization methods. Some 
of which are listed: recovery of QF from the 
moments of the underlying distribution 
(Mnatsakanov and Sborshchikovi, 2017), 
approximation of higher quantile using the 
intermediate one (de Valk, 2016); artificial bee 
colony optimization and curve fitting methods 
(Kabalci, 2018). Others are estimates of the quantile 
from a given large samples of data that arrive in 
sequence, hence the quantile is approximated using 
a stochastic learning approach (Yazidi and Hammer, 
2015) and approximation by kernel estimation 
method (Hasu et al., 2011).  

4.1. Functional approximation 

This is the use of a function that closely resembles 
the target function. Evidences from some selected 
work done in closed form approximation of quantile 
functions of probability distributions are focused on 
improving or error reduction of existing methods. 

Some selected works in the area are normal 
distribution (Soranzo and Epure, 2014) and 
Gompertz–Makeham distribution (Jodrá, 2009). The 
major drawback is the complexity of the functions 
and low computational speed.  

4.2. Using the QF of one to approximate another  

This is the use of the QF of a known distribution 
to derive the QF of another, if there is a tangible 
relationship between the two distributions (Munir, 
2013). 

4.3. Numerical techniques or algorithms 

Numerical techniques and algorithms are often 
used in the absence of the closed form expression of 
the quantile function. Computational efficiency is the 
core advantage of this method (Lange, 2010). The 
numerical techniques or algorithms are further 
divided into the methods of root finding, rational 
approximation and interpolation.  

In particular, some specialized numerical 
algorithms and techniques have been used for 
quantile approximations. Examples are: Hermite 
interpolation (Hörmann and Leydold, 2003) and 
regularization procedure (Chernozhukov et al., 
2010). 

4.3.1. Root finding 

Standard numerical algorithms are used to obtain 
the zeros of the equation that linked the CDF to the 
QF. This can be achieved when the CDF is continuous 
and monotone increasing. 

Newton and secant methods are mostly used 
here, but these methods suffer from slow 
convergence when applied to complex distributions 
(Hörmann et al., 2013). Bisection and Halley’s 
methods are improvement over the Newton and 
secant methods (Huh, 1986). Their improvement is 
only on increasing the rate of convergence to the 
exact solutions of the required quantile functions. 

Functional iteration or fixed point method is 
another root finding method which is an 
improvement over all other root finding methods. 
The merits of the fixed point method include: 
quadratic convergence, wide applicability, only the 
CDF and PDF are required, applicability to 
distributions on finite intervals and mixed 
distributions. Convergence problem subsist in this 
method, however a better result can be obtained 
through the use of Steffensen’s acceleration 
technique (Minh and Farnum, 2010). 

Root finding techniques require a formula of 
initial guess which is of high accuracy and tolerable 
accurate CDF algorithm. The method is very efficient 
(Dagpunar, 1989), however, their usefulness is often 
limited to the refining of the output of another 
algorithm and slow. Readers are referred to Acklam 
(2009). Moreover, they are applicable to 
distributions with shape parameters (Luu, 2016). 
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4.3.2. Rational approximation 

The central theme of rational approximation is to 
approximate the QF by a function of the form; 
 

𝑄(𝑝) =
𝑐0+𝑐1𝑝+𝑐2𝑝2+⋯+𝑐𝑛𝑝𝑛

𝑑0+𝑑1𝑝+𝑑2𝑝2+⋯+𝑑𝑛𝑝𝑛
+ 𝑒(𝑝)                                      (16) 

 
defined on an error e(p) satisfying a given bound. 

There seems to be a general agreement to the 
difficulty of obtaining rational approximation using a 
single domain, so researchers resorted to splitting 
the domain into subdomains and subsequently 
obtaining several rational approximations (Acklam, 
2009). The method has advantage of computational 
efficiency (Shaw et al., 2014); however it is plagued 
with low convergence and slow speed in 
computation. 

4.3.3. Interpolation 

This is curve fitting with the use of polynomials. 
This is often done by the use of numerical 
integration. A general procedure of approximating 
the quantile function of probability distributions was 
provided by Ahrens and Kohrt (1981) and Schiess 
and Matthews (1985). This involves three steps, 
namely: Numerical integration of the CDF in order to 
obtain the PDF, use the criteria of the behavior of the 
CDF to divide the domain of the quantile function 
into unequal length intervals and finally, determine 
the nature of the interpolating function at each 
subdomain or interval. Most of the results obtained 
from interpolation are better than both the rational 
and root finding methods. This was submission of 
Costa (2018). The method is not suitable for 
distributions with shape parameters. The process of 
initialization of each parameter at each computation 
slows the computation speed. 

4.4. Series expansions 

This is the use of a series or sequence of terms to 
approximate the quantile function. Most often 
asymptotic expansion is preferred. Asymptotic 
expansion is a formal series expansion of given 
function whose partial sums of the first few terms of 
the series can be a good approximation to the given 
function. Also asymptotic expansion can be extended 
to the use of a series expansion of a function to 
approximate a similar function based on the 
observed similarities of the functions. Several kinds 
of series expansions exist; they include: Taylor, 
Power, MacLaurin, Laurent, Dirichlet, Fourier series 
and so on. Series expansions methods of quantile 
approximations are listed: Cornish-Fisher 
expansions, orthogonal expansion and the quantile 
mechanics (QM).  

4.4.1. Cornish fisher expansions 

This is the most often used quantile 
approximation technique. Cornish-Fisher expansion 

is primarily used to obtain the approximation of the 
quantiles of a given probability distribution based on 
its cumulants. Cornish and Fisher (1938) and Fisher 
and Cornish (1960) defined for a given random 
variable X, with mean 0 and standard deviation 1, an 
expansion for the approximation of the pth quantile 
function 𝑄𝑋(𝑝) of the standard normal distribution 
based on their cumulants; 

 

𝑄𝑋(𝑝) = 𝑄𝑍(𝑝) +
𝑄𝑍(𝑝)2−1

6
𝑘3 +

𝑄𝑍(𝑝)3−3𝑄𝑍(𝑝)

24
𝑘4     

 −
2𝑄𝑍(𝑝)3−5𝑄𝑍(𝑝)

36
𝑘3

2 +
𝑄𝑍(𝑝)4−6𝑄𝑍(𝑝)2+3

120
𝑘5   

−
𝑄𝑍(𝑝)4−5𝑄𝑍(𝑝)2+2

24
𝑘3𝑘4     

+
12𝑄𝑍(𝑝)4−53𝑄𝑍(𝑝)2+17

324
𝑘3

3                                                           (17) 

 
where 𝑄𝑋(𝑝) is the p-quantile of the standard 
normal distribution, 𝑘1, 𝑘2, 𝑘3, … are the cumulants. It 
should be noted that the expansion can be extended 
to other probability distributions by normalization. 
Hill and Davis (1968) extended the works of 
Cornish-Fisher to arbitrary base distribution. This 
was further refined by Shaw et al. (2014). 

Cornish Fisher is widely used in computational 
finance, for example, in the calculation of Value at 
Risk (VAR). However, it is limited in some ways. The 
quantile function is not inevitably monotone, 
approximations around the tail regions are 
cumbersome and the asymptotic nature connotes 
that increase of terms of the expansion does not 
necessarily improve the approximation. Moreover, 
Cornish-Fisher approximation performs better than 
the normal approximation (Jaschke, 2001). 

Cornish Fisher expansions are ordinarily 
centered on the normal distribution, but regrettably, 
the normal distribution is not a universal model as it 
fails when applied to skewed data. This is worsened 
by the fact that most real life data are skewed. The 
method is intolerant to moderate or large departure 
from normality. The method is known to be not 
robust and have issues when the distribution is 
characterized by heavy tails and skewness. The 
consequences of the weaknesses are that the method 
may not always give reliable approximations 
(Coleman, 2012). The problems associated with 
Cornish Fisher expansions are unchanged despite 
some modifications of the method (Chernozhukov et 
al., 2010). 

4.4.2. Orthogonal expansions 

This method was proposed by Takemura (1983). 
The main idea was to find a base distribution from 
which it can be linked to an orthonormal basis of the 
second moment of the distribution. Orthogonal 
expansion makes use of the Fourier approach to 
express the target QF to that of the base QF similar to 
the Cornish Fisher expansion. 

Convergence of series is an important advantage 
of orthogonal expansion over the Cornish Fisher 
expansion. However the method is limited to 
convergence to the second moment norm and 
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difficulty of computing the terms of the series 
analytically.  

4.4.3. Quantile mechanics 

This is the use of differential equations to 
approximate the quantile function of a given 
probability distributions. Linear or nonlinear 
ordinary differential equations seem to be a common 
route been followed by researchers on the voyage of 
approximation of quantile functions (Hill and Davis, 
1968). These happen to be the foundation behind the 
QM. 

Researchers in this area maintained that the first 
order ODE of the quantile function is the reciprocal 
of the probability density function of the probability 
distribution (Soni et al., 2012). That is the PDF has to 
be expressed in terms of the quantile function with 
the assumptions that the PDF is differentiable or has 
a close form representation. This was an attempt to 
approximate the QF of many distributions having no 
close form expressions for their CDFs. 
 
𝑑𝑤

𝑑𝑝
=

1

𝑓(𝑥)
                                        (18) 

 

where w(p) is the quantile function expressed in 
terms of p, 0 < p < 1. 

Different names have been given to the left hand 
side of Eq. 18, the quantile density function is the 
most often used (Soni et al., 2012) while the term 
“the Sparsity function” was used by Tukey (1965). 

Consistent and efficient estimators for the left 
hand side of Eq. 18 have been derived from Babu and 
Rao (1990). In addition, other methods of estimating 
the quantile density function include: Kernel method 
(Falk, 1984), wavelets methods (Chesneau et al., 
2016) and moments (Mnatsakanov and 
Sborshchikovi, 2017). The Quantile mechanics 
approach is a key method of using the ODE to 
approximate the QF. 

5. Quantile mechanics 

The major contribution of the review is to 
investigate the extent of which the QM approach has 
been applied in quantile approximation. The QM was 
introduced by Steinbrecher and Shaw (2008) being 
inspired by the earlier vague works done on the use 
of ODE in quantile approximations and a need to 
improve the use of quantile mechanics in 
computational finance. 

5.1. Formulation 

The objective of the QM approach was to modify 
Eq. 18 in such a way that a feasible solution can be 
obtained. That is a transmission from estimation to 
approximation. Given a CDF F and its related QF Q(p) 
for probability distributions whose CDF is monotone 
increasing and continuous; That is; 

 
𝑄(𝑝) = 𝐹−1(𝑝)                                                                     (19) 

where the function 𝐹−1(𝑝) is the compositional 
inverse of the CDF.  

Suppose the PDF f(x) is known and the 
differentiation exists. The first order quantile 
equation is obtained from the differentiation of Eq. 
19 to obtain; 
 

𝑄′(𝑝) =
1

𝐹′(𝐹−1(𝑝))
=

1

𝑓′(𝑄(𝑝))
                                                     (20) 

  

According to the submissions from literature, the 
probability density function is the derivative of the 
cumulative distribution function. The conditions 
being that the CDF is monotone increasing and the 
measure of discontinuities is approximately zero. 
The solution to Eq. 18 is often cumbersome as noted 
by Ulrich and Watson (1987). This is due to the 
nonlinearity of terms introduced by the density 
function f. Ulrich and Watson (1987) used Eq. 18 to 
obtain the quantile approximations of the normal, 
exponential, gamma and Cauchy distributions. In the 
same vein, Leobacher and Pillichshammer (2002) 
obtained the result for the hyperbolic distribution. 
This is given as; 

 

𝑄′(𝑝) =
1

𝐹′(𝐹−1(𝑝))
=

1

𝑒
e𝑎√𝑎2+(𝐹−1(𝑝)−𝑐)2−𝑏(𝐹−1(𝑝)−𝑐)         (21) 

 
The solution is cumbersome and expensive. In 

order to improve on the use of ODE in QF 
approximate, Steinbrecher and Shaw (2008) 
proposed a new approach termed the “Quantile 
mechanics”. 

Some algebraic operations are required to find 
the solution of Eq. 20. Moreover, Eq. 20 can be 
written as; 

 
𝑓(𝑄(𝑝))𝑄′(𝑝) = 1                                                                 (22) 
 

Applying the product rule of differentiation to 
obtain; 

 
𝑑2𝑄(𝑝)

𝑑𝑝2 = 𝑉(𝑄(𝑝)) (
𝑑𝑄(𝑝)

𝑑𝑝
)

2
                                                        (23) 

 
where the nonlinear term; 

 

𝑉(𝑥) = −
𝑑

𝑑𝑥
(ln 𝑓(𝑥)).                                                              (24) 

 
These were the results of Steinbrecher and Shaw 

(2008).  

5.2. Extensions and variants 

Shaw and Brickman (2009) introduced the 
differential equation as modification or extension of 
Eq. 23; 
 

𝑓(𝑤(𝑝))
𝑑2𝑤(𝑝)

𝑑𝑝2 + 𝑓′(𝑤(𝑝)) (
𝑑𝑤(𝑝)

𝑑𝑝
)

2

= 0                  (25) 

 

The differential equations obtained from quantile 
mechanics are cyclic in nature (Shaw et al., 2014). 

Munir and Shaw (2012) noted that this approach 
is often difficult but has been unexplored, especially 
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the solutions of Eq. 23. It is because many 
distributions have complicated probability density 
functions. They considered the following complex 
distributions: hyperbolic, α-stable, variance gamma 
and generalized inverse Gaussian distributions.   

In order to solve the problem, they proposed a 
new method of transformation from the base 
distribution QB(p) to the target distribution QT(p). 
Assume a function C exists which associates or map 
the pth quantile for the base distribution with the pth 
quantile of the target distribution. 
 

𝑄𝑇(𝑝) = 𝐶(𝑄𝐵(𝑝))                                                    (26) 

 

An ODE describing the function C arises from the 
adoption of change of variable. 
 
𝑑𝑄𝑇(𝑝)

𝑑𝑝
=

1

𝑓𝑇(𝑄𝑇(𝑝))
                                                                      (27) 

 
A change of variable is needed in order to apply 

the simple chain rule of differentiation. That is 
𝑥 = 𝑄𝐵(𝑝). Eq. 27 is differentiated; 
 
𝑑𝑄𝑇(𝑝)

𝑑𝑝
=

𝑑𝐶

𝑑𝑥

𝑑𝑥

𝑑𝑝
=

𝑑𝐶

𝑑𝑥

𝑑𝑄𝐵

𝑑𝑝
  =

𝑑𝐶

𝑑𝑥

1

𝑓𝐵(𝑄𝐵(𝑝))
=

𝑑𝐶

𝑑𝑥

1

𝑓𝐵(𝑥)
               (28) 

 
Substitute in Eq. 27 to obtain the first order 

recycling equation; 
 

𝑑𝐶

𝑑𝑥
=

𝑓𝐵(𝑥)

𝑓𝑇(𝐶(𝑥))
                                                                      (29) 

 
The equation can be solved thereafter for the 

chosen distribution. In the same line of research, 
Kleefeld and Brazauskas (2012) applied the quantile 
mechanics to derive the methods of trimmed 
moment estimators for the student’s and gamma 
distributions. Inspired by the quantile mechanics 
approach, Cordeiro (2013) proposed a novel method 
of expressing the quantile function of any given beta 
generalized distribution.  

Shaw and McCabe (2009) extended the quantile 
mechanics to the characteristic function of unknown 
probability distributions. The outcome was an 
integro-differential equation that assumes a power 
series solution despite the complexity of the nature 
of the unknown probability density function. This 
extension is motivated from the use of characteristic 
function of computing the CDF by inversion. This had 
help in applications in mathematical finance such as 
Shaw and Munir (2009) and Munir and Shaw (2012). 

5.3. Applications  

Quantile mechanics has been applied to some 
distributions. The details of the distributions where 
QM has been applied so far to the knowledge of the 
authors are summarized in Table 2.  

 
Table 2: Authors contribution to the QM approach of quantile approximation of different distributions 
Distribution Authors 

Beta Steinbrecher and Shaw (2008) 
Exponential Shaw et al. (2014), Shaw and Brickman (2009)  

Gamma Steinbrecher and Shaw (2008), Luu (2016, 2015) 
Generalized inverse Gaussian Munir (2013), Munir and Shaw (2012) 

Hyperbolic Munir (2013), Shaw et al. (2014), Shaw and Brickman (2009), Munir and Shaw (2012) 
Non-central chi square Munir (2013) 

Normal 
Steinbrecher and Shaw (2008), Luu (2016), Shaw et al. (2014), Shaw and Brickman (2009), 

Shaw and McCabe (2009), Alu (2011) 
Skew-normal Luu (2016) 
Snedecor’s F Munir (2013) 

Student’s t 
Steinbrecher and Shaw (2008), Shaw et al. (2014), Shaw and Brickman (2009), Shaw and McCabe 

(2009)  
Symmetric generalized Hyperbolic Shaw and McCabe (2009) 

Variance gamma Munir (2013), Shaw et al. (2014), Shaw and Brickman (2009), Munir and Shaw (2012)  
α stable Munir (2013), Munir and Shaw (2012) 

Some selected convoluted 
distributions 

Okagbue et al. (2018) 

 

5.4. Application to the normal distribution 

The QF of the normal distribution is known as the 
probit function. The probit can easily be transformed 
from the CDF of the standard normal distribution 
using the inversion method, but the presence of the 
error function makes computation often expensive. 
The probit function is given by; 

 
𝑄(𝑝) = √2𝑒𝑟𝑓−1(2𝑝 − 1).                                                    (30) 

 
Steinbrecher and Shaw (2008) applied the QM 

approach to the normal distribution (standard) that 
is to obtain the approximation to Eq. 30. The details 
follow; the PDF of the standard normal distribution 
is given by; 

 

𝑓(𝑥) =
1

√2𝜋
e−

𝑥2

2 ,                                                               (31) 

transform to obtain; 
 

𝑓(𝑤) =
1

√2𝜋
e−

𝑤2

2 ,                                                                        (32) 

 

transforming using the direct approach of Eq. 18, to 
obtain; 
 
𝑑𝑤

𝑑𝑝
= √2𝜋e

𝑤2

2 ,                                                                               (33) 

 
differentiate again; 

 
𝑑2𝑤

𝑑𝑝2 = √2𝜋e
𝑤2

2
2𝑤

2

𝑑𝑤

𝑑𝑝
= √2𝜋e

𝑤2

2 𝑤
𝑑𝑤

𝑑𝑝
,                                    (34) 
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substitute Eq. 33 into Eq. 34; 
 

𝑑2𝑤

𝑑𝑝2
= 𝑤 (

𝑑𝑤

𝑑𝑝
)

2
,                                                     (35) 

 
with initial conditions: 

 
𝑤(1 2⁄ ) = 0, 𝑤′(1 2⁄ ) = √2𝜋,   

 
different approaches have been used to solve Eq. 35. 

Steinbrecher and Shaw (2008) used the power 
series approach. The solution they obtained is given 
as: 

 

𝑤(𝑝) = √
𝜋

2
∑

𝑑𝑘

2𝑘+1
(2𝑝 − 1)2𝑘+1∾

𝑘=0                                        (36) 

  
where the coefficients 𝑑𝑘  satisfies the stated 
nonlinear recurrence equation given by; 
 

𝑑𝑘+1 =
𝜋

4
∑

𝑑𝑗𝑑𝑘−𝑗

(𝑗+1)(2𝑗+1)

𝑘
𝑗=0                                                     (37) 

 

with 𝑑0 = 1, convergence is achieved for large k, 
 
𝑑𝑘+1

𝑑𝑘
= 1, as 𝑘 → 0.  

 

The first few terms of series (Eq. 36) can be 
written as; 
 

𝑤(𝑝) = −
√2𝜋

2
(1 +

𝜋

12
) + √2𝜋 (1 +

𝜋

4
) 𝑝 −

√2𝜋

2
𝜋𝑝2 +

√2𝜋

3
𝜋𝑝3 + ⋯                       (38) 

 
Alu (2011) used the modified Carleman 

embedding technique to obtain the solution of Eq. 
36. The series solution was given as; 

 

𝑤(𝑝) = −
1

2
(

√2𝜋3

12
+ √2𝜋) + (

√2𝜋3

4
+ √2𝜋) 𝑝 −

√2𝜋3

2
𝑝2 +

√2𝜋3

3
𝑝3 + ⋯                       (39) 

 

Eqs. 38 and 39 are approximately the same and 
hence the approximate of the probit function. The 
equivalence of Eqs. 38 and 39 can be seen when their 
terms are compared. 

5.5. Advantages of the quantile mechanics 

The major contributions of the QM approach 
formed most of the merits over other forms of 
quantile approximations. 

5.5.1. Superiority over other surveyed methods 
in approximating complex distributions  

The QM is so far the best approach to the use of 
ODE in quantile approximation of probability 
distributions. Quantile approximations of complex 
distributions that can prove cumbersome to other 
methods have been obtained by the use of QM 
approach. The evidence can be seen in Munir and 
Shaw (2012) and Munir (2013) where they 

considered and consequently obtained the 
asymptotic representations of the following 
distributions: Generalized inverse Gaussian, 
Variance gamma, α-stable, hyperbolic and 
Snedecor’s F distributions. However many 
distributions are remain unexplored.  

5.5.2. Better approximations of distributions 
with shape parameters 

As noted by Luu (2016) that quantile 
approximations of distributions with shape 
parameters are cumbersome and require two 
processes. The QM approach performed better than 
the Cornish Fisher expansion method in quantile 
approximation of the student’s t distribution (Shaw 
and Brickman, 2009; Shaw and McCabe, 2009), 
gamma distribution (Steinbrecher and Shaw, 2008; 
Luu, 2015; 2016) and beta distribution 
(Steinbrecher and Shaw, 2008). 

5.5.3. Precision and accuracy of results 

The general quality of results, convergence to the 
exact values and high precision of the QM approach 
in quantile approximation presents the method as a 
major improvement over the others. This was the 
outcome in the approximation of the student’s t 
distribution (Shaw and Brickman, 2009), normal 
distribution (Luu, 2016) and gamma distribution 
(Luu, 2015; 2016). 

5.5.4. Speed and application to parallel 
computation 

The QM approach has been used to develop 
numerical algorithms for quantile approximation, 
which was found to be efficient, robust, and fast and 
save computing time. For example the algorithm 
obtained for the normal QF is found to be better than 
those available in literature, see Shaw and Brickman 
(2009) and Luu (2015). The details on this aspect 
were discussed extensively in Luu (2016). In 
addition, the numerical algorithms are very suited 
for parallel computer architectures, precise and 
faster when compared with the existing ones. 
Subsequently, several research activities are 
expected to emerge here because of numerous 
distributions that are yet to be explored. 

5.5.5. Application in momentum space 

Quantile mechanics proved useful in quantile 
approximation of α-stable distributions. These are 
distribution for cases where only the characteristic 
function is known and the PDF and CDF is either 
unknown or does not have closed form 
representations (Munir, 2013; Shaw and McCabe, 
2009). However the implementation is limited to 
high level languages and often slow in computation. 
This is because of the problem of reverting the 
power series in the computation.  
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5.5.6. PDF used in lieu of the CDF 

QM approach makes use of the PDF which is more 
tractable for some distributions than the CDF. A 
survey of some distributions showed that the PDF is 
a lot more tractable than most CDF. Now, the 
intractability of the CDF is not an obstacle in the 
quantile approximation if the QM approach is 
applied. 

6. Areas of possible studies 

The QM approach can be seen as an important 
improvement over the other existing methods with 
some advantages evidenced by the research work 
done so far. However, the review has unearthed 
some striking issues bothering on the approach that 
will inevitably lead to further investigations in this 
research area.  

6.1. Difficult approach for some distributions 

The QM approach seems to be difficult in 
computation for some distributions. This is 
evidenced by the second order nonlinear ODE 
obtained for the Gompertz and Gumbel distributions. 
The solution of the two ODEs may prove a great 
challenge. In this case, the inversion method is a 
viable option. The reason why this kind of nonlinear 
ODE was obtained is subject for further studies.  

6.2. Inconsistencies in solution of the concerned 
ODEs  

Different series solution methods have been used 
in the solution of the nonlinear ODEs obtained 
through the QM approach. This includes: power 
series (Steinbrecher and Shaw, 2008) and Taylor 
series (Munir, 2013). The implications of the 
inconsistencies can manifest in two faced scenarios. 
Firstly, the comparison of the series solutions has 
not been done. This has prevented researchers from 
making general statements about their results. 
Secondly, this creates an avenue for the use of other 
methods available in scientific literature, thereby 
opening up the area for further research and 
criticism.   

6.3. Complex for simple distributions 

QM is a very complex approach of quantile 
approximation for simple distributions. Let us 
consider the exponential distribution. The quantile 
ODE whose solution is the QF of the exponential 
distribution is given by; 
 
𝑑2𝑤

𝑑𝑝2 = 𝜆 (
𝑑𝑤

𝑑𝑝
)

2
.                                                                             (40) 

 

Solution to Eqs. 40 is complex when compared 
with the use of inversion method that easily yields 
the QF of the exponential distribution given as; 
 

𝑄𝑝 = −
ln(1−𝑝)

𝛽
                                                                              (41)  

6.4. Derivatives of reciprocal of other probability 
functions 

QM is limited to quantile function only. It remains 
to show what the nature of derivatives of the other 
probability functions would be. It is yet to be 
reported in scientific literature what the derivatives 
of the reciprocal of the following probability 
functions will be. 
 
𝑑𝑦(𝑥)

𝑑𝑥
=

1

𝐹(𝑥)
                                                     (42) 

 

where F(x) is the CDF. 
 
𝑑𝑦(𝑥)

𝑑𝑥
=

1

𝑆(𝑥)
                                                                      (43) 

 

where S(x) is the Survival function. 
 
𝑑𝑉(𝑝)

𝑑𝑝
=

1

𝑉(𝑝)
                                    (44) 

 
where V(p) is the Inverse survival function. 
 
𝑑𝑦(𝑥)

𝑑𝑥
=

1

ℎ(𝑥)
                                                     (45) 

 
where h(x) is the Hazard function 
 
𝑑𝑦(𝑥)

𝑑𝑥
=

1

𝑗(𝑥)
                                                                      (46) 

 
where j(x) is the Reversed hazard function 
 
𝑑𝑦(𝑥)

𝑑𝑥
=

1

𝑜(𝑥)
                                                     (47) 

 
where o(x) is the Odd function. 

6.5. Comparison between first and second order 
ODEs of the Quantile mechanics 

The detailed comparison between Eqs. 20 and 23 
has not been considered. The comparison is 
important to determine the extent of which Eq. 23 is 
an improvement over Eq. 20.  

6.6. Comparison with the ODE obtained from 
ordinary derivative 

Ordinarily the derivative of the PDF can be either 
used to obtain an ODE whose solution is the PDF of 
the distribution or the mode of the distribution. 
Likewise, the same can be applied to the QF. The 
ODE obtained through this process is different from 
the one obtained from QM. The reason of the 
discrepancies and detailed comparison is subject to 
further investigations by researchers. 

An example of the ODE derived for the QF of the 
exponential distribution. 

The Quantile function (QF) of the exponential 
distribution is given by; 
 

𝑄(𝑝) = −
ln(1−𝑝)

𝜆
.                                                                      (48) 
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The first order differential equation for the QF 
can be obtained from the differentiation of Eq. 48; 
 

𝑄′(𝑝) =
1

𝜆(1−𝑝)
.                                    (49) 

 

The condition necessary for the existence of the 
equation is 𝜆 > 0, 0 < 𝑝 < 1. Simplify Eq. 49 to 
obtain; 
 
𝜆(1 − 𝑝)𝑄′(𝑝) = 1                   (50) 
 

The first order ordinary differential for the 
Quantile function of the exponential distribution is 
given as; 
 
𝜆(1 − 𝑝)𝑄′(𝑝) − 1 = 0                  (51) 

𝑄(0.1) =
0.1054

𝜆
.                                                     (52) 

 

To obtain the second order differential equation, 
differentiate Eq. 49 to obtain; 
 

𝑄′′(𝑝) =
1

𝜆(1−𝑝)2
.                                    (53) 

 

The condition necessary for the existence of the 
equation is 𝜆 > 0, 0 < 𝑝 < 1. Simplify Eq. 53 to 
obtain; 
 

(1 − 𝑝) [
1

𝜆(1−𝑝)2] =
1

𝜆(1−𝑝)
                                                         (54) 

(1 − 𝑝)𝑄′′(𝑝) = 𝑄′(𝑝)                                                              (55) 
 

The second order ordinary differential for the 
Quantile function of the exponential distribution is 
given as; 
 
(1 − 𝑝)𝑄′′(𝑝) − 𝑄′(𝑝) = 0                                                    (56) 

𝑄′(0.1) =
10

9𝜆
.                                                                                (57) 

 
Are the solutions the same and feasible?  Will this 

applies to all distributions whose QFs are 
differentiable? Do the ODEs obtained through 
ordinary derivative give the same solution? Does it 
save time to work with the ones that gave linear 
ODEs against the QM approach that yielded 
nonlinear ODE? Why are the initial value conditions 
different? If the ordinary derivatives are available, 
do we still need QM approach and does QM give 
better result? These and more are expected to be 
subjects for further investigation.   

6.7. Non-uniformity of initial or boundary 
conditions 

Different initial or boundary conditions have 
been used interchangeably in the solution of the 
nonlinear ODEs obtained for the QF through the QM. 
Initial, center and boundaries have been applied 
(Steinbrecher and Shaw, 2008). One common feature 
used by the different authors is the use of change of 
variable to convert the boundary/initial conditions 
to a simpler one.  

6.8. Difficulty of transformation of extended 
distributions 

The transformation from base distributions to the 
target one may be cumbersome for extended 
probability distributions like truncated, extended, 
generalized, exponentiated, transmuted, weighted, 
inflated, inverted or compounded distributions. The 
details are subject of further research.  

6.9. Extension to convoluted, ratio and product 
distributions 

The QM has not been applied to the quantile 
approximation of convoluted, ratio and product 
probability distributions. These classes of 
distributions are used to model real life phenomena. 
An example is given to drive home the point. 

This will attract research interest because of the 
diverse applications of convoluted, ratio and product 
distributions of probability distributions whose CDF 
does not have close form representation.  

6.10. Non applicability to discrete probability 
distributions 

The QM has joined the queue of the methods that 
cannot be routinely applied to the quantile 
approximation of discrete probability distributions. 
The search for such method goes on.  

6.11. Multivariate and mixed Quantile 
approximations 

This was briefly discussed by Steinbrecher and 
Shaw (2008). This remains unexplored largely 
because of difficulty in formulating efficient initial or 
boundary conditions required in the determination 
of the solution of the ODE obtained. The application 
of the QM approach for quantile approximation of 
mixed distributions has not been reported in 
literature. This area remains largely unexplored.  

6.12. Alternatives to the uniform distribution 

One of the major reasons for the quantile 
approximation is because of the use of QF in random 
number generation. This is because the QF maps the 
uniform variates to the target or desired 
distribution. Now that the QM approach have proved 
to be very efficient. Other alternatives to the uniform 
variates need to be considered. The recommended 
variates are somewhat related to the uniform 
variates.  

The distributions are: u-quadratic, triangular, 
rectangular and trapezoidal distributions. The same 
need to be considered in copulas. 

6.13. Region of analytic solutions 

The QM is silent about the behavior of the method 
and the QF where the CDF of distributions 
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considered has close functions. For example, the CDF 
of the Chi-square distribution has a close form 
representation at degrees of freedom equals two and 
the CDF of Erlang distribution has closed form at 
degrees of freedom equals to one. 

6.14. Quantile function considered in totality 

The QM has performed effectively in the quantile 
approximation for the tail probability of different 
probability distributions. The performance of the QM 
on different quartiles or percentage points has not 
been fully considered. The quantile is considered in 
totality (in most cases) without consideration of the 
lower and upper quartiles and so on. 

6.15. Existence and Uniqueness of solutions 

The outcome of the QM is a second order 
nonlinear ODE. The existence and the conditions that 
determine and guarantee the unique solution in the 
given domain have not been considered. This is 
expected to attract research interest, especially from 
mathematicians.  

7. Conclusion 

The review has attempted to present different 
views as regards to the quantile approximations in 
general and quantile mechanics in particular. The 
Quantile mechanics is a very efficient approach of 
using the ordinary differential equations to 
approximate the quantile functions of distribution 
with no close form for their cumulative distribution. 
Different areas of strength, weaknesses, limitations 
and unexplored areas of the Quantile mechanics 
approach were discussed based on the evidence 
obtained from the scientific literature available from 
that area of research. Quantile mechanics and other 
methods surveyed in this paper will continue to be 
relevant because of the wide applicability of the 
quantile function as seem in the review. The review 
has merged different views on quantile 
approximations which ordinarily approximates to 
the truth that this is the direction that research in 
that area is likely to go. Finally, some of the gaps 
observed in this paper have motivated to the 
proposal of different ordinary differential equations 
whose solutions are the probability functions of the 
studied probability distributions (Okagbue et al., 
2017a, b, c).  
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