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In this paper, three new algorithms are introduced to solve non-linear 
equations using variational iteration technique, and their convergence 
criteria is discussed. Moreover, several examples are also given to illustrate 
that these algorithms are more efficient than Newton’s method, Halley’s 
method, and Househölder’s method. Besides, one can confirm the efficiency 
of the introduced fast algorithms in terms of the so-called efficiency index. 
Such techniques have potential applications in adaptive estimation and 
control, parameter estimation, and so on. 
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1. Introduction 

*Many problems in mathematics, physics, and 
engineering sciences are related to solutions of non-
linear equations. For example, in statistics or 
adaptive estimation and control, how to estimate 
unknown parameter is one critical part which can be 
usually converted to a problem of solving non-linear 
equations. In practice, more and more unmanned 
systems such as unmanned aerial vehicle (UAV) and 
unmanned ground vehicle (UGV) have witnessed 
interests of researchers and their dynamics 
equations are often nonlinear in real world. Up to 
now, a majority of methods for coping with 
nonlinear systems or equations are still based on 
linearization. However, sometimes the considered 
systems are highly nonlinear. When linearization is 
used to solve these problems, accumulative error can 
be very large. If we can find solutions of these 
nonlinear equations directly instead of linearization, 
the accuracy of unmanned systems can be improved. 
Since most of the non-linear equations do not have 
exact solutions, we are obliged to find their 
numerical solutions, which are iterative in nature. 

In recent years, a large number of iterative 
methods have been developed using different 
techniques such as decomposition method, Taylor’s 
series, perturbation method, quadrature formulas, 
and variational iteration technique (Nazeer et al., 
2016a; 2016b; Chun, 2006; Burden and Faires, 1997; 
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Stoer and Bulirsch, 2002; Quarteroni et al., 2000; 
Chen et al., 1993; Householder, 1970; Traub, 1982; 
Inokuti et al., 1978; He, 1999a; 1999b; 2007; Noor, 
2007; Shah et al., 2016; Thukral, 2015; 2016). The 
most famous method for solving non-linear 
equations is Newton’s method (Nazeer et al., 2016a). 
To improve its convergence, various modified 
methods have been developed in literature (Chun, 
2006; Gutierrez and Hernandez, 1997; 2001; 
Householder, 1970; Sebah and Gourdon, 2001; 
Abbasbandy, 2003). Chun (2006) generalized and 
modified generalized Newton-Raphson methods are 
suggested, which are free from second derivatives. In 
Gutierrez and Hernandez (1997), the convergence 
analysis for the Halley’s method is simplified and the 
best possible error bound under standard Newton-
Kantorovich hypotheses has been obtained. In Sebah 
and Gourdon (2001), global convergence theorems 
for Halley’s and chebyschev’s methods have been 
proved. In Noor and Noor (2007), a new two-step 
iterative method for solving nonlinear equations has 
been given, known as the predictor–corrector 
Halley’s method with convergence of order 6 which 
was considered a significant improvement as 
compared to previously known methods. 

In this paper, we proposed three new algorithms 
by applying variational iteration technique by 
considering two auxiliary functions 𝜙(𝑥) and 𝜓(𝑥). 
The first one, 𝜙(𝑥) acts as a predictor function 
having convergence order 𝑞 where 𝑞 ≥ 1 and the 
second function 𝜓(𝑥) acts as a corrector function 
having convergence order 𝑟 with 𝑟 ≥ 1. The 
predictor function helps to obtain iterative methods 
of convergence order 𝑞 + 𝑟. Using variational 
iteration technique, we develop new iterative 
methods with higher order of convergence. The 

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mathmhb@bit.edu.cn
https://doi.org/10.21833/ijaas.2018.09.006
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2018.09.006&amp;domain=pdf&amp


Idrees et al/International Journal of Advanced and Applied Sciences, 5(9) 2018, Pages: 28-32 

29 
 

variational iteration technique was introduced by 
Inokuti et al. (1978). Using this technique, Noor and 
Shah (2009) and Noor (2007) derived some iterative 
methods for solving the non-linear equations. The 
purpose of this technique was to solve variety of 
diverse problems (He, 1999a; 1999b; 2007). We 
apply this technique to obtain three higher-order 
iterative methods. These methods have convergence 
order twelve, which is remarkable. Finally, several 
examples are given to illustrate their performance.  

2. Construction of iterative methods 

Consider a nonlinear equation  
 

𝑓(𝑥) = 0                                                                                           (1) 
 

with 𝛼 as a simple root and 𝛾 an initial guess, 
sufficiently close to 𝛼. For the sake of convenience, 
we consider an approximate solution 𝑥𝑛 such 
that 𝑓(𝑥𝑛) ≠ 0. Furthermore, consider 𝜙(𝑥) and 
𝜓(𝑥) as iteration functions of order 𝑞 and 𝑟, 
respectively. Then  

 
𝑥𝑛+1 = 𝜙(𝑥𝑛) + 𝜇[𝑓(𝜓(𝑥𝑛)𝑔(𝜓(𝑥𝑛)]𝑡 ,                                   (2) 

 

where 𝑡 =
𝑞

𝑟
 is a recurrence relation which generates 

iterative methods of order 𝑞 + 𝑟, 𝑔(𝑥) is any 
arbitrary function which will be converted later on 
to 𝑔(𝜓(𝑥𝑛), and 𝜇 is a parameter which is usually 
called the Lagrange’s multiplier and can be identified 
by the optimality condition. Using the optimality 
criteria, we have  
 

𝜇 = −
𝜙′(𝑥𝑛)[𝑓(𝜓(𝑥𝑛))𝑔(𝜓(𝑥𝑛))]1−𝑡

𝑡𝜓′(𝑥𝑛)[𝑓′(𝜓(𝑥𝑛))𝑔(𝜓(𝑥𝑛))+𝑓(𝜓(𝑥𝑛))𝑔′(𝜓(𝑥𝑛))]
 .                 (3) 

 

From Eq. 2 and Eq. 3, we get  
 

𝑥𝑛+1 = 𝜙(𝑥𝑛) −
𝜙′(𝑥𝑛)

𝑡𝜓′(𝑥𝑛)

𝑓(𝜓(𝑥𝑛))𝑔(𝜓(𝑥𝑛))

[𝑓′(𝜓(𝑥𝑛))𝑔(𝜓(𝑥𝑛))+𝑓(𝜓(𝑥𝑛))𝑔′(𝜓(𝑥𝑛))]
 . 

                 (4) 
 

Now we apply Eq. 4 for constructing a general 
iterative scheme: Suppose that  

 

𝜓(𝑥𝑛) = 𝑦𝑛 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
−

𝑓2(𝑥𝑛)𝑓′′(𝑥𝑛)

2𝑓′3(𝑥𝑛)
,                                (5) 

 

which is well known Househölder’s method with 
cubic convergence. With the help of Eq. 4 and Eq. 5, 
we can write  
 

𝑥𝑛+1 = 𝜙(𝑥𝑛) −
𝜙′(𝑥𝑛)𝑓(𝑦𝑛)𝑔(𝑦𝑛)

𝑡𝑦𝑛
′ [𝑓′(𝑦𝑛)𝑔(𝑦𝑛)+𝑓(𝑦𝑛)𝑔′(𝑦𝑛)]

                    (6) 

𝜙(𝑥𝑛) = 𝑧𝑛 = 𝑦𝑛 −
𝑓(𝑦𝑛)

𝑓′(𝑦𝑛)
−

𝑓2(𝑦𝑛)𝑓′′(𝑦𝑛)

2𝑓′3(𝑦𝑛)
,                                 (7) 

 

where 𝑦𝑛 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
−

𝑓2(𝑥𝑛)𝑓′′(𝑥𝑛)

2𝑓′3(𝑥𝑛)
. This is two-

step Househölder method with convergence order 
nine. Differentiating 𝜙(𝑥𝑛) with respect to 𝑥 we get  
 

𝜙′(𝑥𝑛) = 𝑧𝑛
′ =

𝑓2(𝑦𝑛)[3𝑓′′2(𝑦𝑛)−𝑓′(𝑦𝑛)𝑓′′′(𝑦𝑛)]

2𝑓′4(𝑦𝑛)
𝑦𝑛

′                    (8) 

 

and from Taylor’s series of 𝑓′′(𝑧𝑛), we get 

𝑓′′(𝑧𝑛) = 𝑓′′(𝑦𝑛) + (𝑦𝑛 − 𝑧𝑛)𝑓′′′(𝑦𝑛) + ⋯.                          (9) 
 

Ignoring squared and higher powers of (𝑦𝑛 − 𝑧𝑛) 
yields  

 
𝑓′′(𝑧𝑛) ≈ 𝑓′′(𝑦𝑛) + (𝑦𝑛 − 𝑧𝑛)𝑓′′′(𝑦𝑛)                                  (10) 

 

with the help of Eq. 8 and Eq. 10, we get  
 

𝜙′(𝑥𝑛) =
𝑓(𝑦𝑛)𝑄𝑛

2𝑓′4(𝑦𝑛)[2𝑓′2(𝑦𝑛)+𝑓(𝑦𝑛)𝑓′′(𝑦𝑛)]
𝑦𝑛

′                    (11) 

 

where 
 
𝑄𝑛 = 2𝑓′4(𝑦𝑛)𝑓′′(𝑧𝑛) − 2𝑓′4(𝑦𝑛)𝑓′′(𝑦𝑛) +
6𝑓(𝑦𝑛)𝑓′2(𝑦𝑛)𝑓′′2(𝑦𝑛) + 3𝑓′′3(𝑦𝑛)𝑓2(𝑦𝑛)                          (12) 

 

substituting Eq. 10 in Eq. 6, we obtain 
 

𝑥𝑛+1 = 𝑧𝑛 −
𝑓(𝑦𝑛)𝑔(𝑦𝑛)𝜙′(𝑥𝑛)

𝑡[𝑓′(𝑦𝑛)𝑔(𝑦𝑛)+𝑓(𝑦𝑛)𝑔′(𝑦𝑛)]
.                                   (13) 

 

Since 𝑞 = 9 and 𝑟 = 3, then 𝑡 =
𝑞

𝑟
=

9

3
= 3. Then 

Eq. 13 becomes  
 

𝑥𝑛+1 = 𝑧𝑛 −
𝑓(𝑦𝑛)𝑔(𝑦𝑛)𝜙′(𝑥𝑛)

3[𝑓′(𝑦𝑛)𝑔(𝑦𝑛)+𝑓(𝑦𝑛)𝑔′(𝑦𝑛)]
.                                   (14) 

 

The relation in Eq. 14 is the main and general 
iterative scheme, which we use to deduce iterative 
methods for solving nonlinear equations by 
considering some special cases of the auxiliary 
functions 𝑔.  

2.1. Algorithm I 

Let 𝑔(𝑥𝑛) = exp(−𝛽𝑥𝑛). Then 𝑔′(𝑥𝑛) = −𝛽𝑔(𝑥𝑛). 
Now using Eq. 14, we obtain the algorithm: 
 

𝑦𝑛 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
−

𝑓2(𝑥𝑛)𝑓′′(𝑥𝑛)

2𝑓′3(𝑥𝑛)
,  

𝑧𝑛 = 𝑦𝑛 −
𝑓(𝑦𝑛)

𝑓′(𝑦𝑛)
−

𝑓2(𝑦𝑛)𝑓′′(𝑦𝑛)

2𝑓′3(𝑦𝑛)
  

𝑥𝑛+1 = 𝑧𝑛 −
𝑓(𝑦𝑛)𝜙′(𝑥𝑛)

3[𝑓′(𝑦𝑛)−𝛽𝑓(𝑦𝑛)]
,   for 𝑛 = 0,1,2, . . ..  

2.2. Algorithm II 

Let 𝑔(𝑥𝑛) = exp(−𝛽𝑓(𝑥𝑛)). Then 𝑔′(𝑥𝑛) =
−𝛽𝑓′(𝑥𝑛)𝑔(𝑥𝑛). Now using Eq. 14, we obtain the 
algorithm:  
 

𝑦𝑛 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
−

𝑓2(𝑥𝑛)𝑓′′(𝑥𝑛)

2𝑓′3(𝑥𝑛)
,  

𝑧𝑛 = 𝑦𝑛 −
𝑓(𝑦𝑛)

𝑓′(𝑦𝑛)
−

𝑓2(𝑦𝑛)𝑓′′(𝑦𝑛)

2𝑓′3(𝑦𝑛)
  

𝑥𝑛+1 = 𝑧𝑛 −
𝑓(𝑦𝑛)𝜙′(𝑥𝑛)

3[𝑓′(𝑦𝑛)−𝛽𝑓(𝑦𝑛)𝑓′(𝑦𝑛)]
, for 𝑛 = 0,1,2, ….  

2.3. Algorithm III 

Let 𝑔(𝑥𝑛) = exp(−
𝛽

𝑓′(𝑥𝑛)
). Then 𝑔′(𝑥𝑛) =

𝛽
𝑓′′(𝑥𝑛)

𝑓′2(𝑥𝑛)
𝑔(𝑥𝑛). Using these values in Eq. 14, we 

obtain the following algorithm 
 

𝑦𝑛 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
−

𝑓2(𝑥𝑛)𝑓′′(𝑥𝑛)

2𝑓′3(𝑥𝑛)
,  
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𝑧𝑛 = 𝑦𝑛 −
𝑓(𝑦𝑛)

𝑓′(𝑦𝑛)
−

𝑓2(𝑦𝑛)𝑓′′(𝑦𝑛)

2𝑓′3(𝑦𝑛)
  

𝑥𝑛+1 = 𝑧𝑛 −
𝑓(𝑦𝑛)𝑓′2(𝑦𝑛)𝜙′(𝑥𝑛)

3[𝑓′3(𝑦𝑛)+𝛽𝑓(𝑦𝑛)𝑓′′(𝑦𝑛)]
 , for 𝑛 = 0,1,2, . . ..  

 

Remark 2.1: These algorithms, whose convergence 
is proved in the next section, are suitable for large 
values of β.  

3. Convergence analysis 

In this section, we discuss the convergence order 
of the general iteration scheme in Inokuti et al. 
(1978).  

 
Theorem 3.1: Suppose α is a root of the equation 
f(x) = 0, and f(x) is sufficiently smooth near α. Then 
the convergence order of Eq. 14 is at least twelve.  

 
Proof: Suppose that 𝛼 is a root of the equation 
𝑓(𝑥) = 0 and 𝑒𝑛 is the error at 𝑛th iteration, i.e. ,𝑒𝑛 =
𝑥𝑛 − 𝛼. Using Taylor series expansion, we get  
 

𝑓(𝑥) = 𝑓′(𝛼)𝑒𝑛 +
1

2!
𝑓′′(𝛼)𝑒𝑛

2 +
1

3!
𝑓′′′(𝛼)𝑒𝑛

3  

+
1

4!
𝑓(𝑖𝑣)(𝛼)𝑒𝑛

4 +
1

5!
𝑓(𝑣)(𝛼)𝑒𝑛

5  

+
1

6!
𝑓(𝑣𝑖)(𝛼)𝑒𝑛

6+. . . +𝑂(𝑒𝑛
13)                             (15) 

𝑓(𝑥) = 𝑓′(𝛼)[𝑒𝑛 + 𝑐2𝑒𝑛
2 + 𝑐3𝑒𝑛

3 + 𝑐4𝑒𝑛
4 + 𝑐5𝑒𝑛

5 +
𝑐6𝑒𝑛

6+. . . +𝑂(𝑒𝑛
13)]  

𝑓′(𝑥𝑛) = 𝑓′(𝛼)[1 + 2𝑐2𝑒𝑛 + 3𝑐3𝑒𝑛
2 + 4𝑐4𝑒𝑛

3 + 5𝑐5𝑒𝑛
4  

+6𝑐6𝑒𝑛
5 + 7𝑐7𝑒𝑛

6. . . +𝑂(𝑒𝑛
13)]                               (16) 

𝑓′′(𝑥𝑛) = 𝑓′(𝛼)[2𝑐2 + 6𝑐3𝑒𝑛 + 12𝑐4𝑒𝑛
2 + 20𝑐5𝑒𝑛

3  
+30𝑐6𝑒𝑛

4 + 42𝑐7𝑒𝑛
5 + 56𝑐8𝑒𝑛

6. . . +𝑂(𝑒𝑛
13)]                  (17) 

 

here 𝑐𝑛 =
1

𝑛!

𝑓(𝑛)(𝛼)

𝑓′(𝛼)
. Now using Eq. 15, Eq. 16 and Eq. 

17, we get  
 
𝑦𝑛 = 𝛼 + (−𝑐3 + 2𝑐2

2)𝑒𝑛
3 + (12𝑐2𝑐3 − 9𝑐2

3 − 3𝑐4)𝑒𝑛
4

+(15𝑐3
2 − 63𝑐3𝑐2

2 + 30𝑐2
4 + 24𝑐2𝑐4 − 6𝑐5)𝑒𝑛

5

+(−10𝑐6 + 40𝑐2𝑐5 + 55𝑐4𝑐3 − 112𝑐4𝑐2
2

−136𝑐2𝑐3
2 + 251𝑐3𝑐2

3 − 88𝑐2
5)𝑒𝑛

6+. . . +𝑂(𝑒𝑛
13)

  

𝑓(𝑦𝑛) = 𝑓′(𝛼)[(−𝑐3 + 2𝑐2
2)𝑒𝑛

3 + (12𝑐2𝑐3 − 9𝑐2
3

−3𝑐4)𝑒𝑛
4 + (15𝑐3

2 − 63𝑐3𝑐2
2 + 30𝑐2

4 + 24𝑐2𝑐4

−6𝑐5)𝑒𝑛
5 + (−10𝑐6 + 40𝑐2𝑐5 + 55𝑐4𝑐3

−112𝑐4𝑐2
2 − 135𝑐2𝑐3

2 + 247𝑐3𝑐2
3 − 84𝑐2

5)𝑒𝑛
6

  

                +. . . +𝑂(𝑒𝑛
13)]  

𝑓′(𝑦𝑛) = 𝑓′(𝛼)[1 + (−2𝑐2𝑐3 + 4𝑐2
3)𝑒𝑛

3 + (24𝑐3𝑐2
2

−18𝑐2
4 − 6𝑐2𝑐4)𝑒𝑛

4 + (30𝑐2𝑐3
2 − 126𝑐3𝑐2

3

+60𝑐2
5 + 48𝑐4𝑐2

2 − 12𝑐2𝑐5)𝑒𝑛
5 + (−20𝑐2𝑐6

+80𝑐2𝑐5 + 110𝑐2𝑐4𝑐3 − 224𝑐4𝑐2
3 − 284𝑐2

2𝑐3
2

+514𝑐3𝑐2
4 − 176𝑐2

6 + 3𝑐3
3)𝑒𝑛

6+. . . +𝑂(𝑒𝑛
13)]

  

𝑓′′(𝑦𝑛) = 𝑓′(𝛼)[2𝑐2 + (−6𝑐3
2 + 12𝑐3𝑐2

2)𝑒𝑛
3 + (72𝑐2𝑐3

2

−54𝑐3𝑐2
3 − 18𝑐4𝑐3)𝑒𝑛

4 + (90𝑐3
3 − 378𝑐2

2𝑐3
2

+180𝑐3𝑐2
4 + 144𝑐2𝑐4𝑐3 − 36𝑐3𝑐5)𝑒𝑛

5

+(−60𝑐3𝑐6 + 240𝑐3𝑐2𝑐5 + 342𝑐4𝑐3
2

−720𝑐3𝑐4𝑐2
2 − 816𝑐2𝑐3

3 + 1506𝑐3
2𝑐2

3

   

                   −528𝑐3𝑐2
5 + 48𝑐4𝑐2

4)𝑒𝑛
6+. . . +𝑂(𝑒𝑛

13)]  
𝑔(𝑦𝑛) = 𝑔(𝛼) + 𝑔′(𝛼)(−𝑐3 + 2𝑐2

2)𝑒𝑛
3 + 𝑔′(𝛼)(12𝑐2𝑐3

−9𝑐2
3 − 3𝑐4)𝑒𝑛

4 + 𝑔′(𝛼)(15𝑐3
2 − 63𝑐3𝑐2

2 + 30𝑐2
4

+24𝑐2𝑐4 − 6𝑐5)𝑒𝑛
5 + [𝑔′(𝛼)(−10𝑐6 + 40𝑐2𝑐5

+55𝑐4𝑐3 − 112𝑐4𝑐2
2 − 136𝑐2𝑐3

2 + 251𝑐3𝑐2
3

−88𝑐2
5) + 2𝑔′′(𝛼)(−

𝑐3

2
+ 𝑐2

2)2]𝑒𝑛
6+. . . +𝑂(𝑒𝑛

13)

  

𝑔′(𝑦𝑛) = 𝑔′(𝛼) + 𝑔′′(𝛼)(−𝑐3 + 2𝑐2
2)𝑒𝑛

3 +

𝑔′′(𝛼)(12𝑐2𝑐3 − 9𝑐2
3 − 3𝑐4)𝑒𝑛

4 + 𝑔′′(𝛼)(15𝑐3
2

−63𝑐3𝑐2
2 + 30𝑐2

4 + 24𝑐2𝑐4 − 6𝑐5)𝑒𝑛
5 +

[𝑔′′(𝛼)(−10𝑐6 + 40𝑐2𝑐5 + 55𝑐4𝑐3 − 112𝑐4𝑐2
2

−136𝑐2𝑐3
2 + 251𝑐3𝑐2

3 − 88𝑐2
5) + 2𝑔′′(𝛼)(−

𝑐3

2

  

                 +𝑐2
2)2]𝑒𝑛

6 + ⋯ + 𝑂(𝑒𝑛
13)    

 

it follows that  
 

𝑧𝑛 = 𝛼 + (−8𝑐2
2𝑐3

3 + 24𝑐3
2𝑐2

4 − 32𝑐3𝑐2
6 + 𝑐3

4 +
16𝑐2

8)𝑒𝑛
9+. . . +𝑂(𝑒𝑛

13)   
𝑓(𝑧𝑛) = 𝑓′(𝛼)[(−8𝑐2

2𝑐3
3 + 24𝑐3

2𝑐2
4 − 32𝑐3𝑐2

6 + 𝑐3
4 +

16𝑐2
8)𝑒𝑛

9+. . . +𝑂(𝑒𝑛
13)]  

𝑓′(𝑧𝑛) = 𝑓′(𝛼)[1 + (−16𝑐3
3𝑐2

3 + 48𝑐3
2𝑐2

5 − 64𝑐3𝑐2
7 +

2𝑐2𝑐3
4 + 32𝑐2

9)𝑒𝑛
9 + ⋯ + 𝑂(𝑒𝑛

13)]  

𝑓′′(𝑧𝑛) = 𝑓′(𝛼)[2𝑐2 + (−48𝑐2
2𝑐3

4 + 144𝑐3
3𝑐2

4 − 192𝑐3
2𝑐2

6 +
6𝑐3

5 + 96𝑐3𝑐2
8)𝑒𝑛

9+. . . +𝑂(𝑒𝑛
13)]  

 

using these relations in Eq. 14, we have  
 

𝑥𝑛+1 = 𝛼 +
80(−

𝑐3
2

+𝑐2
2)4[(𝑐2

3−𝑐2𝑐3−
𝑐4
5

)𝑔(𝛼)]

𝑔(𝛼)
𝑒𝑛

12  

 −
80(−

𝑐3
2

+𝑐2
2)4[

2

5
𝑔′(𝛼)(−

1

2
𝑐3+𝑐2

2)]]

𝑔(𝛼)
𝑒𝑛

12 + 𝑂(𝑒𝑛
13), 

 

which implies that  
 

𝑒𝑛+1 =
80(−

𝑐3
2

+𝑐2
2)4[(𝑐2

3−𝑐2𝑐3−
𝑐4
5

)𝑔(𝛼)]

𝑔(𝛼)
𝑒𝑛

12  

−
80(−

𝑐3
2

+𝑐2
2)4[−

2

5
𝑔′(𝛼)(−

1

2
𝑐3+𝑐2

2)]

𝑔(𝛼)
𝑒𝑛

12 + 𝑂(𝑒𝑛
13),  

 

and the proof is finished.  

4. Numerical examples 

In this section, comparison of different iterative 
methods is given. The following examples given in 
Tables 1-8 confirm that the algorithms I, II, and III 
are more efficient than the Newton’s method (NM) 
(Nazeer et al., 2016a; 2016b), Halley’s method (HM) 
(Chen et al., 1993), Traub’s Method (TM) (Traub, 
1982), and modified Halley’s method (MHM) (Noor, 
2007).  

 

Table 1: Results of example 1 
𝑓1 = 𝑥3 + 4𝑥2 − 10, 𝑥0 = −0.3. 

Method N 𝑁𝑓 |𝑓(𝑥𝑛+1)| 𝑥𝑛+1 
NM 54 108 8.127500 ∗ 10−30 

1.3652300134 

HM 58 174 6.815871 ∗ 10−25 
TM 27 81 8.127500 ∗ 10−30 

MHM 22 66 2.439119 ∗ 10−36 
Alg I 4 20 3.107264 ∗ 10−25 
Alg II 4 20 4.374599 ∗ 10−18 
Alg III 4 20 3.366588 ∗ 10−39 

 
Table 2: Results of example 2 

𝑓2 = (𝑥 − 1)3 − 2, 𝑥0 = 0.1. 

Method N N 𝑓 |𝑓(𝑥𝑛+1)| 𝑥𝑛+1 
NM 13 26 3.733284 ∗ 10−27 

2.2599210498 

HM 9 27 6.698145 ∗ 10−33 
TM 7 21 2.322902 ∗ 10−54 

MHM 7 21 1.851813 ∗ 10−15 
Alg I 2 10 1.321507 ∗ 10−30 
Alg II 2 10 6.843111 ∗ 10−17 
Alg III 2 10 7.873393 ∗ 10−24 

 

The columns represent the number of iterations 
𝑁 and the number of functions or derivatives 
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evaluations 𝑁𝑓 required to meet the stopping 

criteria, and the magnitude |𝑓(𝑥)| of 𝑓(𝑥) at the final 
estimate 𝑥𝑛 . The term “efficiency index” (Nazeer et 
al., 2016a; 2016b) shows us how fast and efficient 
our method is. It is used to analyze the performance 
of different iterative methods. The efficiency index of 

our method is 12
1

5 ≈ 1.6438. 
 

Table 3: Results of example 3 
f3 = (x + 2)ex − 1, x0 = 3.1. 

Method N 𝑁𝑓 |𝑓(𝑥𝑛+1)| 𝑥𝑛+1 
NM 9 18 4.410873∗ 10−15 

−0.4428544010 

HM 5 15 3.594315∗ 10−16 
TM 5 15 8.240223∗ 10−30 

MHM 5 15 1.172300∗ 10−56 
Alg I 2 10 3.901801∗ 10−15 
Alg II 3 15 4.140026∗ 10−17 
Alg III 3 15 6.428238∗ 10−36 

 

Table 4: Results of example 4 

𝑓4 = 𝑒𝑥2−7𝑥−30, 𝑥0 = 3.3 

Method N 𝑁𝑓 |𝑓(𝑥𝑛+1)| 𝑥𝑛+1 
NM 9 18 1.012535∗ 10−20 

3.0000000000 

HM 5 15 1.168248∗ 10−22 
TM 5 15 5.186798∗ 10−41 

MHM 7 21 7.229220∗ 10−21 
Alg I 3 15 2.975169∗ 10−59 
Alg II 3 15 2.517780∗ 10−37 
Alg III 3 15 3.078826∗ 10−56 

 

Table 5: Results of example 5 
𝑓5 = 𝑥3 − 𝑥2 + 3𝑥cos(𝑥) − 1, 𝑥0 = 1.2. 

Method N 𝑁𝑓 |𝑓(𝑥𝑛+1)| 𝑥𝑛+1 
NM 10 20 2.385992 ∗ 10−16 

0.3953236229 

HM 10 30 6.209236 ∗ 10−21 
TM 5 15 2.385992 ∗ 10−16 

MHM 9 27 1.876664 ∗ 10−28 
Alg I 4 20 0.000000 ∗ 10+00 
Alg II 3 15 1.508088 ∗ 10−15 
Alg III 3 15 7.677213 ∗ 10−16 

 

Table 6: Results of example 6 
𝑓6 = sin2(𝑥) − 𝑥2 + 1, 𝑥0 = 5. 

Method N N 𝑓 |𝑓(𝑥𝑛+1)| 𝑥𝑛+1 
NM 7 14 1.502508 ∗ 10−22 

1.4044916482 

HM 4 12 2.649470 ∗ 10−38 
TM 4 12 7.125700 ∗ 10−45 

MHM 3 9 4.868406 ∗ 10−35 
Alg I 2 10 4.427270 ∗ 10−22 
Alg II 2 10 5.124709 ∗ 10−15 
Alg III 2 10 7.738826 ∗ 10−18 

 
Table 7: Results of example 7 

𝑓7 = 𝑥 + ln(𝑥), 𝑥0 = 2.5. 

Method N 𝑁𝑓 |𝑓(𝑥𝑛+1)| 𝑥𝑛+1 

NM 𝑁𝑓 14 2.441531 ∗ 10−18  
HM 4 12 6.107599 ∗ 10−22  
TM 4 12 1.213605 ∗ 10−36  

MHM 4 12 3.863408 ∗ 10−51 0.5671432904 
Alg I 2 10 2.906122 ∗ 10−39  
Alg II 2 10 6.579576 ∗ 10−41  
Alg III 2 10 6.887373 ∗ 10−39  

 
Table 8: Results of example 8 

𝑓8 = 𝑒𝑥 − cos(𝑥), 𝑥0 = 2.7. 

Method N 𝑁𝑓 |𝑓(𝑥𝑛+1)| 𝑥𝑛+1 
NM 8 16 4.131186 ∗ 10−21 

0.0000000000 

HM 5 15 5.752401 ∗ 10−31 
TM 4 12 4.131186 ∗ 10−21 

MHM 4 12 3.132281 ∗ 10−27 
Alg I 2 10 4.961143 ∗ 10−15 
Alg II 3 15 2.628023 ∗ 10−71 
Alg III 3 15 1.186479 ∗ 10−90 

5. Conclusion 

The introduction of three new algorithms aims to 
several simple yet powerful mathematical tips for 
improving the efficiency of solving nonlinear 
equations. Their efficiency index is greater than 
Newton’s method (Nazeer et al., 2016a; 2016b), 
Halley’s method (Chen et al., 1993), Traub’s Method 
(Traub, 1982) and Noor’s method (Noor, 2007). In 
our future work, we will apply our methods for more 
complex examples. We will also present 
polynomiography of our methods. An adaptive 
control problem will be solved with a better 
estimation of parameter.  
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