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One of the most important and most challenging tasks of a mechanism 
analysis is the problem of mechanism kinematics. This paper shows the way 
to determine unknown angular accelerations of joint-bar mechanism 
components, by applying so-called (by authors) epsilon co-function. Using 
this method, the problem is reduced onto an analysis of relative angular 
accelerations of neighboring members within the mechanism and 
determination of a moment of all those vectors with respect to a point or an 
axis. The main contribution of this paper is that it shows the novel method 
how to calculate angular accelerations of mechanism members using analog 
form of equations that are similar to the moment balance equations in statics. 
Considering that the relative angular velocity vectors play role of forces in 
statics, this paper shows how to form a system of kinematic equations similar 
to moment equations in statics, which are sufficient to solve for all angular 
accelerations of a mechanism. 
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1. Introduction  

*Several methods exist in the theory of planar 
mechanisms to determine particular kinematic 
quantities (such as angular velocity and angular 
acceleration) of the mechanism members or 
particular points of the mechanism, such as: using a 
particle kinematics, using planar kinematics 
equations, using the method of complex numbers 
and using the method of mechanism reduction. Each 
of these methods has some advantages with respect 
to others, depending on the type of the problem that 
should be solved.  

Particularly, there are methods that use relative 
motion of neighboring members to determine 
unknown angular velocities of a hinge-lever 
mechanism (Ilic, 1966; Hufnagl, 1974; Voloder, 
2005).  

2. Important facts about the 𝛚⃗⃗⃗  co-function 

Let us assume that a planar mechanical system is 
consisted of n rigid bodies (members) that are 
mutually interconnected. We will analyze relative 
angular velocities and relative angular accelerations 
of all pairs out of n observed members in a cyclic 
order (Fig. 1). 
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If we observe the set of relative angular velocities 
of sequential members, given by the following 
equations 

 
𝜔⃗⃗ 2,1 = 𝜔⃗⃗ 2 − 𝜔⃗⃗ 1 , 
𝜔⃗⃗ 3,2 = 𝜔⃗⃗ 3 − 𝜔⃗⃗ 2,  

𝜔⃗⃗ 𝑛,𝑛−1 = 𝜔⃗⃗ 𝑛 − 𝜔⃗⃗ 𝑛−1,                    (1) 

𝜔⃗⃗ 1,𝑛 = 𝜔⃗⃗ 1 − 𝜔⃗⃗ 𝑛 , 

 
such a set of relative angular velocity vectors is 
called the 𝜔⃗⃗  co-function with respect to n members 
(Hufnagl, 1974). 

 
If we add all relative angular velocities, according 

to (1), we obtain the following vector equation  
 

𝜔⃗⃗ 2,1 + 𝜔⃗⃗ 3,2 + ⋯+ 𝜔⃗⃗ 𝑛,𝑛−1 + 𝜔⃗⃗ 1,𝑛 = 0⃗  , 

 
which yields 

 
∑ 𝜔⃗⃗ 𝑖+1,𝑖

𝑛
1 = 0⃗ ,  

 
where the index 𝑖 = 𝑛 + 1 denotes the same vector 
as for 𝑖 = 1, due to the periodicity of the index.  

 
The main vector of the moment of 𝜔⃗⃗  co-function 

for an arbitrary point as a pole is equal zero 
 

∑ 𝑀⃗⃗ 𝑂
𝜔⃗⃗⃗ 𝑖+1,𝑖𝑛

1 = 0⃗ .                     (2) 

 
Equations (1) and (2) show that the vectors of the 

𝜔⃗⃗  co-function have same properties as an arbitrary 
balanced system of forces. In this way, the same 
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laws, as for an arbitrary balanced system of forces, can be applied for the 𝜔⃗⃗  co-function.  
 

 
Fig. 1: Vectors of the 𝜔⃗⃗  - co-function 

 
3. 𝛜⃗  co-function  

3.1. Definition of  𝛜⃗  co-function 

Let us observe a set of relative angular 
accelerations of sequential members (Fig. 2), given 
by the following equations 
 
𝜖 2,1 = 𝜖 2 − 𝜖 1 , 

𝜖 3,2 = 𝜖 3 − 𝜖 2 ,                      (3) 

𝜖 𝑛,𝑛−1 = 𝜖 𝑛 − 𝜖 𝑛−1 , 

𝜖 1,𝑛 = 𝜖 1 − 𝜖 𝑛 . 
 

Such a set of relative angular acceleration vectors 
we will call 𝜖  co-function, similarly to the previous 𝜔⃗⃗  
co-function. Now, we will prove some properties of 
the 𝜖  co-function. 

 

 
Fig. 2: Vectors of the 𝜖  - co-function 

 
By summing up Eq. (2), we obtain the following 

vector equation  
 

𝜖 2,1 + 𝜖 3,2 + ⋯+ 𝜖 𝑛,𝑛−1 + 𝜖 1,𝑛 = 0⃗  , 
 

which yields 
 

∑ 𝜖 𝑖+1,𝑖
𝑛
1 = 0⃗ .                     (4) 

 
If the first member is denoted as 0, then the sum 

in (4) starts with 0, e.g. if the ground member is 
assigned with 0. 
 

3.2. Moment of 𝛜⃗  co-function for an arbitrary pole 

Equation (4) shows that the principal vector (the 
vector sum) of the angular accelerations in 𝜖  co-
function is equal zero, hence this property is similar 
to the first property of the 𝜔⃗⃗  co-function. 

However, when the moment of the 𝜖  co-function 
vector is considered with respect to an arbitrary 
point O, then significant difference can be noticed 
when compared with the corresponding property of 
the 𝜔⃗⃗  co-function. The following analysis will show 
this difference. 
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Let us observe members: (𝑖 − 1), (𝑖), (𝑖 + 1) of a 
selected set of members (Fig. 3). Assuming that the 
point 𝑃𝑖,𝑖−1 belongs simultaneously to members (𝑖 −
1) and (𝑖), then it is on the direction of relative 

angular acceleration 𝜖 𝑖,𝑖−1. Similarly, let us assume 

the same for the point 𝑃𝑖+1,𝑖 and members (𝑖), (𝑖 +
1). 

Then, relative acceleration of points 𝑃𝑖+1,𝑖 and 

𝑃𝑖,𝑖−1 is 

 

𝑎 𝑃𝑖+1,𝑖
− 𝑎 𝑃𝑖,𝑖−1

= [𝜖 𝑖 , 𝑃𝑖,𝑖−1𝑃𝑖+1,𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗] + [𝜔⃗⃗ 𝑖 , [𝜔⃗⃗ 𝑖 , 𝑃𝑖,𝑖−1𝑃𝑖+1,𝑖

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗]] =

[ 𝑃𝑖+1,𝑖𝑃𝑖,𝑖−1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝜖 𝑖] + [𝜔⃗⃗ 𝑖 , [𝜔⃗⃗ 𝑖 , 𝑃𝑖,𝑖−1𝑃𝑖+1,𝑖

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗]],                  (5) 

 
 

which is 
 

𝑎 𝑃2,1
− 𝑎 𝑃1,𝑛

= [𝜖 1, 𝑃1,𝑛𝑃2,1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗] + [𝜔⃗⃗ 1, [𝜔⃗⃗ 1, 𝑃1,𝑛𝑃2,1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗]] =

[ 𝑃2,1𝑃1,𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝜖 1] + [𝜔⃗⃗ 1, [𝜔⃗⃗ 1, 𝑃1,𝑛𝑃2,1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗]],  

𝑎 𝑃3,2
− 𝑎 𝑃2,1

= [𝜖 2, 𝑃2,1𝑃3,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ] + [𝜔⃗⃗ 2, [𝜔⃗⃗ 2, 𝑃2,1𝑃3,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]] =

[ 𝑃3,2𝑃2,1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝜖 2] + [𝜔⃗⃗ 2, [𝜔⃗⃗ 2, 𝑃2,1𝑃3,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]],  

𝑎 𝑃𝑛,𝑛−1
− 𝑎 𝑃𝑛−1,𝑛−2

= [𝜖 𝑛−1, 𝑃𝑛−1,𝑛−2𝑃𝑛,𝑛−1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ] + [𝜔⃗⃗ 𝑛−1,

[𝜔⃗⃗ 𝑛−1, 𝑃𝑛−1,𝑛−2𝑃𝑛,𝑛−1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]] = [ 𝑃𝑛,𝑛−1𝑃𝑛−1,𝑛−2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝜖 𝑛−1] +

 + [𝜔⃗⃗ 𝑛−1, [𝜔⃗⃗ 𝑛−1, 𝑃𝑛−1,𝑛−2𝑃𝑛,𝑛−1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]],  

𝑎 𝑃1,𝑛
− 𝑎 𝑃𝑛,𝑛−1

= [𝜖 𝑛, 𝑃𝑛,𝑛−1𝑃1,𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ] + [𝜔⃗⃗ 𝑛, [𝜔⃗⃗ 𝑛 , 𝑃𝑛,𝑛−1𝑃1,𝑛

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]] =

[ 𝑃1,𝑛𝑃𝑛,𝑛−1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝜖 𝑛] + [𝜔⃗⃗ 𝑛, [𝜔⃗⃗ 𝑛 , 𝑃𝑛,𝑛−1𝑃1,𝑛

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]]. 

 
Fig. 3: With the proof of the principal moment of the 𝜖  co-function 

 

Due to the following 
 

𝑎 𝑃2,1
− 𝑎 𝑃1,𝑛

+ 𝑎 𝑃3,2
− 𝑎 𝑃2,1

+ ⋯+ 𝑎 𝑃𝑛,𝑛−1
− 𝑎 𝑃𝑛−1,𝑛−2

+

𝑎 𝑃1,𝑛
− 𝑎 𝑃𝑛,𝑛−1

= 0⃗ ,                                     (6) 
 

and using (5), we obtain 
 

[ 𝑃2,1𝑃1,𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝜖 1] + [𝜔⃗⃗ 1, [𝜔⃗⃗ 1, 𝑃1,𝑛𝑃2,1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗]] + [ 𝑃3,2𝑃2,1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝜖 2] +

[𝜔⃗⃗ 2, [𝜔⃗⃗ 2, 𝑃2,1𝑃3,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]] + ⋯+ [ 𝑃𝑛,𝑛−1𝑃𝑛−1,𝑛−2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝜖 𝑛−1] +

                 + [𝜔⃗⃗ 𝑛−1, [𝜔⃗⃗ 𝑛−1, 𝑃𝑛−1,𝑛−2𝑃𝑛,𝑛−1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]] +

[ 𝑃1,𝑛𝑃𝑛,𝑛−1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝜖 𝑛] + [𝜔⃗⃗ 𝑛, [𝜔⃗⃗ 𝑛 , 𝑃𝑛,𝑛−1𝑃1,𝑛

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]] = 0⃗ .                  (7) 

 

If we choose an arbitrary point as a pole O, then  
 

P(i+1,i)Pi,i−1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = OPi,i−1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − OP(i+1,i)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  .                   (8) 

 

Using (7) and (8), we obtain 
 

[(OP1,n
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − OP2,1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗), 𝜖 1] + [𝜔⃗⃗ 1, [𝜔⃗⃗ 1, P1,nP2,1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]] + [(OP2,1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ −

OP3,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗), 𝜖 2] + [𝜔⃗⃗ 2, [𝜔⃗⃗ 2, P2,1P3,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]] + ⋯  

+[(OPn−1,n−2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − OPn,n−1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗), 𝜖 𝑛−1] +

[𝜔⃗⃗ 𝑛−1, [𝜔⃗⃗ 𝑛−1, Pn−1,n−2Pn,n−1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗]] + [(OPn,n−1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − OP1,n
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗), 𝜖 𝑛] +

+ [𝜔⃗⃗ 𝑛 , [𝜔⃗⃗ 𝑛, Pn,n−1P1,n
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗]] = 0⃗ ,                   (9) 

 

[OP2,1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, (𝜖 2 − 𝜖 1)] + [OP3,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, (𝜖 3 − 𝜖 2)] + ⋯+ [OPn,n−1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, (𝜖 𝑛 −

𝜖 𝑛−1)] + [OP1,n
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, (𝜖 1 − 𝜖 𝑛)] +  

+ [𝜔⃗⃗ 1, [𝜔⃗⃗ 1, P1,nP2,1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]] + [𝜔⃗⃗ 2, [𝜔⃗⃗ 2, P2,1P3,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]] + ⋯+

[𝜔⃗⃗ 𝑛−1, [𝜔⃗⃗ 𝑛−1, Pn−1,n−2Pn,n−1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗]] + [𝜔⃗⃗ 𝑛 , [𝜔⃗⃗ 𝑛, Pn,n−1P1,n

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗]] = 0⃗ ,

                    (10) 
 

[OP2,1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝜖 2,1] + [OP3,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝜖 3,2] + ⋯+ [OPn,n−1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝜖 𝑛,𝑛−1] +

[OP1,n
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝜖 1,𝑛] + [𝜔⃗⃗ 1, [𝜔⃗⃗ 1, P1,nP2,1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]] +  

+ [𝜔⃗⃗ 2, [𝜔⃗⃗ 2, P2,1P3,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]] + ⋯+ [𝜔⃗⃗ 𝑛−1, [𝜔⃗⃗ 𝑛−1, Pn−1,n−2Pn,n−1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗]] +

[𝜔⃗⃗ 𝑛 , [𝜔⃗⃗ 𝑛, Pn,n−1P1,n
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗]] = 0⃗ .                  (11) 

 

Concise form of (11) is the following 
 

∑ [OPi+1,i
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝜖 𝑖+1,𝑖] + [𝜔⃗⃗ 𝑖 , [𝜔⃗⃗ 𝑖 , Pi,i−1Pi+1,i

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗]] = 0⃗ 𝑛
1 ,                (12) 

 
and considering that: 
 
a) the first term under the sum represents the 
moment of the relative angular acceleration vector 
with respect to the arbitrary point O, and 
b) the second term represents the normal relative 
acceleration of the point Pi+1,i with respect to the 

previous point in the sequence Pi,i−1, then (12) can 

be written in the following form 
 

∑ 𝑀⃗⃗ O
𝜖⃗ 𝑖+1,𝑖 + ∑ a⃗ Pi+1,iPi,i−1

𝑎𝑥𝑝𝑛
1 = 0⃗ 𝑛

1 .                 (13) 

 
Equation (13) shows that the vector addition of 

the principal moment for an arbitrary pole O and all 
relative normal accelerations between sequential 
connection points of the mechanism.   

4. Example 

Bar 1 of the mechanism shown in Fig. 4 has a 

constant angular velocity: 𝜔1 = 20
rad

s
, and the bar 4 



Avdo Voloder, Elvedin Kljuno /International Journal of Advanced and Applied Sciences, 5(9) 2018, Pages: 6-11 

9 
 

has a constant angular velocity: 𝜔4 = 40
rad

s
. Using 

the described method of 𝜖  co-function, angular 
accelerations of members 2 and 3 need to be 
determined. The following is given: AB̅̅ ̅̅ = DE̅̅ ̅̅ = EJ̅ =
EH̅̅ ̅̅ = 𝐿, at the given instant the angles are BAD =
600and ABD = 900. 

 

 
Fig. 4: Example: mechanism configuration 

 
Solution can be given using the classic approach 

and the described method using the 𝜖  co-function.  

4.1. Solution using classic method 

Using kinematics theory of planar motion, we can 
establish vector equations for velocities of 
mechanism connection points, as shown in Fig. 5. 

 

 
Fig. 5: Example: classic solution method - velocities 

 
The velocity of point D can be expressed using the 

velocity of point B or E as 
 

𝑣 𝐷 = 𝑣 𝐵 + 𝑣 𝐷,𝐵 = 𝑣 𝐸 + 𝑣 𝐷,𝐸,                  (14) 

 

where the shown velocity magnitudes in [
m

s
] , (𝐿 [m])  

are: 
 

 𝑣𝐵 = 𝐿𝜔1 = 20𝐿  ,  𝑣𝐸 = 𝐿𝜔1 = 40𝐿, 𝑣𝐷,𝐵 = DB𝜔2 =

𝐿√3𝜔2, 𝑣𝐷,𝐸 = DE𝜔3 = 𝐿𝜔3.                 (15) 

 
By projecting of (14) onto 𝑥 axis, we obtain 

 
−𝑣𝐵 cos 300 − 𝑣𝐷,𝐵 sin 300 = −𝑣𝐸 ,                 (16) 

20𝐿
√3

2
+ 𝐿√3𝜔2

1

2
= 40𝐿 , 𝜔2 = 26.188

rad

s
 . 

  

Similarly, by projecting of (14) onto 𝜂 axis, we 
obtain 
  
−𝑣𝐵 = −𝑣𝐸 cos 600 − 𝑣𝐷,𝐸 cos 600,                 (17) 

20𝐿 = 40𝐿
√3

2
+ 𝐿𝜔3

1

2
,   𝜔3 = −29.282

rad

s
. 

 
Angular accelerations can be obtained similarly, 

by using the vector loop equation, i.e., by expressing 
accelerations using accelerations of other points in 
the kinematic chain over connection points of the 
mechanism, as shown in Fig. 6. 

Fig. 6: Example: classic solution method - accelerations 

 
The acceleration of the same connection point, 

e.g. the joint D, can be obtained using two different 
chains of points. In this way, we obtain 

 
𝑎 𝐷 = 𝑎 𝐵 + 𝑎 𝐷,𝐵

𝑎𝑥𝑝
+ 𝑎 𝐷,𝐵

𝑟𝑜𝑡 = 𝑎 𝐸 + 𝑎 𝐷,𝐸
𝑎𝑥𝑝

+ 𝑎 𝐷,𝐸
𝑟𝑜𝑡,                (18) 

 
where the angular velocity magnitudes are 
determined earlier. The relative components are:  
 

𝑎𝐷,𝐵
𝑎𝑥𝑝

= 𝐷𝐵 𝜔2
2 = 𝐿√3 26.1882 = 1187.860 𝐿, 𝑎𝐷,𝐸

𝑎𝑥𝑝
=

𝐷𝐸 𝜔3
2 = 𝐿 29.2822 = 857.435 𝐿.                 (19) 

𝑎𝐷,𝐵
𝑟𝑜𝑡 = 𝐷𝐵 𝜖2 = 𝐿√3 𝜖2, 𝑎𝐷,𝐸

𝑟𝑜𝑡 = 𝐷𝐸 𝜖3 = 𝐿 𝜖3.                (20) 

 

Accelerations of the connection points B and E 
are equal to normal accelerations, with magnitudes 

(in [
m

s2
], where L is in[m]): 

 
𝑎𝐵 = 𝐴𝐵 𝜔1

2 = 400𝐿, 𝑎𝐸 = 𝐻𝐸𝜔4
2 = 1600𝐿.               (21) 

 
By projecting (18) onto x axis, we obtain 
 
−𝑎𝐵 cos 600 − 𝑎𝐷,𝐵

𝑎𝑥𝑝
sin 600 + 𝑎𝐷,𝐵

𝑟𝑜𝑡 cos 600 = 𝑎𝐷,𝐸
𝑎𝑥𝑝

,         (22) 

−400𝐿
1

2
− 1187.860 𝐿

√3

2
+ 𝐿√3𝜖2

1

2
= 857.435 𝐿,          (23) 

𝜖2 = 2408.880
rad

s2  .                  (24) 

 
By projecting (18) onto 𝜂 axis, we obtain 

 
−𝑎𝐷,𝐵

𝑎𝑥𝑝
= −𝑎𝐸 cos 600 + 𝑎𝐷,𝐸

𝑎𝑥𝑝
cos 300 − 𝑎𝐷,𝐸

𝑟𝑜𝑡 cos 600,     (25) 

−1187.860 𝐿 = −1600𝐿
1

2
+ 857. 435𝐿

√3

2
− 𝐿 𝜖3

1

2
 , 

𝜖3 = 2260.840
rad

s2   .                  (26) 

4.2. Solution by applying the described method of 
𝛚⃗⃗⃗  and 𝛜⃗  co-functions 

4.2.1. Angular velocity via 𝛚⃗⃗⃗  - cofunction 

By projecting (2) onto x axis (Fig. 7), we obtain 
 

𝑀𝑥
𝜔⃗⃗⃗ 1,0 + 𝑀𝑥

𝜔⃗⃗⃗ 2,1 + 𝑀𝑥
𝜔⃗⃗⃗ 3,2 + 𝑀𝑥

𝜔⃗⃗⃗ 4,3 + 𝑀𝑥
𝜔⃗⃗⃗ 0,4 = 0,                 (27) 

 
where the index starts at 0, for the ground "member" 
and ends at 4. 

Since the position vectors of the connection 
points 𝑃1,0, 𝑃3,2, 𝑃4,3 are at x axis (for O ≡ A), and 

vectors 𝜔⃗⃗ 1,0 , 𝜔⃗⃗ 3,2 ,  and 𝜔⃗⃗ 4,3 intersect x axis,  then 

there is no moment of those angular velocity vectors 
for x axis, i.e,. 

 

𝑀𝑥
𝜔⃗⃗⃗ 1,0 = 𝑀𝑥

𝜔⃗⃗⃗ 3,2 = 𝑀𝑥
𝜔⃗⃗⃗ 4,3 = 0,                   (28) 
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and (27) becomes reduced to 
 

𝑀𝑥
𝜔⃗⃗⃗ 2,1 + 𝑀𝑥

𝜔⃗⃗⃗ 0,4 = 0 .                  (29) 

 
Equation (29) becomes 

 

−𝜔2,1𝐿
√3

2
+ 𝜔0,4𝐿 = 0.                  (30) 

  

Fig. 7: Example: solution method using co-functions - 
velocities 

 
Considering that 𝜔2,1 = 𝜔2 − 𝜔1, 𝜔0,4 = 𝜔0 − 𝜔4, 

𝜔0 = 0 , then (30) becomes 
 

𝜔2 = 𝜔1 −
2√3

3
 𝜔4,                   (31) 

𝜔2 = −26.188
rad

s
.                   (32) 

 
Similarly, by projecting (2) onto 𝜂 axis, we obtain 
 

𝑀𝜂
𝜔⃗⃗⃗ 1,0 + 𝑀𝜂

𝜔⃗⃗⃗ 2,1 + 𝑀𝜂
𝜔⃗⃗⃗ 3,2 + 𝑀𝜂

𝜔⃗⃗⃗ 4,3 + 𝑀𝜂
𝜔⃗⃗⃗ 0,4 = 0 .                (33) 

 
Since 𝜔0 = 0, then 𝜔1,0 = 𝜔1 − 𝜔0 = 𝜔1, and (33) 

becomes  
 

𝑀𝜂
𝜔⃗⃗⃗ 1 + 𝑀𝜂

𝜔⃗⃗⃗ 2,1 + 𝑀𝜂
𝜔⃗⃗⃗ 3,2 + 𝑀𝜂

𝜔⃗⃗⃗ 4,3 − 𝑀𝜂
𝜔⃗⃗⃗ 4 = 0.                (34) 

 
Further, the points 𝑃2,1 and 𝑃3,2 are on the axis 𝜂, 

then 
 

𝑀𝜂
𝜔⃗⃗⃗ 2,1 = 𝑀𝜂

𝜔⃗⃗⃗ 3,2 = 0.                   (35) 

 
Using (35) and (34), we obtain 
 

𝑀𝜂
𝜔⃗⃗⃗ 1 + 𝑀𝜂

𝜔⃗⃗⃗ 4,3 − 𝑀𝜂
𝜔⃗⃗⃗ 4 = 0,                                   (36) 

−𝜔1𝐿 − (𝜔4 − 𝜔3) 𝐿
1

2
+ 𝜔4 (𝐿

1

2
+ 𝐿

√3

2
) = 0,                 (37) 

𝜔3 = −29.282
rad

s
.                    (38) 

4.2.2. Angular acceleration via 𝛜⃗  co-function 

By projecting (13) onto x axis (Fig. 8), the 
following is obtained 

𝑀𝑥
𝜖⃗ 1,0 + 𝑀𝑥

𝜖⃗ 2,1 + 𝑀𝑥
𝜖⃗ 3,2 + 𝑀𝑥

𝜖⃗ 4,3 + 𝑀𝑥
𝜖⃗ 0,4 + [𝜔⃗⃗ 1,

[𝜔⃗⃗ 1, 𝑃1,0𝑃2,1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]]

𝑥
+ [𝜔⃗⃗ 2, [𝜔⃗⃗ 2, 𝑃2,1𝑃3,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]]
𝑥
+ [𝜔⃗⃗ 3,

[𝜔⃗⃗ 3, 𝑃3,2𝑃4,3
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]]

𝑥
+ + [𝜔⃗⃗ 4, [𝜔⃗⃗ 4, 𝑃4,3𝑃0,4

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]]
𝑥

= 0,                (39) 

 

where the terms are: 
 

𝑀𝑥
𝜖⃗ 2,1 = (𝜖2 − 𝜖1)𝐿 sin 600 = −𝜖2𝐿

√3

2
, 𝑀𝑥

𝜖⃗ 3,2 = 0, 𝑀𝑥
𝜖⃗ 4,3 = 0, 

𝑀𝑥
𝜖⃗ 0,4 = 0, 𝑀𝑥

𝜖⃗ 1,0 = 0, 

[𝜔⃗⃗ 1 , [𝜔⃗⃗ 1, 𝑃1,0𝑃2,1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]]

𝑥
= −𝜔1

2𝐴𝐵 cos 600 = −200𝐿, 

[𝜔⃗⃗ 2, [𝜔⃗⃗ 2, 𝑃2,1𝑃3,2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]]

𝑥
= −𝜔2

2𝐵𝐷 cos 300 = −1028.717 𝐿 , 

[𝜔⃗⃗ 3, [𝜔⃗⃗ 3, 𝑃3,2𝑃4,3
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]]

𝑥
= −𝜔3

2𝐷𝐸 = −857.435 𝐿,   

[𝜔⃗⃗ 4, [𝜔⃗⃗ 4, 𝑃4,3𝑃0,4
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]]

𝑥
= 0.                  (40) 

 
Using equations (40) in (39), angular acceleration 

of the second member is obtained 
 

𝜖2 = −2408.880
rad

s2
. 

 
Fig. 8: Example: solution method using co-functions - 

accelerations 

 
By projecting (13) onto 𝜂 axis (Fig. 8), the 

following is obtained 
 

𝑀𝜂
𝜖⃗ 1,0 + 𝑀𝜂

𝜖⃗ 2,1 + 𝑀𝜂
𝜖⃗ 3,2 + 𝑀𝜂

𝜖⃗ 4,3 + 𝑀𝜂
𝜖⃗ 0,4 + [𝜔⃗⃗ 1,

[𝜔⃗⃗ 1, 𝑃1,0𝑃2,1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]]

𝜂
+ [𝜔⃗⃗ 2, [𝜔⃗⃗ 2, 𝑃2,1𝑃3,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]]
𝜂
+ [𝜔⃗⃗ 3,

[𝜔⃗⃗ 3, 𝑃3,2𝑃4,3
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]]

𝜂
+ +[𝜔⃗⃗ 4, [𝜔⃗⃗ 4, 𝑃4,3𝑃0,4

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]]
𝜂

= 0,                (41) 

 
where the terms are: 

 

𝑀𝜂
𝜖⃗ 2,1 = 0, 𝑀𝜂

𝜖⃗ 3,2 = 0,  𝜖 1,0 = 0⃗  → 𝑀𝜂
𝜖⃗ 1,0 = 0,  𝜖 0,4 = 0⃗  → 

𝑀𝜂
𝜖⃗ 0,4 = 0,    𝑀𝜂

𝜖⃗ 4,3 = −(𝜖4 − 𝜖3)𝐷𝐸 sin 300 = 𝜖3 𝐿
1

2
,  

[𝜔⃗⃗ 1 , [𝜔⃗⃗ 1, 𝑃1,0𝑃2,1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]]

𝜂
= 0, [𝜔⃗⃗ 2, [𝜔⃗⃗ 2, 𝑃2,1𝑃3,2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]]
𝜂

= −𝜔2
2𝐵𝐷 =

−1187,860 𝐿, 

[𝜔⃗⃗ 3, [𝜔⃗⃗ 3, 𝑃3,2𝑃4,3
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]]

𝜂
= −𝜔3

2𝐷𝐸 cos 300 = −742.560 𝐿,   

[𝜔⃗⃗ 4, [𝜔⃗⃗ 4, 𝑃4,3𝑃0,4
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]]

𝜂
= 𝜔4

2𝐸𝐻 cos 600 = 800𝐿.                (42) 

 
Using equations (41) in (42), angular acceleration 

of the third member is obtained 
 

𝜖3 = −2260.840
rad

s2 . 

5. Conclusion 

It is shown that kinematic quantities, such as 
angular velocity and angular acceleration can be 
obtained using an alternative way, which shows an 
analogy to static balance equations. Using relative 
angular velocities and relative angular accelerations, 
and position vectors of connection points of a 
mechanism, two vector equations can be established. 
Using analogy between statics equations and the 
equations derived here, the first equation, the sum of 
relative angular velocities equal zero is analog to the 
sum of forces equal zero in statics. The second 
equation, the sum of moments of angular velocity 
vectors with respect to an arbitrary point-pole 
corresponds to the sum of moments of all forces for 
an arbitrary point-pole in statics. 

1


4


J4,3PE 1,0PA 

2,1PB 

3,2PD 

0,4PH 

x

axp

ABa ,



3


2


axp

EHa ,



axp

BDa ,



axp

DEa ,





1

2

3
4
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Besides the equations related to 𝜔⃗⃗  , it is shown 
here that almost the same analogy can be establish 
for relative angular acceleration vectors 𝜖 . The 
equation of relative angular accelerations is 
identically equal to zero and therefore it does not 
represent an independent equation. Particularly, it is 
shown that the sum of moments of angular 
accelerations along with additional terms that 
represent the sum of normal relative acceleration 
denoted as the "axp" components (the components 
perpendicular to and oriented toward the axis of 
relative rotation, i.e. toward the connection point) is 
equal to zero. This equation is analog to the moment 
equation in statics for an arbitrary point. There is no 
any restriction for the chosen pole, but it is 

convenient to choose that point such that the 
position vector calculation is simplified. 

Finally, application of the derived equations was 
demonstrated through an example of a mechanism 
for a given instant of motion with given angles at the 
instant, but the method is valid for an arbitrary 
instant of a joint-bar mechanism. 
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