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In the present work the p-adic gamma function has been considered. The
Volkenborn integral of the p-adic gamma function by using its Mahler
expansion has been derived. Moreover, a new representation for the p-adic
Euler constant has been given.
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1. Introduction

The p-adic numbers introduced by the German
mathematician Hensel (1897), are widely used in
mathematics: in number theory, algebraic geometry,
representation theory, algebraic and arithmetical
dynamics, and cryptography. The p-adic numbers
have been used applying fields with successfully
applying in superfield theory of p-adic numbers by
Vladimirov and Volovich (1984). In addition, the p-
adic model of the universe, the p-adic quantum
theory, the p-adic string theory such as areas
occurred in physics (Volovich, 1987; Vladimirov and
Volovich, 1984).

Throughout this paper, p is a fixed odd prime
number and by Z,,; @, and C,, we denote the ring of
p-adic integers, the field of p-adic numbers and the
completion of the algebraic closure of @,
respectively.

2. p-Adic gamma function

Morita (1975) defined the p-adic gamma function
I, by the formula

Jp(?f) = lim(-1)" H15j<nj
n-x .
Up)=1

for x € Z,, where n approaches x through positive
integers.

The p-adic gamma function I;, has a great interest
and has been studied by Diamond (1977), Baesky
(1981), Boyarsky (1980), and others. The
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relationship between some special functions and the
p-adic gamma function [}, was investigated by Gross
and Koblitz (1979), Cohen and Friedman (2008) and
Shapiro (2012).

Diamond (1977) and Schikhof (1984) determined
the p-adic Euler constant y, is defined by the
following formula:

_ '@
"= Tm

=I"p(1) =-I"p(0) (1)
It is clear that y, is an element of Z, and has a
limit representation in @, as

. _ n
1 = iy (1~ 17 )

for x € Z,, the symbol (7) is defined by () = 1 and

(z) _ x(x—1)...(x—n+1) nen

n!

The functions x - () ( x € Z,,n € N) form an
orthonormal base of the space C(Z, - Q, )with
respect the norm ||.||,. This orthonormal base has
the following property:

Q) = Zpm (%) 2)

n-j

Mahler (1958) introduced an expansion for
continuous functions of a p-adic variable using
special polynomials as binomial coefficient
polynomial. Means that for any f € C(Z, - Q,),
there exist unique elements ay, ay, ..., a, of Gy such
that f(x) = Xr_0a, (%), (x € Z,,).

The base {(fl) ne N} is called Mahler base of the
space C(Z, — Qp), and the elements {a,:n € N} in
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f) =X an(z) are called Mahler coefficients of

f€C(Z, - Qp).

The Mahler expansion is a common method of
representing the continuous functions from Z, into a
complete extension field of @, (Conrad, 1997). In
order to compute Volkenborn integral of T,
efficiently for an arbitrary x € Z,, we will use the
following Mahler expansions. The Mahler expansion
of the p -adic gamma function [}, and its Mahler

coefficients are determined by the following
propositions:

Proposition 1: Let
Lx+1) =%, an(fl) (x €Zp)
and then

_q)n+t
(n)' X"

x”) 1-xP

exp (x + > = 0y (x €E)

1-x

holds where E is the region of convergence of the

. x™
power series Y. —

Proposition 2: Let p be a prime number. Define
rational numbers c, by the power series expansion
(Villegas, 2007)

exp (x + ’;Tp) = D Cnx™

thenforO0 <a<pand x € Z,
L(=a+px) = X7 p  cauipr ()*

where (0)* = x(x + 1) ... (x + k — 1).
note that

(0)F = (D)KL

3. Volkenborn integral

The Volkenborn integral was introduced in 1971
by Volkenborn in his Ph.D. dissertation and
subsequently in the set of twin papers (Volkenborn,
1972; Volkenborn, 1974), a more recent treatment of
the subject can be found in (Robert, 2000). The
Volkenborn integral can be used for defining the p-
adic log gamma functions, the p-adic Bernoulli
numbers and polynomial, the p-adic zeta and L-
functions. Special numbers and polynomials have
played role in almost all areas of mathematics, in
mathematical physics, computer science,
engineering problems and other areas of science
(Araci and Acikgoz, 2015; Kim et al,, 2013a; 2013b;
Simsek and Yardimci, 2016; Simsek, 2014; Srivastava

etal, 2012).

The indefinite sum of a continuous function
f:Z,—>C, is the continuous function Sf
interpolating
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n- X5 f(G) (meN)
instead of Sf (x € Z,) we can write
lim S22 £ () = ¥4 £ ()

see Schikhof (1984) and Robert (2000).

Let f be a function from C'(Z, - Q,). The
Volkenborn integral of f on Z, is defined by the
formula

[, f@)dx = lim p= $251£(j) = (S)'(0)

For any f € Cl(Zp - C,)., Volkenborn integral
has following properties:

fzp flx+ Ddx — pr fx)dx =£'(0) (3)
Jo, £+ 5)dx = (S7Y'(s) )
fzp f(=x)dx = fz,, flx+ Ddx (5)

The Volkenborn integral in terms of the Mahler
coefficients:  Let [ =3y ,a,(}) € C*(Z, - Cp).
Then

J,, Fedx = Eioan S ©)

n+1
4., Results and discussion

In the present work we obtain the Volkenborn
integral of p-adic gamma function and a new
representative for the p-adic Euler constant.

In what follows, we indicate the Volkenborn
integral with Mahler coefficients of p-adic gamma
function:

Theorem 1: The equality holds:

® ="
pr Fp(X + 1dx = ano anm

for x € Z,,, where a,, is defined by Proposition 1

Proof: Letx € Z,, n € N. From Proposition 1 and
(6), we get

pr I,(x)dx = fz,, Tcoan (5 dx =¥3 o an pr (F)dx
or

pr L(x+ Ddx = 37 g a, c

Theorem 2: For x € Zy andn € N,

o =nr
pr L,(x)dx =y, + Yoy —.

Proof: By using Eq. 3 we get

fzp L,(x 4+ 1dx — fzp I,(x)dx =TI,,'(0) (7
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If we substitute (1) and Theorem 1 in Eq. 7 then
we obtain that

Zn =0a n fzpr (x)dx = ~Vp-

n+1

Proof of the theorem is finished.

Theorem 3: Forall x,s € Zy, the following identity:

()" (51
prF (x + $)dx = Yo 2o @n n+i-j ( j )
is true.

Proof: From Eq. 4 and Proposition 1, we get

fyp e+ 5)dx = (870005 (457)) )

Note that S (x) ( ) Therefore, we get

n+1
pr[' (x + S)dx = (Zn Oan(n+1)) (S)

By using (2) we can write as following

Jpp T (x + 5)dx = (21010:0 an Xj=o (,:i:] (x;l)) Q)

or

prF(x+s)dX—Zn 0 27=0 n 2 _,( j )

In the case s= 0 in Theorem 3 we obtain the
following corollary

Corollary 1: Let x € Z,. The following equality
holds:

f F(x)dx—zn 021 =0 Qn S

n+1 -J

or

Jp p(Odx = By 303 ay (1)

j+1

From Theorem 2 and Corollary 1 we can write a
new representation for the p-adic Euler constant:

Corollary 2: The p-adic Euler constant have the
expansion (Schikhof, 1984):

( 1)n+1
n+1

-1
Y = Yn=1 Z?:O an

]+1 +Zn 0 n

Note that f € C'(Z, = Qp), j €{0,1,...,p — 1},

Jozp FG +0)dx =p~" [, f( + px)dax
Theorem 4: If x € pZ,then

k'p

g, T (O = = B Cpp o
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where ¢, is defined by Proposition 2.
Proof: Assume that |x|, < 1. We have
Jyz, H@dx = p71 [, L,(pr)dx

From Proposition 2,

prp Fp(x)dx = p_l pr Z}(:;O pkcpk (x)k dx =
S0P e [, (0 dx
or

prp L,()dx = Yo pk_lcpk k! (1) pr (‘k")dx

using Eq. 5, we have

fpz,, L,(x)dx = T p* ey k! (—1)F fz,, (*+H)dx
now compute Y e
pute [, (")
1 _ Gean) _ faer O _ (cpkt
f (x+ )dx hm k;1 }Clﬁ% k+1kx = k(k+1)_

so, we obtain

(G
fepic k! (=) K+ D)

fyz T (x)dx = Tt

Z k=1¢ pkk!
k= ° k(k+1)

Recall that T, = Z,\pZ,. From Theorem 2 and
Theorem 4, we obtain following corollary.

Corollary 3: Let x € T,,. Then

(=" p*-

Le,ik!
+ P
n+1 Yiso k(k+1)

f L,()dx = vy + Yo On

where a,, is defined by Proposition 1 and cpy is
defined by Proposition 2.

5. Conclusion

In this paper, we study the p-adic Gamma
function and the following results are obtained:

1.The Volkenborn integral of the p-adic Gamma
function is evaluated.

2.For the p-adic Euler constant which has important
role in many areas, useful representation is
derived.
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