
International Journal of Advanced and Applied Sciences, 5(1) 2018, Pages: 156-163 

Contents lists available at Science-Gate  

International Journal of Advanced and Applied Sciences 
Journal homepage: http://www.science-gate.com/IJAAS.html 

156 

Extracting accurate time domain features from vibration signals for 
reliable classification of bearing faults 

Muhammad Masood Tahir 1, *, Saeed Badshah 2, Ayyaz Hussain 3, Muhammad Adil Khattak 4

1Department of Electrical Engineering, International Islamic University, Islamabad, Pakistan 
2Department of Mechanical Engineering, International Islamic University, Islamabad, Pakistan 
3Department of Computer Science, International Islamic University, Islamabad, Pakistan 
4Faculty of Mechanical Engineering, Universiti Teknologi, Johor, Malaysia 

A R T I C L E  I N F O A B S T R A C T

Article history: 
Received 20 August 2017 
Received in revised form 
10 November 2017 
Accepted 1 December 2017 

Identification of localized faults in rolling element bearing (REB) frequently 
utilizes vibration-based pattern recognition (PR) methods. Time domain 
(TD) statistical features are often part of the diagnostic models. The 
extracted statistical values are, however, influenced by the fluctuations 
present in random vibration signals. These inaccurate values consequently 
affect the diagnostic capability of the supervised learning based classifiers. 
This study examines the sensitivity of TD features to signal fluctuations. 
Vibration data is acquired from different REBs containing localized faults 
using a test rig, and a central tendency (CT) based feature extraction (CTBFE) 
method is proposed. The CTBFE ensures the supply of reliable feature values 
to the PR models. The method selects the fault related appropriate portion of 
a vibration signal prior to extract TD features. Variety of classifiers is used to 
judge the effect of CTBFE method on their fault classification accuracies, 
which are enhanced considerably. The results are also compared with a 
similar sort of existing method, where the proposed method provides better 
results and feasibility for on-line applications. 
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1. Introduction

*The REB is vital part of rotating machinery due to
carrying dynamic loads. Beside financial losses, 
sudden failure of REB may cause catastrophic 
failures. Vibration-based condition monitoring is the 
most popular technology for early detection of such 
failures (Tandon and Choudhury, 1999). However, 
the localized faults in REB produce very weak 
impulses in vibration signals (Wictor, 1991). 
Therefore, the existing frequency domain methods 
are unable to detect these faults (Randall, 2011). The 
raw vibration data are oftentimes pre-processed to 
aid the detection process. Envelope analysis 
(Sawalhi et al., 2007; Wang and Lee, 2013) and 
wavelet-based decompositions (Caesarendra et al., 
2013; Lou and Loparo, 2004; Smith et al., 2007; 
Purushotham et al., 2005; Altmann and Mathew, 
2001; Abbasion et al., 2007) are the commonly used 
pre-processing methods. With the increasing 
technology, several vibration-based PR methods are 
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used also to diagnose machinery faults (Rauber et al., 
2010). However, noise in PR systems can reduce the 
performance of classifiers (Ericsson et al., 2005). 
Numerous supervised learning methods have so far 
been presented for the identification of REB’s 
localized faults using TD statistical features 
(Samanta et al., 2003; Jack and Nandi, 2002; Rojas 
and Nandi, 2006; Samanta and Al-Balushi, 2003; 
Yang et al., 2004; Zhang et al., 2005; Sugumaran, and 
Ramachandran, 2007; Kankar et al., 2011; 
Sugumaran and Ramachandran, 2011; Saimurugan 
et al., 2011). But optimizing the fault classification 
accuracy, using minimal set of features, is still a 
challenging task for the researchers. 

Literature survey reveals that only a few research 
efforts have been made to extract accurate features 
from random nature of vibration signals, for reliable 
PR of machinery faults. Lee et al. (2010) examined 
the sensitivity of features for machinery prognostics 
and health management system. Several features, 
extracted from time and frequency domains, were 
employed to identify various faults of rotating 
machinery. Effect of signal quality along with 
machine’s operating conditions like load, speed, or 
torque was studied. To decrease the influence of 
operating conditions on the features accuracy, the 
authors also presented a feature normalization 
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method. It was emphasized that, for reliable results, 
the noise and outliers present in a vibration signal 
should be addressed prior to extracting diagnostic 
features. Recently, Tahir et al. (2017) presented a 
central tendency (CT) based feature processing 
(CTBFP) method to extract accurate TD features 
from random nature of vibration signals. The 
method operated at feature-level, i.e. after extracting 
the features and prior to employing classifier in a 
diagnostic model. The feature distributions were 
processed during the data preparation stage of 
supervised learning. The features included RMS, 
mean, variance, skewness, kurtosis, crest factor, 
impulse factor, shape factor, median and range. The 
paper investigated that fluctuations or spikes 
present in vibration signal can consequently alter 
the statistical value of a TD feature or produce 
feature outlier. During the CTBFP, abnormal or 
outlying values of the features were detected, and 
the affected instances containing one or more 
abnormal feature values were discarded. The 
authors also stated that the occurrence of 
fluctuations may not be related to study bearing fault 
patterns (Liu et al., 2013). Intent of the research was 
that only fault related feature values should take part 
in the PR process. Several classifiers were utilized to 
validate the performance of CTBFP method, which 
considerably enhanced the diagnostic capability of 
the classifiers. The classifiers included Support 
Vector Machine (SVM), BayesNet, Decision Table and 
Decision Tree. 

Application of the CTBFP method may become 
somewhat limited when data-set is small, due to the 
strategy of discarding the affected instances. Unlike 
processing the feature distributions, this study 
proposes a new CTBFE method that works at feature 
extraction-level to obtain reliable TD feature values. 
Utilization of the CT-based extracted features, for the 
PR of REB’s localized faults, considerably enhances 
the fault classification capability of the classifiers. 
The proposed method selects the most appropriate 
portion of a vibration signal for the extraction of 
features. This ensures the supply of very accurate 
feature values to a classifier for truthful decision 
making. The method is efficient and provides 
significant immunity to possible fluctuations and 
background noises present in vibration signals. 

The CTBFE method not only preserves number of 
instances but also provides more accurate results 
compared to that of CTBFP method. Same TD 
features and classifiers were utilized in the present 
study that was used by Tahir et al. (2017). To the 
best of our knowledge, the proposed methodology 
has not been reported so far for the purpose of 
bearing fault diagnosis. 

The manuscript is organized as follows. Section 2 
briefs about the bearing structure and its localized 
faults. Major steps involved in the development of 
CTBFE method are elaborated in Section 3. Section 4 
discusses the results obtained and findings of the 
proposed study, whereas the conclusions are drawn 
in Section 5. 

2. Localized faults in REB 

Localized faults commonly occur in REB because 
of surface fatigue (Liu et al., 2013). With the 
appearance of a fault on any element of the bearing, 
an impulsive vibration is produced that is known as 
fault frequency. The frequency depends on rotational 
speed of shaft and location of the fault. Fundamental 
train frequency (FTF), ball pass frequency of inner 
race (BPFI), ball pass frequency of outer race 
(BPFO), and ball spin frequency (BSF) are the 
common frequencies generated in REB. Fig. 1 shows 
the geometric parameters of the bearing involved in 
generating the fault frequencies, which are described 
below. 

 

 
Fig. 1: Structure of ball bearing 
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where 𝐹𝑠ℎ𝑎𝑓𝑡  is the motor speed in Hertz, 𝑁𝑏is the 

number of balls, 𝐷𝑏is the diameter of ball, 𝐷𝑝is the 

pitch diameter and ∝ is the contact angle. 
Resonance in bearing housing is produced due to 

metal to metal impacts of bearing components, and 
is modulated by fault frequency. Over many years, 
envelope analysis has been used as benchmark 
method to detect these low level impulses, as it is 
often difficult via conventional frequency analysis 
methods (Randall, 2011). The enveloping extracts 
the signal of interest using a band pass filter in the 
high frequency reign to demodulate resonance 
related to the fault impacts. However, proper 
selection of the frequency range is critical for 
effective demodulation.  

Many approaches have been proposed in the 
literature for optimal selection of frequency band, 
such as spectral kurtosis based methods, spectral 
energy based methods, wavelet based methods etc., 
that are discussed in Barszcz and Jabłoński (2010) 
and Zhao et al. (2014). We have employed spectral 
kurtosis based fast kurtogram method proposed by 
Antoni (2007) for frequency range selection in our 
enveloping-based data validation process as 
described in next section.  
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3. Proposed methodology 

The proposed fault diagnostic scheme works 
mainly in three steps, elaborated by the block 
diagram in Fig. 2. Details of each step are in the 
following subsections. 

 

 
Fig. 2: Block diagram of fault diagnostic scheme 

3.1. Vibration data acquisition 

Vibration data from faulty bearings was acquired 
using a Machine Fault Simulator (MFS) from 
SpectraQuest Inc. A set of ball bearings ER-12K 
model was utilized containing different localized 
faults. The faults include inner race fault (IRF), outer 
race fault (ORF), ball fault (BLF), and mixture of the 
above mentioned faults (MXF). The generated fault 
size measured as 1.5 mm wide and 0.3 mm deep. 

Fig. 3 shows the schematic of the experimental 
setup, in which healthy bearing is installed at in-
board and the faulty bearing is installed at out-
board. A mass of 5kg was placed in the middle of 

healthy shaft acting as loader. An ICP industrial 
accelerometer model 608A11was stud-mounted at 
the top of out-boards bearing housing to measure 
radial vibration from bearing under test. Sensitivity 
of the accelerometer was 100mv/g, having operating 
frequency range 0.5 Hz to 10 KHz and resonance 
frequency 22 KHz. NI 4472 hardware was used to 
capture data at the rate of 60K samples/sec at motor 
speed of 1000 RPM. Forty vibration samples were 
acquired, each of 10 seconds duration, for each fault. 

 

 
Fig. 3: Schematic of experimental setup 

  
Fault frequencies, shown in Table 1, are 

calculated by using Equations 1 to 4. The vibration 
data set was validated using envelope analysis 
method. The enveloped spectrum of IRF fault is 
shown in Fig. 4a. Harmonics of BPFI are present with 
the side-bands of shaft speed. Fig. 4b elaborates the 
first harmonic of BPFO representing ORF. BL fault is 
evident in Fig. 4c, where twice the BSF appeared 
with the FTF. Fig. 4d shows the enveloped spectrum 
of MXF, in which BPFO and BSF are dominating. 
Hence, all the required information related to ball 
bearing localized faults is present in the data set. Fig. 
4c and Fig. 4d demonstrated no noteworthy 
frequency patterns above the 250 Hz, and thus the 
maximum limit of the graphs is set to 250 Hz to 
zoom-in the valuable part of the graphs. 

 

  

(a) Enveloped Spectrum of IR fault (b) Enveloped Spectrum of OR fault 

  

(c) Enveloped Spectrum of BL fault (d) Enveloped Spectrum of MX fault 

Fig. 4: Enveloped spectra of bearing faults 
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Table 1: Bearing fault frequencies (Hz) 
Shaft speed FTF BPFI BPFO BSF 

16.67 6.36 82.46 50.87 33.20 

3.2. CT-based feature extraction (CTBFE) 

The second step is the core of diagnostic scheme. 
The features were extracted in three distinct stages, 
as shown in Fig. 5. Details of which are in the 
following subsections. 

3.2.1. Data segmentation 

At first stage, each acquired vibration signal or 
sample of every fault was segmented into n segments 
or sub-samples (n=30 here). As the motor speed was 
16.67 Hz, thus each segment holds vibration history 
of more than 5.5 revolutions of the shaft. In this way, 
the segments contained a valid sample length to 
compute trustworthy statistical features. 
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Fig. 5: CT-based feature extraction of single feature 

3.2.2. TD feature extraction from the segments 

The following ten features were extracted from 
every segment. 
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In the above relations, X is the sequence of 

samples obtained after digitizing the time domain 
signals, X(t) is the amplitude of 𝑡𝑡ℎsample and M is 
the total number of samples in the sequence. 

3.2.3. Obtaining CT of the features 

The CT describes a data-set with single value. 
Mean, median or mode is common parameters used 
according to application (Watt and Van den Berg, 

1995). Mean is used mostly when data distribution is 
symmetric. However, it exhibits sensitivity to 
outlying values present in data-set due to 
involvement of every value. On the other hand, 
median score exhibits lesser sensitivity to outliers as 
it occupies middle place in an ordered set of data 
(Watt and Van den Berg, 1995). When TD features 
were extracted from the segments of a vibration 
signal, outliers in the ascending ordered feature 
distribution were usually placed above the median 
score. Fig. 6a shows range feature extracted from 
vibration samples of every fault. The feature values 
are varying due to fluctuations in random vibration 
signals. Fig. 6b shows the same elements sorted in 
ascending order. Median values of the feature from 
every fault are nearly insensitive to these outliers. 
Therefore, the proposed CTBFE method considers 
the median values of TD features as the most 
accurate features to recognize bearing's faults 
patterns, i.e. the values that are unaffected by 
undesired fluctuations. This choice indirectly points 
out the most appropriate vibration sub-sample or 
portion, which produces the feature's median value. 
In other words, the proposed method picks a 
particular vibration sub-sample for feature 
extraction to take part in pattern recognition 
process, while discarding the rest of vibration sub-
samples. 

3.3. Fault classification 

Supervised learning based PR-model was 
employed at final stage of the proposed 
methodology. SVM, BayesNet, Decision Table and 
Decision Tree were used separately to judge the 
performance of CTBFE method. At first stage, a 
classifier is trained using known data examples or 
instances and then employed for testing unknown 
data. The process is illustrated in the block diagram 
in Fig. 7. 

The k -fold cross-validation method was 
implemented to estimate the performance of any 
model. Data-set D is segmented into k equal parts, 
i.e., d1, ..., dk. Out of the k parts, k-1 are used for 
training the model while the remaining part is used 
for validation. The process continues for k-times, and 
thus each of the k parts is utilized once for data 
validation purpose. Finally, the results obtained from 
k folds are averaged out to have global estimation of 
classification accuracy. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐺𝑙𝑜𝑏𝑎𝑙 =   ∑ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑝
𝑘

𝑝=1
                        (15) 

 

The SVM, BayesNet, Decision Table and Decision 
Tree classifiers are discussed briefly in (Tahir et al., 
2017), however, interested reader is referred to 
Vapnik and Vapnik (1998), Kirsch and Kroschel 
(1994), Kohavi (1995) and Quinlan (1986) 
respectively for more details. 
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(a) Shape Factor unsorted elements (b) Shape Factor elements sorted in ascending order 
 

Fig. 6: Shape factor feature extracted from every faulty signal 
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Training data set Test data set

Trained classifier

Fault Diagnosis
 

Fig. 7: Supervised learning and fault classification   
procedure 

4. Results and discussion 

Vibration data was acquired from a set of ball 
bearings containing localized faults using MFS.  

The intention was to identify these faults using 
PR methods with TD statistical features. An 
important phenomenon was observed that 
fluctuations may be occurred in random vibration 
signals, as shown in Fig. 8. Consequently, statistical 
values of the TD features can be altered (Tahir et al., 
2017). The reasons behind the occurrence of these 
particular phenomena are outside the scope of this 
study. However, the fluctuations may not be related 
to bearing’s localized faults, and can reduce the fault 
classification ability of classifiers (Tahir et al., 2017). 
The inaccurate feature values made the fault 
identification difficult for the classifiers. Thus, the 
CTBFE method was developed that ensure the 
provision of reliable and accurate TD features to the 
diagnostic models. The proposed method selects the 
most appropriate portion of a time domain signal 
before extracting any feature to take part in PR 
process. 

 

  

(a) Waveform of IR fault (b) Waveform of OR fault 

  

(c) Waveform of BL fault (d) Waveform of MX fault 
 

Fig. 8: shows the fluctuations present in the vibration signals acquired from faulty bearings. 
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Unlike the conventional way, the TD features 
were not extracted directly from vibration signal or 
sample. An acquired vibration signal was initially 
segmented or divided into suitable number of sub-
samples, as already discussed in Section 3.2. Then at 
the next stage, any TD feature was extracted from 
every segment, forming distribution of that feature. 
The feature distribution might contain outlying 
values extracted from the segments having 
fluctuations. Finally, median value of the distribution 
was chosen as a reliable value of the feature used by 
the classifier later. Remaining values of that feature 
were discarded.  In other words, a portion of time 
domain vibration signal, which produced median 
value in the feature distribution, was considered as 
the most appropriate part of the signal to extract 
that particular feature for classifier. Similarly, every 
vibration signal or sample, acquired from different 
faulty bearings, was processed and data-set was 
prepared for the supervised learning and testing of a 
classifier using all the TD features. It is worth 
mentioning that the diagnostic capability of the 
classifiers was considerably improved.  

Figs. 9a and 9c shows fluctuated values of RMS 
and Median features respectively due to presence of 
fluctuations in the samples. For instance, 
overlapping among the median feature elements can 
be observed that are extracted conventionally 
against different fault classes. On the other hand, 
Figs. 9b and 9d show much smoother and stable 
values of RMS and Median features respectively, 
extracted using CTBFE method against every fault. 
Table 2 shows the results in terms of fault 
classification accuracies produced by the SVM, 
BayesNet, Decision Table and Decision Tree. The 
classifiers provided quite low classification accuracy 
when trained over the conventional TD features. The 
above mentioned overlapping might be a reason of 
misclassification. On the other hand, the CTBFE 
method provided the most accurate results, even 
higher than that of CTBFP method (Tahir et al., 
2017). Every classifier considerably enhanced its 
classification accuracy using the features extracted 
through CTBFE method. 

 

 

 

 
(a) RMS feature distribution extracted via conventional 

feature extraction method 
(b) RMS feature distribution extracted via CTBFE method 

  

(c) Median feature distribution extracted via conventional 
feature extraction method 

(d) Median feature distribution extracted via CTBFE method 

 
Fig. 9: Distributions of features from every fault, using conventional feature extraction and CTBFE methods 

 

Table 3 shows the CTBFE-based sample instances 
fed to the classifiers. Unlike the CTBFP method, 
which examines a vibration data sample whether to 
adopt or discard before incorporating classifier in a 
PR system, the CTBFE method preserves vibration 
sample or the data instance. In other words, every 

vibration data sample was taken into account for the 
training and testing of classifier. The CTBFE method 
locally examines the vibration sample to find the 
best portion to extract a particular feature. As the 
proposed method operated at feature extraction-
level, thus few values in any feature distribution 
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were processed. This makes the method 
computational efficient over the conventional 
method of pre-processing the big TD raw vibration 
data. Therefore, the proposed method more feasible 
to apply, especially in on-line systems.  

Finally, the Gaussian white noise was added, at 
different signal-to-noise ratios (SNRs), to the 
acquired vibration signals. The purpose was to 
examine the robustness of the CTBFE method 
against possible background noise. Table 4 shows a 
comparative accuracies using SVM with 
conventionally extracted raw TD features, CTBFP-

based features and CTBFE-based features. The 
results are evident that the CTBFE method is 
considerably immune to strong background noise. In 
conclusion, it is worthwhile to disassociate the 
unrelated vibration signal fluctuations before 
extracting TD features for better results. The 
proposed method provides an effective way to 
extract accurate TD features for reliable PR of REB’s 
localized faults. CTBFP method, the proposed CTBFE 
method provides better accuracy and feasibility for 
real time applications.  

 
Table 2: Fault classification accuracies (%) demonstrated by the classifiers using TD features extracted through conventional 

method, CTBFP method and CTBFE method 
TD Features SVM BayesNet Decision Table Decision Tree 

Conventional 76.3 73.1 73.8 75.6 
CTBFP-based 94.4 93.1 93.8 93.1 
CTBFE-based 96.8 95.6 96.3 95.3 

 
Table 3: Sample instances 

RMS Mean Variance Skewness Kurtosis C. Factor I. Factor S. Factor Median Range Class 

0.123545 0.006669 0.015220 0.064665 3.993307 5.174012 6.670373 1.288857 0.006493 1.205619 IR 
0.104251 0.010171 0.010769 -0.060896 3.107096 4.180617 5.262083 1.255357 0.011670 0.855635 MX 
0.097082 0.009646 0.009326 0.024434 3.111147 4.304330 5.431385 1.260813 0.009161 0.786403 OR 
0.114673 0.010069 0.013055 -0.001619 3.487579 5.580402 7.072814 1.274444 0.010164 1.080577 BL 
0.109926 0.009739 0.011995 -0.028010 3.477397 4.880355 6.215002 1.272296 0.010298 1.047131 BL 
0.107676 0.010239 0.011491 -0.063840 3.213316 4.559395 5.753273 1.260497 0.011645 0.932939 MX 
0.123887 0.006732 0.015308 0.039166 4.130151 5.402507 7.052314 1.290309 0.006705 1.238731 IR 
0.096585 0.009771 0.009227 0.028402 3.106420 4.408249 5.563598 1.260118 0.009311 0.797831 OR 
0.117095 0.006637 0.013665 0.061755 3.848648 5.270918 6.751742 1.283447 0.006443 1.126882 IR 
0.097541 0.009738 0.009424 0.021167 3.089156 4.238921 5.338348 1.258566 0.009404 0.792569 OR 
0.117171 0.009918 0.013623 -0.034957 4.090413 6.121256 7.859428 1.288918 0.010311 1.340206 BL 
0.123120 0.006549 0.015118 0.018975 4.087831 5.219351 6.697593 1.289506 0.006412 1.200625 IR 
0.104262 0.010232 0.010764 -0.053463 3.063545 4.191004 5.259959 1.255473 0.011146 0.852375 MX 
0.098299 0.009691 0.009569 0.009942 3.083072 4.241622 5.326563 1.259690 0.009423 0.791360 OR 
0.105448 0.010175 0.011023 -0.075306 3.250603 4.788783 6.073055 1.263119 0.011103 0.923451 MX 
0.123027 0.010081 0.015032 -0.093497 5.105299 7.220242 9.686619 1.312410 0.010679 1.717667 BL 
0.118982 0.006575 0.014116 0.018851 3.659112 4.876021 6.244959 1.276700 0.006698 1.076432 IR 
0.097786 0.009659 0.009464 0.047652 3.148428 4.410911 5.577425 1.261922 0.008843 0.824528 OR 
0.128342 0.009797 0.016382 -0.068345 6.964402 8.247482 11.168003 1.348729 0.010348 1.993567 BL 
0.098446 0.009844 0.009596 0.028482 3.100508 4.175840 5.244687 1.260199 0.009236 0.779015 OR 
0.119826 0.006562 0.014313 0.011161 3.839070 5.185884 6.688230 1.284385 0.006910 1.135910 IR 
0.103058 0.010192 0.010521 -0.073351 3.107329 4.346817 5.480032 1.256962 0.011770 0.859868 MX 
0.104754 0.010201 0.010868 -0.060541 3.132232 4.318295 5.446635 1.256244 0.011209 0.872841 MX 
0.097683 0.009828 0.009443 0.014793 3.155368 4.285214 5.426932 1.262211 0.009473 0.802919 OR 
0.118858 0.009756 0.014034 -0.050718 5.433235 6.766725 9.134587 1.323466 0.010379 1.653648 BL 
0.120009 0.006516 0.014364 -0.005199 3.637722 4.789050 6.092252 1.276882 0.007023 1.058688 IR 
0.097517 0.009707 0.009409 0.037788 3.076821 4.304325 5.426315 1.259559 0.008862 0.781715 OR 
0.106686 0.010117 0.011280 -0.054581 3.286501 4.938892 6.205985 1.262083 0.011439 1.007855 MX 
0.111537 0.009981 0.012329 -0.031095 3.464394 5.006476 6.372134 1.272795 0.010679 1.019008 BL 

 

5. Conclusion 

Vibration-based PR methods were utilized to 
identify localized faults of REB using statistical TD 
features. It was observed that undesired fluctuations 
present in random vibration signals consequently 
swung the statistical values of TD features. It was 
also observed that these fluctuations might not be 
related to REB’s localized faults, and employment of 
inaccurate feature values in PR systems might be the 
source of misleading the supervised learning based 
classifiers. Thus, unlike the conventional extraction 
of TD features, the CTBFE method is proposed to 
supply accurate and reliable feature values to the 
diagnostic models. Only the respective appropriate 
portions of vibration signals were utilized to extract 
the desired TD features for the fault classification 
process.  

Variety of classifiers was employed to evaluate 
the proposed methodology, and the results were 
evident that all the classifiers were performed better 
when utilized the CTBFE-based features. Moreover, 
the proposed method has shown its robustness 
against the strong background noise. When 
compared to the most related existing 
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