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The aim of this paper is to present a new hybrid metaheuristic approach 
based on Ant colony algorithm and the variable neighborhood search noted 
by ACS_VNS to solve a permutation flowshop scheduling problem. In this 
context, several criteria are considered which are: the makespan, the total 
flowtime and the total tardiness of jobs. The proposed approach uses the 
compromise programming model and the concept of satisfaction function 
taking into account, explicitly, the decision-maker preferences (DMP). It has 
been tested through a computational experiment and the obtained results 
are compared to others for all criteria and for the makespan criterion. The 
obtained results show the performance of the proposed approach which can 
be considered as a good tool for multicriteria scheduling problem, especially 
since it does not necessitate a long computational time. 
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1. Introduction 

*As defined by T’kindt and Billaut (2002), a 
scheduling problem consists of finding the sequence 
of a set of jobs (tasks) to be processed on different 
machines, so that technological constraints are 
satisfied and one or several performance criteria are 
optimized. Generally, the objectives of scheduling 
problem are conflicting in nature. Indeed, it is 
generally impossible to find a sequence in which all 
conflicting scheduling criteria are optimized 
simultaneously. Hence, the decision maker needs to 
make some trade-offs between the scheduling 
criteria in order to obtain the most satisfactory 
sequence. Several researchers have studied the 
problem of multi-criteria scheduling flow shop type. 
Gangadharan and Rajendran (1994) have considered 
the minimization of the makespan and the total 
completion time criteria. They applied a simulated 
annealing technique to develop their own heuristics. 
Rajendran and Ziegler (2004) proposed two ant 
colonies algorithms to solve a scheduling problem in 
order to minimize simultaneously the makespan and 
total completion time. Lin et al. (2008) have 
introduced new features in an ant colony algorithm 
inspired by the behavior of ants to develop a new 
algorithm and produce better solutions. Loukil et al. 

                                                 
* Corresponding Author.  
Email Address: medanis.allouche@yahoo.fr (M. A. Allouche)  
https://doi.org/10.21833/ijaas.2017.09.023 
2313-626X/© 2017 The Authors. Published by IASE.  
This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/) 

(2005), Varadharajan and Rajendran (2005) have 
adapted a multi-objective simulated annealing 
(MOSA) method to solve a multicriteria scheduling 
problem.  

There are several other studies that have been 
developed in the area of multi-criteria scheduling 
problem such as: Tavakkoli-Moghaddam et al. 
(2007), Eren (2007), Javadi et al. (2008), Chang et al. 
(2008), Ruiz and Allahverdi (2009) and Qian et al. 
(2009). T’kindt and Billaut (2002) presented a quite 
complete literature review regarding multi-criteria 
scheduling theory. These entire works do not take 
into account, explicitly, the decision maker’s 
preferences in the decisional process. Nevertheless, 
small numbers of proposed approaches cited in the 
literature, consider the decision maker’s preferences 
in the multicriteria scheduling problems. Gagné et al. 
(2004) treated a problem of industrial multi-
objective scheduling a single machine with 
dependent setup times. They proposed a generic 
procedure to search a compromise solutions based 
on ant colonies algorithm which takes into account 
the preferences set by the decision maker. This 
procedure based on the following three steps: a) 
determining the ideal point, b) determining the 
compromise solution and c) presenting effective 
solutions to the decision maker. For multi-objective 
scheduling problems, Gagné et al. (2005) have used 
metaheuristics, based on hybrid Tabu 
Search/Variable Neighborhood Search (Tabu-VNS), 
to finding compromise solutions. In the same 
context, Allouche et al. (2009) have presented an 
exact method to solve a multi-criteria permutation 
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flowshop problem. This approach based on 
compromise programming model and the concept of 
satisfaction functions and that, by incorporating 
explicitly the preferences of the decision maker. The 
satisfaction functions measure the intensity of 
preference regarding the deviations between the 
achievement and the aspiration levels of the 
following criteria: makespan, total flow time and 
total tardiness. Allouche (2010) has proposed a Tabu 
Search metaheuristic to solve permutation flow shop 
scheduling problem where several criteria are to be 
considered, i.e., the makespan, total flowtime and 
total tardiness of jobs. The Compromise 
Programming model and the concept of satisfaction 
functions are used to integrate explicitly the 
manager’s preferences. In this paper, we propose a 
new metaheuristic approach based on ant colony 
optimization and variable neighborhood search to 
solve the permutation flowshop scheduling problem 
by considering the same criteria used in Allouche 
(2010). The proposed metaheuristic approach 
incorporates explicitly the manager’s preferences by 
using the concept of satisfaction functions. It will be 
tested through a computational experiment and 
compared to results obtained by Allouche (2010). 

This paper is organized as follows. Components 
and steps of the proposed metaheuristic are given in 
section 2 and 3 respectively. In section 4, Numerical 
experiments on several multicriteria scheduling 
problems are presented and computational results 
and discussions are presented in section 5. Section 6 
concludes the paper with making the focus to the 
advantages and limits of our work. 

2. Metaheuristic components 

In this section, we present the different 
components of the proposed metaheuristic. In fact, it 
is based on the three main elements: the 
compromise programming model, the satisfaction 
functions concept and the hybrid ant colony 
algorithm. 

2.1. The compromise programming model 

The Compromise Programming model (CP) was 
developed first by Zeleny (1973). It is based on 
minimizing the distance between the achievement 
level of the objective 𝑞(𝑓𝑞(𝑥) and the ideal value (𝑔𝑞

∗) 

associated with this objective. The value can be 
obtained according to the objective of optimization, 
and the mathematical model form of the CP model is 
as follows: 

 

Aim to maximise Aim to minimise 

Min ∑ 𝑊 −
𝑞

𝑄
𝑞=1 𝛿 −

𝑞
 

Subject to: 
𝑓𝑞(𝑥) + 𝛿𝑞

− = 𝑔𝑞
∗  

(∀ 𝑞 ∈ 𝑄) 
𝑥 ∈ 𝐹 

𝛿𝑞
− ≥ 0 (∀ 𝑞 ∈ 𝑄) 

Min ∑ 𝑊 +
𝑞

𝑄
𝑞=1 𝛿 +

𝑞
 

Subject to: 
𝑓𝑞(𝑥) − 𝛿𝑞

+ = 𝑔𝑞
∗  

(∀ 𝑞 ∈ 𝑄) 
𝑥 ∈ 𝐹 

𝛿 +
𝑞
≥ 0 (∀ 𝑞 ∈ 𝑄). 

where: 

𝑊𝑞
+ 𝑎𝑛𝑑 𝑊𝑞

−  are, respectively, the weights of 

positive and negative deviations of the objective q.  
F: the set of feasible solutions 

2.2. The concept of satisfaction functions 

The concept of satisfaction functions was 
introduced in the "Goal Programming model" by 
Martel and Aouni (1990). These functions enable the 
integration of the decision maker's preferences, and 
this, in connection with the deviations between the 
levels of achievement and aspiration goals (these 
funds are set by the decision maker). These functions 
have the following general form (Fig. 1): 

 

 
Fig. 1: General form of a satisfaction function 

 
where: 
𝐹𝑞( 𝛿𝑞): Value of the satisfaction function associated 

with deviations 𝛿𝑞, 

𝛼𝑞𝑑: Indifference threshold, 

𝛼𝑞𝑂: Nil satisfaction threshold, 

𝛼𝑞𝑣: Veto threshold. 

𝛿𝑞 ∈ [0, 𝛼𝑞𝑑]: Within this interval, the decision 

maker’s satisfaction level reaches its maximum value 
of 1. 
𝛿𝑞 ∈ [𝛼𝑞𝑑 , 𝛼𝑞𝑂]: Within this interval, the decision 

maker’s satisfaction function is monotonously 
decreasing. 

𝛿𝑞 ∈ [𝛼𝑞𝑂 , 𝛼𝑞𝑣]: Within this interval, the decision 

maker’s satisfaction function is equal to zero. When 
𝛿𝑞  exceeds the veto threshold, the solution will be 

rejected by the decision maker.  
Note that many other shapes of satisfaction functions 
can be found in Martel and Aouni (1990). 

2.3. The hybrid ant colony algorithm 

The proposed approach is a hybridation of two 
metaheuristics. The first one is based on ant colony 
algorithm and the second one is based on the 
variable neighborhood search (VNS). Note that the 
Ant colony Optimization (ACO) heuristic was first 
introduced by Dorigo et al. (1996). It is inspired by 
the real-life behavior of ants. Several kinds of ant 
colony algorithm are cited in the literature such as 
the "Ant System (AS)", proposed by Dorigo et al. 
(1996), the "Ant Colony System (ACS)" proposed by 
Gambardella and Dorigo (1996), the "Ant-Q" 
proposed by Gambardella and Dorigo (1995). In this 

i i ii

1 

)i(iF 
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paper, we used ACS algorithm which is detailed in 
Fig. 2. 

 
(1) Initialization: the pheromone trails, the heuristic information 

and parameters. 
(2) Iterative loop: 
(3) A colony of ant determines starting jobs. 
(4) Construct a complete schedule for each ant: 

Repeat 
Apply state transition rule to select the next processing job 
Apply the local updating rule 
Until a complete schedule is constructed 

(5) Apply the global updating rule 
(6) Cycle: If the maximum number of iterations is reached, then 

STOP; 
Else go to step 2. 

Fig. 2: The ACS algorithm 
 

On the other hand, variable neighborhood search 
(VNS) is one of the recently proposed metaheuristics 
in the field of combinatorial optimization. It was first 
introduced by Hansen and Mladenović (1997). It is 
based on the systematic change of the neighborhood 
within a possibly randomized local search algorithm. 
Contrary to other metaheuristics based on local 
search methods, VNS does not follow a trajectory but 
explores increasingly distant neighborhoods of a 
current solution, and jumps from it to a new one if 
and only if an improvement has been made.  

A major advantage of VNS is that it avoids any 
blockage in a local optimum. Using VNS needs to set 
some parameters such as: a) the adopted 
neighborhood structures and b) the order of 
implementation of these structures. The VNS 
algorithm is represented in Fig. 3.  

 

1. Initialization: find an initial solution x. 
2. Repeat the following steps: 
a) Randomly generate a solution x'  V(x); 
b) Apply to x' procedure k local search until a maximum number 
of iterations 
To a local optimum x''; 
If x' is better than x'' then k = 1 otherwise k = k + 1. 

Fig. 3: The VNS algorithm 

The structure of the proposed algorithm which is 
a hybridation of ant colony algorithm and variable 
neighborhood search is presented in Fig. 4. 

 

[1] Initialization: the pheromone trails, the heuristic 
information and  parameters 
[2] Iterative loop: 
[3] A colony of ant determines starting jobs. 
[4] Construct a complete schedule for each ant: 
Repeat 
Apply state transition rule to select the next processing job 
Apply the local updating rule 
Until a complete schedule is constructed 
[5] Apply VNS 
[6] Apply the global updating rule 
[7] Cycle: If the maximum number of iterations is reached, then 
STOP; 
Else go to step 2. 

Fig. 4: ACS-VNS algorithm 

3. Metaheuristic steps 

In this section, we present the different steps of 
the proposed metaheuristic approach. The first step 
determines the lower bounds of each criterion (ideal 

points) and the second step consists of determining 
the best compromise solutions (sequence). 

3.1. Determination of ideal points 

In this step, we optimize each criterion separately 
by using the hybrid ant colonies. The obtained 
solutions represent the ideal points gq*. 

The basic concepts of the proposed metaheuristic 
are presented as follows: 

 
 The pheromone information: is presented by a 

matrix P (nxn) where n is the number of tasks. It is 
initialized at 𝜏0, a real value fixed by the users and 
will be modified by ants during the execution 
process. In this paper,  𝜏0 is fixed at 0.1. Note that 
 𝜏𝑖𝑗 is considered as the intensity of the pheromone 

trail for all tasks pairs (i,j) where i is the scheduled 
task and j the new task to be scheduled which 
having the maximum value of  𝜏𝑖𝑗. 

 
 The Heuristic information (ηij): the choice of the 

next task (job) to be scheduled is influenced by 
heuristic information (visibility) related to the 
characteristics of tasks such as operating 
(processing) time. This information can be static 
or dynamic. Note that in our case, it was 
considered as static. We initialize the elements of 
matrix H with different values which give priority 
to tasks having the shortest processing time. The 
value of an item ηij is calculated as follows:  

 

 𝜂𝑖𝑗 =
1

1+∑ 𝑝𝑗𝑟
𝑚
𝑟=1

, 

 
where: 
𝑝𝑗𝑟: is the operating time of the task j on the machine 

r. 
We note that the heuristic information 

represents, for an ant positioned on task j, the 
quality of other unscheduled tasks. Any tasks having 
the maximum value of  𝜂𝑖𝑗 will be qualified as a best 

quality. 
 

 The state transition rule: The choice of the next 
task scheduling is done by applying the state 
transition rule that defines how an ant k in the 
position i choose the position j at time t. The 
algorithm generates a random number q belonging 
to [0, 1]. This number will be compared to q0. Note 
that q0 is a parameter that determines the relative 
importance of the exploitation of existing 
information (intensification) and the exploration of 
new solutions (diversification). 
 

If (q ≤ q0) Then 𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥{[𝜏(𝑖, 𝑢)]𝛼[𝜂(𝑖, 𝑢)]𝛽} 

𝑢 ∈ 𝑆𝑘(𝑖), otherwise j = J; J is chosen according to 
probability: 
 

𝑃𝑖𝑗
𝑘(𝑡) =

[𝜏(𝑖,𝑗)]𝛼[𝜂(𝑖,𝑗)]𝛽

∑ [𝜏(𝑖,𝑢)]𝛼[𝜂(𝑖,𝑢)]𝛽𝑢∈𝑆𝑘(𝑖)
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𝑗 ∈ 𝑆𝑘(𝑖)  

 
where: 
Sk (i): set of feasible tasks that an ant k found in the 
task i can select. The ant chooses the task j that has 
the greatest value of Pk.  
(τij): represents the intensity of the pheromone trail 
on the arc (i, j).  
𝛼 and 𝛽 parameters used to vary the relative 
importance of the trail intensity and the visibility. 

 
We note that, at time t, from an existing partial 

jobs sequence, each ant k chooses the next job to add 
using the probabilistic rule 𝑃𝑖𝑗

𝑘(𝑡) based on visibility 

( 𝜂𝑖𝑗) and the intensity of the pheromone rule (𝜏𝑖𝑗). 

 
 The local updating rule: when an ant moves from 

task i to task j, it updates the value of pheromone 
information τij (updated step by step). This update 
is done in order to reduce the value of τij and to 
make the visited task less attractive for further 
research to other components (diversification), 
until a complete scheduling is built. The rule of the 
local update is given as follows:  

 
𝜏(𝑖, 𝑗) = (1 − 𝜌𝑙). 𝜏(𝑖, 𝑗) + 𝜌𝑙. 𝜏0  

 
where:  
𝜌𝑙: a parameter that determines the amount of the 
reduction of the pheromone level 

 
 The VNS method: In this step, the best-obtained 

solution (schedule) provided by ant colony 
algorithm will be considered as the initial solution. 
The VNS method looks for the best solution using 
the neighborhood exploration. In fact, three 
neighborhood procedures (structures) are used in 
the following order: 
 

1. Insertion procedure: insert the obtained task in 
position a to a position b. 

2. Random permutation procedure: swapping two 
tasks in position a and b. 

3. Two adjacent-tasks permutation procedure: 
swapping two adjacent tasks in position a and a+1. 
 

 The global updating rule: The purpose of this 
update is to increase the rate of pheromone 
between tasks belonging to the best sequence 
obtained in the previous step until this iteration 
(intensification). The rule of the global update is 
given as follows:  

 
𝜏(𝑖, 𝑗) = (1 − 𝜌𝑔). 𝜏(𝑖, 𝑗) + 𝜌𝑔. Δ𝜏(𝑖, 𝑗)  

Δ𝜏(𝑖, 𝑗) = {
(𝐿𝑏)

−1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝑏𝑒𝑠𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒
 

0                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 
where: 
 
𝐿𝑏: the value of the objective function. 
𝜌𝑔: the global evaporation rate of pheromone, 
0 < 𝜌𝑔 < 1 

3.2. Determination of the best compromise 
solution 

The proposed approach takes into account the 
decision maker's preferences for each criterion. 
These preferences are expressed using the 
satisfaction functions. The retained satisfaction 
function is presented in Fig. 5.  

 

Fig. 5: Retained satisfaction function 

 

The analytical form of this function is: 

 

F1(𝛿1) =

{
 
 

 
 
1                         𝑖𝑓 0 ≤ 𝛿1 ≤ 𝛼𝑞𝑑

 

      
𝛼𝑞𝑜 – 𝛿1

𝛼𝑞𝑜− 𝛼𝑞𝑑
       𝑖𝑓 𝛼𝑞𝑑  ≤ 𝛿1 ≤ 𝛼𝑞𝑜

0                   𝑖𝑓 𝛿1 > 𝛼𝑞𝑜

  

 

For each criterion, these thresholds, 𝛼𝑞𝑑, 𝛼𝑞𝑜 and 

𝛼𝑞𝑣 are fixed by the decision maker. The retained 

satisfaction function will be applied to the three 
criteria that we are considering in our computational 
experiment. In addition to these concepts, the set of 
Pareto optimal solutions is used. It contains all non-
dominated sequences. In fact, the principle of 
dominance concerns only the value of the optimized 
criteria and not the value of the objective function. 

4. Numerical experiments 

The proposed metaheuristic was tested through a 
set of benchmark problems presented by Taillard 
(1993) and the obtained results are compared with 
those of Allouche (2010). These problems have 
different sizes such as 20 tasks (5-10-20 machines), 
50 tasks (5-10 machines) and 100 tasks (5 
machines). For each size of problem, we have tested 
10 different instances. Taillard’s benchmarks were 
served only for the makespan criterion. A series of 
numerical experiments is done in two steps. The first 
one determines the ideal point of each criterion. As 
to the second step, it incorporates explicitly the 
decision maker’s preferences to determine the best 
compromise solution. After several experiments, the 
value of the following parameters is fixed at; α=β=2, 
q0=0.9, ρg = ρl =0.2, R=0.6, T=0.4 Note that all the 

computations are performed using a Pentium 
Centrino Duo machine, 1,73- GHz and 1-G- RAM. The 
proposed approach is coded in C language. 

i

d 

i i
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i
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1 
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5. Computational results 

As we mentioned above, the first step consists of 
optimizing each criterion separately in order to 
obtain their best values (ideal points). Table 1 

summarizes the best obtained values of the 
makespan (C*max ), Total flowtime (∑Ci*) and Total 
tardiness (∑Ti*) of a permutation flowshop 
scheduling problem characterized by 20 tasks and 
10 machines ( 10PF/20/Criterion).  

 
Table 1: Best founded values of 10PF/20/Cmax, 10PF/20/∑Ci and 10PF/20/ ∑Ti 

 
Best founded value 

C*max CPU Time ∑Ci* CPU Time ∑Ti* CPU Time 
Tai 20_10_1* 1582 0.703 20911 0.875 4043 0.296 
Tai 20_10_2 1659 1 22440 1.609 5411 0.281 
Tai 20_10_3 1496 7.39 19877 0.875 3835 0.234 
Tai 20_10_4 1378 10 18710 4.656 3466 0.297 
Tai 20_10_5 1419 1.266 18679 0.89 2515 0.328 
Tai 20_10_6 1397 1.25 19245 0.812 3345 0.625 
Tai 20_10_7 1484 1.031 18448 0.813 3247 0.281 
Tai 20_10_8 1538 5.86 20241 0.765 4599 0.281 
Tai 20_10_9 1593 1.843 20330 0.812 4124 0.313 

Tai 20_10_10 1591 1.312 21320 0.828 4403 1.765 
Average CPU Time (seconds) 2.265  1.293  0.47 

*Tai20_10_1: Data founded in Taillard benchmark for 20 tasks, 10 machines and problem number 1 

 
Regarding the total tardiness criterion, we 

considered the Daniels and chambers (1990) 
technique to generate due date of tasks (jobs) of 
different problems. The due date (dj) is randomly 
generated within the following interval: 

  

𝑑𝑗 ∈ [𝐴𝐵𝑃 (1 − 𝑇 −
𝑅

2
) , 𝐴𝐵𝑃 (1 − 𝑇 +

𝑅

2
) ]  

ABP = (𝑛 +𝑚 − 1) 𝑃̅   
 

and 
 

𝑃̅ =  
∑ ∑ 𝑃𝑖𝑗

𝑛
𝑗=1

𝑚
𝑖=1

𝑛∗𝑚
  

 

where: 
 
ABP: Average Busy Period that serves as an 
approximation of the achievement time of the task in 
the sequence. 
T: delay factor or average percentage of overdue 
tasks, T  (0.4, 0.6, 0.8), 
R: control factor of the extent of due dates, R(0.2, 
0.6, 1), 
𝑃̅: Mean processing time, 

n: number of tasks, 
m: number of machines. 

 
It should be noted that the due date for each task 

is computed by taking T equal to 0.4 and R equal to 
0.6 as done by Allouche (2010). The best-founded 
value of makespan, total flowtime and total tardiness 
illustrated in Table 1, are the same as obtained by 
Allouche (2010). Therefore, the ACS-VNS needs less 
computational time to display solutions than TS 
method. As mentioned in Table 1, for 20 tasks, 10 
machines scheduling problem, the average 
computational time is 2.265 seconds, 1.293 seconds 
and 0.47 seconds for the makespan, total flowtime 
and total tardiness respectively. 

The obtained results are compared with those 
given by Allouche (2010) only for the total flowtime 
and the total tardiness criteria. Note that, in their 
approach, Allouche (2010) were used a Tabu search 
method. Table 2 resumes the obtained results for 
scheduling problems characterized by 20 tasks and 
10 machines. 

 
Table 2: Obtained results with two different methods 

 
∑Ci ∑Ti 

Deviation ACS-VNS Tabu Search TS Deviation 
ACS-VNS Tabu Search TS 

Tai 20_10_1 20911 20911 0 4043 4450 -407 
Tai 20_10_2 22440 22559 -119 5411 5775 -364 
Tai 20_10_3 19877 19915 -38 3835 4144 -309 
Tai 20_10_4 18710 18710 0 3466 3729 -263 
Tai 20_10_5 18679 18713 -34 2515 2730 -215 
Tai 20_10_6 19245 19245 0 3345 3854 -509 
Tai 20_10_7 18448 18481 -33 3247 3687 -440 
Tai 20_10_8 20241 20254 -13 4599 4811 -212 
Tai 20_10_9 20330 20353 -23 4124 4145 -21 

Tai 20_10_10 21320 21323 -3 4403 4704 -301 

 
Based on the results illustrated in Table 2, we 

easily note the performance of ACS-VNS approach 
compared to the Tabu search approach (TS) 
proposed by Allouche (2010). 70% of results have a 
negative deviation versus 30% of nil deviation for 
the total flowtime criterion. For the total tardiness, 
100% of results have a negative deviation. Two 
other parameters that perform ACS-VNS approach 

are the average of computation time and the average 
of obtaining satisfaction level of problems which are 
referred by Tables 3 and 4 respectively.  

According to the results displayed in Table 3, it is 
clear that our approach is more efficient than TS 
method. In a large cases of scheduling problem (20 
tasks-5machines, 20 tasks-10 machines, 20 tasks-20 
machines, 50 tasks-5 machines) the average of 
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computation time needed by ACS_VNS to display the 
compromise solution is very low compared to TS. 

 
Table 3: comparison of average computation time 

 Computational Time (seconds) 
Problem Size ACS-VNS TS 

20_5 0.5389 0.79 
20_10 2.2655 11.528 
20_20 5.5369 25.229 
50-5 12.5296 19.087 

50_10 3171.2 47.301 

 

Indeed, for scheduling problem characterized by 
50 tasks and 10 machines, the average of 
computational time is lower than presented by ACO-
VNS. This can be explained by the fact that the 
performance of our approach tends to deteriorate 
when the problem size increases. 

 
Table 4: comparison of average satisfaction level 

 Satisfaction Level 
Problem Size ACS-VNS TS 

20_5 0.99 1 
20_10 0.98 0.95 
20_20 0.92 0.91 
50-5 1 1 

50_10 0.96 0.95 

 

On the other hand, the average of the satisfaction 
level of the decision maker’s for most of the 
problems are closed to 1 which mean that the 
decision maker is fully satisfied and the obtained 
sequences meet his preferences and aspiration 
levels. 

6. Conclusion 

In this study, we have presented a new hybrid 
metaheuristic approach to solve permutation 
flowshop scheduling problems which incorporates 
explicitly the decision maker’s preferences. The 
proposed approach based on Ant colony algorithm 
and the variable neighborhood search noted by 
ACS_VNS is compared to Tabu search method 
presented by Allouche (2010). Indeed, it has 
performed competitively with the best results 
obtained by Allouche (2010).  

The numerical experiments were done on a 
different set of problems with different sizes. The 
quality of the obtained solutions confirms the 
efficiency of the ACS_VNS compared to the TS. Using 
ACS_VNS, we can produce much better results than 
TS. It can be used for dependent as well as 
independent criteria. The obtained solutions 
minimize the deviation between the achievement 
level of each scheduling objective and its ideal 
points.  

On the other hand, the proposed approach 
ACS_VNS is flexible, friendly use, it can support more 
than three criteria and the decision makers can 
provide easily the required information for 
establishing the satisfaction functions. Finally, it can 
be considered as a good tool for multicriteria 
scheduling problem, especially since it does not 
necessitate a long computational time. 
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