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This study investigated a scenario where both the deterministic and 
stochastic trends coexist in a single realization. On exploring the monthly 
internally generated revenue of Akwa Ibom State in Nigeria from January, 
2010 to December, 2014, we found that the deterministic trend with ARMA 
(1, 0) model adequately described the coexistence of both the deterministic 
and stochastic trends. 
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1. Introduction 

*Statistically, the trend corresponds to sustained 
and systematic variations over a long period of time, 
and is known to be associated with the structural 
causes of the phenomenon under study. In most 
socioeconomic time series, it often dominates other 
components of the series. Thus, its identification has 
always generated problems of conceptual 
complexity. This problem persists because the trend 
(as well as other remaining components) is a latent 
variable, and trends in time series clearly violate the 
conditions of stationarity (Qi and Zhang, 2008). 
Therefore, certain assumptions are required to 
handle the different types of nonstationarity 
processes. Actually, a given time series being a finite 
realization of a stochastic process, can always be 
represented by one of the components or a sum of 
several of them (Dagum and Luati, 2001; Moffat, 
2007). On the different types of nonstationarity 
processes, Caiado and Crato (2005) considerd a 
deterministic linear trend process 𝑋𝑡  = 𝑎 + 𝑏𝑡  +
 𝜀𝑡, where 𝜀𝑡 is a white noise term that can be 
transformed into a stationary process by subtracting 
the trend a + 𝑏𝑡, and a stochastic linear trend process 
such as the random walk model (1- B) 𝑋𝑡 = 𝜀𝑡 or 𝑋𝑡 = 
Xt-1 + 𝜀𝑡. In particular, it is useful to distinguish 
between a random walk plus drift (unit root process) 
𝑋𝑡=μ+𝑋𝑡−1+𝜀𝑡 and a deterministic trend in the form  
𝑋𝑡  = 𝑎 + 𝜇𝑡 + 𝜀𝑡. In most cases, two of the simplest 
versions are (Eqs. 1 and 2): 
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Deterministic trend (DT): 

 
𝑋𝑡 = 𝑏𝑡+ 𝜀𝑡                      (1) 
 

Stochastic trend (ST): 
 

𝑋𝑡 = 𝑏𝑡 + Xt-1 + 𝜀𝑡                                      (2) 
 

where 𝜀𝑡 is a white noise with variance, σ2 = 1, and X0 
= 0. Obviously (Eqs. 3 and 4),  
 
𝐸𝐷𝑆  (𝑋𝑡) = 𝐸𝑆𝑇 (𝑋𝑡) = 𝑏𝑡                    (3) 
 

but  
 
𝑉𝐷𝑆 (𝑋𝑡) = 1 and 𝑉𝑆𝑇 (𝑋𝑡) = t.                    (4) 

 
Also, the expectation with respect to all 

information up to time t is zero. 
As captured by Hamilton (1994), the stylized 

trend-cycle decomposition of time series (𝑋𝑡) is as 
follows (Eq. 5): 
 
𝑋𝑡 =   𝐷𝑇𝑡   +   𝑍𝑡  
𝐷𝑇𝑡 =   𝑘  +    𝛿𝑡                                                                           (5) 
𝑍𝑡 = 𝜑1𝑍𝑡−1 + ⋯ +  𝜑𝑝𝑍𝑡−𝑝  +  𝜀𝑡 , 𝜀𝑡~𝑊𝑁(0, 𝜎2)  

 

where 𝐷𝑇𝑡 is a deterministic trend and 𝑍𝑡 is an AR(p) 
process. If |𝜑|  < 1, then 𝑌𝑡 is I(0) about the 
deterministic trend 𝐷𝑇𝑡. If = 1, then 𝑍𝑡 = 𝜑1𝑍𝑡−1 +
⋯ + 𝜑𝑝𝑍𝑡−𝑝  +  𝜀𝑡   =  𝑍0  +  ∑ 𝜀𝑗

𝑡
𝑗=1 , a stochastic 

trend and 𝑋𝑡 is I (1) with drift. 
However, to avoid the complexity of the problem 

posed by a statistically vague definition, some 
researchers have resorted to two simple solutions: 
One consists of estimating the combined trend-cycle 
component; the other consists of defining the trend 
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in terms of the series length (Dagum and Dagum, 
2006). 

Generally, trend analysis in time series is of 
paramount interest to researchers since it provides 
information about the underlying properties of the 
series. Fuller (2009) opines that one of the reasons 
for estimating the trend function is to investigate the 
underlying properties of the time series. Wei (2006) 
identifies two classes of such properties to include 
the deterministic trend where the mean level of the 
process at time t is a pure deterministic function of 
time, and the stochastic trend where the mean level 
of the process changes through time randomly 
(Hamilton, 1994; Watson, 1986; Nelson and Plosser, 
1982; Cryer and Chan, 2008). Although most 
macroeconomic time series are highly trended, it is 
difficult to determine whether the trend is 
deterministic or stochastic.  

In our study, we consider a scenario where both 
the deterministic and stochastic trends coexist in a 
single realization.  

2. Methodology  

2.1. Augmented dickey-fuller test 

Dickey and Fuller (1979) introduced Dickey-
Fuller (DF) test statistic to examine the existence of 
unit root in a time series with an assumption that the 
underlying process follows the AR model. Also, Said 
and Dickey (1984) augment the basic autoregressive 
unit root test to accommodate the general ARMA (p, 
q) models and this test is called the Augmented 
Dickey-Fuller (ADF) test. Let the series be denoted 
by 𝑋𝑡 using the regression (Eq. 6) 
 

𝑋𝑡  =  𝑐𝑡  +  𝛽𝑋𝑡−1  +  ∑ 𝜑𝑖𝛥𝑋𝑡−𝑖
𝑝−1
𝑖=1  +  𝑒𝑡                            (6) 

 

where 𝑐𝑡 is a deterministic function of the time index 
t and ∆𝑋𝑗 = 𝑋𝑗 − 𝑋𝑗−1 is the differenced series of 𝑋𝑡. 

Under the null hypothesis, 𝑋𝑡 is I (1) which implies 
that 𝛽 = 1. The ADF t-statistic based on least squares 

estimates of Eq. 6 is given by ADF-test =
�̂�−1

SE (�̂�)
. 

3. Data analysis and discussion  

Over the years, modeling internally generated 
revenue of a system has been of critical concern to 
all parties involved due to the variables of interest. 
In order to model the trend of the series, we examine 
the sequence plot in Fig. 1. From our observation, the 
plot appeared to contain a trend component. 

Since our interest is in providing the justification 
for detecting between deterministic and stochastic 
trends, we carry out a statistical test to detect 
whether the trend component is deterministic or 
stochastic or both, using Augmented Dickey – Fuller 
test (ADF). We apply the ADF to the regression 
model that contains both intercept and trend 
component. The trend is said to be deterministic if 
the series is stationary with trend, otherwise it is 
stochastic. According to Table 1, the ADF test 

statistic value is -5.4546 and the test critical values 
are -4.1213, -3.4878, and -3.1723 at 1%, 5% and 
10% levels of significance, respectively. Since the 
ADF test statistic is greater than all the critical values 
in absolute value, the null hypothesis (𝑋𝑡 is 
nonstationary and the trend component is not 
significant) is rejected with the decision that the 
series is stationary with a deterministic trend. 

 

 
Fig. 1: Sequence plot of internally generated revenue 

 

Table 1: Augmented dickey-fuller test 
   t-Statistic Prob.* 

Augmented Dickey-Fuller test 
statistic 

-5.454627 0.0002 

Test critical 
values: 

1% level  -4.121303  

 5% level  -3.487845  
 10% level  -3.172314  

Null Hypothesis: X has a unit root; Exogenous: Constant, Linear Trend; Lag 
Length: 0 (Automatic - based on SIC, maxlag=10) 

*MacKinnon (1996) one-sided p-values. 

3.1. Deterministic trend model 

The fitted trend model is presented in Eq. 7 
(Excerpts from Table 2): 

 
𝑋𝑡  =  1.1108𝑒 + 09     +          7.3613𝑒 + 06   

 
Trend 
 

s.e       7.4399𝑒 + 07       2.1212𝑒 + 06                                    (7) 
t-ratio      14.9296                     3.4703 
p-value    < 0.0001                    0.0010 

 
From the deterministic trend model in Eq. 7, it is 

observed that the time trend in the model is 
significant since the p- value = 0.0010 < 0.05 level of 
significance. But the diagnostic checking of the 
deterministic trend model indicates that the model is 
not adequate since the ACF of the residuals of the 
deterministic trend model (Fig. 2) is auto correlated 
which is a clear indication of randomness in 𝑋𝑡. The 
fact that randomness exists in the residuals of the 
deterministic model shows that  𝑋𝑡 also exhibits a 
stochastic trend. Hence, the deterministic trend 
model needs to be refined to contain an ARMA 
process. 

Again, we examine the ACF and the PACF of the 
residuals of deterministic trend model (Fig. 2), and 
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they indicate tentatively that deterministic trend 
with ARMA (1, 0), ARMA (0, 1) and ARMA (1, 1) 
models respectively could be appropriate.  

Comparing their information criteria as appeared 
in Tables 3, 4, and 5, we observed that deterministic 
trend with ARMA (1, 0) model has the smallest 
information criteria. 

 
Table 2: Output of deterministic trend 

Model 1: OLS, using observations 2010:01-2014:12 (T = 60) 
Dependent variable: X 

 Coefficient Std. Error t-ratio p-value  
Const. 1.11075e+09 7.4399e+07 14.9296 <0.0001 *** 
Time 7.36129e+06 2.12122e+06 3.4703 0.0010 *** 

Mean dependent var 1.34e+09  S.D. dependent var 3.10e+08 
Sum squared resid 4.70e+18  S.E. of regression 2.85e+08 

R-squared 0.171938  Adjusted R-squared 0.157661 
F(1, 58) 12.04310  P-value(F) 0.000988 

Log-likelihood −1252.105  Akaike criterion 2508.209 
Schwarz criterion 2512.398  Hannan-Quinn 2509.848 

Rho 0.324102  Durbin-Watson 1.317962 

 

 
 

 
Fig. 2: ACF and PACF of the residuals from deterministic trend model 

 
Therefore, our chosen model is the deterministic 

trend with ARMA (1, 0) model. The estimated model 
is presented in Eq. 8 (Excerpts from Table 3): 

 
𝑋𝑡      =    1.1062e + 09  +   7.6421𝑒 + 06𝑇𝑟𝑒𝑛𝑑  +
  0.3304𝑋𝑡−1  
s.e        9.8791e+07         2.8738e+06        0.1228               (8) 
z – ratio        11.1974          2.6592                    2.6897 
p – value       < 0.0001        0.0078                     0.0072 

 

From Eq. 8, it is observed that both trend and the 
ARMA (1, 0) processes are significant since their 
respective p – values are less than 0.05 level of 
significance.  

The diagnostic checking of the model in Eq. 8 
reveals that the residuals are no more auto 
correlated (Fig. 3). The implication is that both 
deterministic and stochastic trend coexist in the time 
series 𝑋𝑡.  

 

Table 3: Output of deterministic trend with ARMA (1, 0) model 
Model 1: ARMAX, using observations 2010:01-2014:12 (T = 60); Dependent variable: X 

Standard errors based on Hessian 
 Coefficient Std. Error Z p-value  

Const 1.1062e+09 9.87911e+07 11.1974 <0.0001 *** 
phi_1 0.330366 0.122826 2.6897 0.0072 *** 

TREND 7.64207e+06 2.87381e+06 2.6592 0.0078 *** 
Mean dependent var 1.34e+09  S.D. dependent var 3.10e+08 
Mean of innovations 2123045  S.D. of innovations 2.64e+08 

Log-likelihood −1248.706  Akaike criterion 2505.411 
Schwarz criterion 2513.789  Hannan-Quinn 2508.688 

 

4. Conclusion 

According to Rao (2010), deterministic trends are 
useful in unit root tests and in the estimation of the 

models with cointegration techniques. The 
implication of allowing for such trends is that if the 
model is shocked, after some departures from the 
trend, the variables will return to their trend values. 
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On the other hand, models with stochastic trend 
(structural time series models) are useful in some 
instances. Firstly, it may be hard to identify multiple 
structural breaks in the deterministic trend when 
the sample size is small. Secondly, implementing 
endogenous multiple structural break tests remains 
a demanding exercise. Thirdly, standard classical 
methods of estimation can be used to estimate the 

effects of additional explanatory variables in 
structural time series models. Finally, Harvey (1985) 
points out that the stochastic and deterministic 
trend hypotheses are nested within the structural 
time series approach and can be evaluated with 
estimated values of the hyper parameters, although 
the power of this test is not known. 

 
 

Table 4: Output of deterministic trend with ARMA (0, 1) model 
Model 3: ARMAX, using observations 2010:01-2014:12 (T = 60) 

Dependent variable: X 
Standard errors based on Hessian 

 Coefficient Std. Error Z p-value  
Const 1.1128e+09 8.55138e+07 13.0131 <0.0001 *** 

theta_1 0.264255 0.109452 2.4144 0.0158 ** 
TREND 7.50316e+06 2.49545e+06 3.0067 0.0026 *** 

Mean dependent var 1.34e+09  S.D. dependent var 3.10e+08 
Mean of innovations 901967.2  S.D. of innovations 2.67e+08 

Log-likelihood −1249.444  Akaike criterion 2506.887 
Schwarz criterion 2515.264  Hannan-Quinn 2510.164 

 

Table 5: Output of deterministic trend with ARMA (1, 1) model 
Model 2: ARMAX, using observations 2010:01-2014:12 (T = 60) 

Dependent variable: X 
Standard errors based on Hessian 

 Coefficient Std. Error Z p-value  
Const 1.10134e+09 1.06576e+08 10.3339 <0.0001 *** 
phi_1 0.496663 0.268404 1.8504 0.0643 * 

theta_1 −0.181411 0.286809 −0.6325 0.5271  
TREND 7.71014e+06 3.08148e+06 2.5021 0.0123 ** 

Mean dependent var 1.34e+09  S.D. dependent var 3.10e+08 
Mean of innovations 3182619  S.D. of innovations 2.63e+08 

Log-likelihood −1248.531  Akaike criterion 2507.062 
Schwarz criterion 2517.534  Hannan-Quinn 2511.158 

 
 

 
Fig. 3: ACF and PACF of the residuals from deterministic trend with ARMA (1, 0) model 

 

If the variances of the disturbances of the level 
and slope of trend are zero (known as hyper 
parameters), the structural time series model 
implies that a deterministic trend is preferable to a 
stochastic trend. Thus, in the light of these 
observations, it is hard to conclude on the approach 
that is better and our view is that both methods are 
worth using, especially to keep up with further 
research works in both approaches. However, in 
time series, it is hard to ascertain whether a single 
realization contains a trend and to determine 
whether the trend is deterministic or stochastic. 

Also, distinguishing between deterministic and 
stochastic trends always seems contentious but our 
study considers a scenario where both the 
deterministic and stochastic trends coexist in a 
single realization. To determine whether a trend 
exists in 𝑋𝑡, we applied the Augmented Dickey-Fuller 
test and the result showed that 𝑋𝑡 is stationary with 
trend. Hence, the deterministic trend is said to exist 
in 𝑋𝑡. We progressed to fit a deterministic trend 
model to 𝑋𝑡. Meanwhile, the diagnostic checking 
indicated the presence of randomness in the 
residuals of the fitted deterministic trend model 
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which is a clear sign that stochastic trend equally 
exist in  𝑋𝑡 and such randomness could be modeled 
by an ARMA (1, 0) process. In all, deterministic trend 
with ARMA (1, 0) model was found to be adequate in 
modeling both the deterministic and stochastic 
trends in the series.  

Moreover, this study could be extended to include 
the need to model separately the deterministic trend 
and stochastic trend in 𝑋𝑡 in order to check which 
one will perform better. 
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