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In this paper, we study the (1+1)-dimensional dispersive long wave 
equations which describe the evolution of horizontal velocity component 
όὼȟὸ of water waves of height ὺὼȟὸ, and solved it numerically by 
successive approximation method (SAM) to compare with Adomian’s 
decomposition method (ADM), we found that SAM is suitable for this kind of 
problems also its effective and more accure than ADM. Mathematica has been 
used for computations. Keywords: 
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1. Introduction 

*The celebrated (1+1)-dimensional dispersive 
long wave equations (Ablowitz and Clarkson, 1991; 
Broer, 1975) 

 

ό ὺ ό πȟ                     (1) 

ὺ όὺ ό ό πȢ  

 
Play important roles in nonlinear physics, which 

describe the evolution of horizontal velocity 
component όὼȟὸ of water waves of height ὺὼȟὸ 
propagating in both directions in an infinite narrow 
channel of finite constant depth. Many properties of 
(1) have been reported (Broer, 1975; Kaup, 1975; 
Kupershmidt, 1985). 

 It is interesting to study the extensions of (1) in 
higher-dimensional spaces. To date, there exist two 
prototypical extensions of (1) to cover the situation 
of wide channel or open seas. Boiti et al. (1987) 
presented the following (2+1)-dimensional 
extension related to (1) 

 

ό ὺ ό πȟ                     (2) 

ὺ όὺ ό ό πȟ  

 

in the one-dimensional reduction ό  όὼ ώȟὸ, 
 ὺ  ὺὼ ώȟὸ, system (2) reduces to system (1) 
that describes the travel of the shallow water wave.  
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Eckhaus (1985) presented another different two-
dimensional extension of (1) 

 

ό ὺ ό πȟ                     (3) 

ὺ όὺ ό ό  ό πȟ  
 

which was obtained in the appropriate 
approximation from the basic equations of 
hydrodynamics. It is easy to see that if one makes the 
transformation either ό  όὼ  ώȟὸ  and  ὺ 

 ὺὼ  ώȟὸ ɀ ρ or ό  όὼ  ώȟὸ and ὺ ὺὼ 
 ώȟὸ, then (3) can also reduce to (1). Therefore, it 
follows that these two systems (2) and (3) can both 
reduce to the same system (1) under the proper 
transformations. But as Boiti et al. (1987) pointed 
out, system (2) is different from system (3).  

2. Solitary wave solution 

The exact solitary wave solution of the (2 + 1)-
dimensional dispersive long wave equations (2) are:  

 

όὼȟώȟὸ ‌ ‌ÔÁÎÈ
  

ȟ                   (4) 

ὺὼȟώȟὸ ρ ÓÅÃÈ
  

                    (5) 
 

where ‌, ‍ and ‏ are arbitrary constants. 
In particular, taking ‍ ‌ and setting ὼ  ώ 

 ᾀ in system (1), we obtain a special solitary wave 
solution of (1 + 1)-dimensional dispersive long wave 
equations (1), 

 

όᾀȟὸ ‌ ‌ÔÁÎÈ
  

ȟ                    (6) 

ὺᾀȟὸ ρ ÓÅÃÈ
  

ȟ                                       (7) 

 

which was obtained by Bai et al. (2006) and Wang et 
al. (1996). 
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3. Basic idea of successive approximation 
method (SAM) 

The method of SAM (Jerri, 1999; Saeed, 2006), 
provides a method that can, in principle, be used to 
solve any initial value problem 

 

Ὢόȟὸȟ    όᾀȟὸ όȢ                    (8) 

 

It starts by observing that any solution to (8) 
must also be a solution to 

 

όᾀȟὸ ό ᷿Ὢόᾀȟίȟί Ὠίȟ                   (9) 
 

and then iteratively constructs a sequence of 
solutions that can get closer and closer to the actual 
(exact) solutions of (9). The SAM is based on the 
integral equation (9), as follows: 
 

ό ᾀȟὸ όȟ  

ό ᾀȟὸ ό ᷿Ὢό ᾀȟίȟί Ὠίȟ  

ό ᾀȟὸ ό ᷿Ὢό ᾀȟίȟί Ὠίȟ  

ό ᾀȟὸ ό ᷿Ὢό ᾀȟίȟί ὨίȢ  

 

This process can be continued to obtain the nth 
approximation, 

 

ό ᾀȟὸ ό ᷿Ὢό ᾀȟίȟί Ὠίȟ   ὲ ρȟςȟȣ  Ȣ  

 

Then determine whether ό ᾀȟὸ approaches the 
solution όᾀȟὸ as n increases. This is done by 
proving the following: 

The sequence {ό ᾀȟὸ} converges to a 
limit όᾀȟὸ, that is: 

 

ÌÉÍ
ᴼ
ό ᾀȟὸ όᾀȟὸ ,       ὸ ᾀ ὸ . 

 

The limiting function όᾀȟὸ is a solution of (9) on 
the interval ὸ ᾀ ὸȢ The solution όᾀȟὸ of (9) is 
unique. A proof of these results can be constructed 
along the lines of the corresponding proof for 
ordinary differential equations, see (Coddington, 
1995). 

4. SAM applied to (1+1)-dimensional dispersive 
long wave equations 

In this section, we solve the (1+1)-dimensional 
dispersive long wave equations: 
 

ȟ ȟ ȟ
 ȟ                                   

 
ȟ

όᾀȟί όᾀȟί ὺᾀȟί
ȟ
ȟ
        (10) 

 
with initial solutions 
 
όᾀȟπ ό and ὺᾀȟπ ὺȟ 
 
by using SAM as follows: 
 
Integrating both sides of equation (10) with respect 
to ί, from 0 to ὸ, we get 
 

όᾀȟὸ όᾀȟπ ᷿
ȟ ȟ

Ὠίȟ              

ὺᾀȟὸ ὺᾀȟπ ᷿
όᾀȟί όᾀȟί ὺᾀȟί

ȟ
ὨίȢ
 

ữ
Ử
Ữ

Ử
ử

  

                                 (11) 

 
Using the initial conditions in (11) we get: 
 

όᾀȟὸ ό ᷿
ȟ ȟ

Ὠίȟ         

ὺᾀȟὸ ὺ ᷿
όᾀȟί όᾀȟί ὺᾀȟί

ȟ
ὨίȢ
 

ữ
Ử
Ữ

Ử
ử

  

               (12) 

 
Start with substituting initial approximation 

ό ᾀȟὸ and ὺ ᾀȟὸ  in the integral equation (12) to 
obtain a first approximation ό ᾀȟὸ and ὺ ᾀȟὸ  
  

ό ᾀȟὸ ό ᷿
ȟ ȟ

Ὠίȟ          

ὺ ᾀȟὸ ὺ ᷿
ό ᾀȟί ό ᾀȟί ὺ ᾀȟί

ȟ
ὨίȢ
 

ữ
Ử
Ữ

Ử
ử

  

                    (13) 
 

Then this ό ᾀȟὸ and ὺ ᾀȟὸ is substituted again 
in the integral of (12) after replacing t by s to obtain 
a second approximation ό ᾀȟὸ and ὺ ᾀȟὸ , 
 

ό ᾀȟὸ ό ᷿
ȟ ȟ

Ὠίȟ                                 

ὺ ᾀȟὸ ὺ ᷿
ό ᾀȟί ό ᾀȟί ὺ ᾀȟί

ȟ
ὨίȢ

  

 

This process can be continued to obtain the ὲ  
approximation  
 

ό ᾀȟὸ ό ᷿
ȟ ȟ

Ὠίȟ               

ὺ ᾀȟὸ ὺ ᷿

ό ᾀȟί

ό ᾀȟί ὺ ᾀȟί
ȟ

Ὠίȟ

ữ
Ử
Ữ

Ử
ử

  

                    (14) 
 

For ὲ =1,2,…. To solve the equation (14), we use 
the initial approximation ό ᾀȟὸ and ὺ ᾀȟὸ  which 
are given in equation (6) and (7), respectively. Using 
the iteration formula (14), we can obtain 
ό ᾀȟὸȟό ᾀȟὸȟό ᾀȟὸȟ ὺ ᾀȟὸȟὺ ᾀȟὸ and ὺ ᾀȟὸ 
as follows: 

 

ό ᾀȟὸ ‌ ‌ÔÁÎÈ
 

 ÓÅÃÈ
 

ὸȟ  

ό ᾀȟὸ  ‌ ‌ÔÁÎÈ
 

ÓÅÃÈ
 

ὸ

 ÓÅÃÈ
 

ÔÁÎÈ
 

ὸ

ÓÅÃÈ
 

ÔÁÎÈ
 

ὸȟ  

ό ᾀȟὸ  ‌ ‌ÔÁÎÈ
 

ÓÅÃÈ
 

ὸ

 ÓÅÃÈ
 

ÔÁÎÈ
 

ὸ ÓÅÃÈ
 

ρ

σÔÁÎÈ
 

ὸ
 
ÓÅÃÈ

 
ρ

ς ÔÁÎÈ
 

υ ÔÁÎÈ
 

ÔÁÎÈ
 

ὸ
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ÓÅÃÈ
 

ρ ÔÁÎÈ
 

ψÔÁÎÈ
 

ÔÁÎÈ
 

χÔÁÎÈ
 

ὸ

ÓÅÃÈ
 

ÔÁÎÈ
 

ρ τÔÁÎÈ
 

ὸ

ÓÅÃÈ
 

ÔÁÎÈ
 

ρ υÔÁÎÈ
 

ὸ , 

ὺ ᾀȟὸ ρ ÓÅÃÈ
 

ÓÅÃÈ
 

ÔÁÎÈ
 

ὸ  

ὺ ᾀȟὸ ρ ÓÅÃÈ
 

ÓÅÃÈ
 

ÔÁÎÈ
 

ὸ ÓÅÃÈ
 

ρ

σÔÁÎÈ
 

ὸ ÓÅÃÈ
 

ρ

υÔÁÎÈ
 

ὸ,  

ὺ ᾀȟὸ  ρ ÓÅÃÈ
 

ÓÅÃÈ
 

ÔÁÎÈ
 

ὸ ÓÅÃÈ
 

ρ

σÔÁÎÈ
 

ὸ ÓÅÃÈ
 

ÔÁÎÈ
 

ς

σÔÁÎÈ
 

ὸ ÓÅÃÈ
 

υ

συ ÔÁÎÈ
 

υςÔÁÎÈ
 

χυÔÁÎÈ
 

φσÔÁÎÈ
 

ὸ
 
ÓÅÃÈ

 
σ

τπÔÁÎÈ
 

τςÔÁÎÈ
 

ρυςÔÁÎÈ
 

φσÔÁÎÈ
 

ρρςÔÁÎÈ
 

ὸ

ÓÅÃÈ
 

ρ ρωÔÁÎÈ
 

σφÔÁÎÈ
 

ὸ ÓÅÃÈ
 

ρ

ςτÔÁÎÈ
 

υυÔÁÎÈ
 

ὸ.  

5. Results and discussion 

We solved the (1+1)-dimensional dispersive long 
wave equations by SAM. Compared between 3rd-
order approximate solutions of SAM and ADM 
(Mohamed, 2010) with exact solitary solutions. The 
results it shown by data and surfaces see in Tables 
1a, 1b, 2a, and 2b and Figs. 1, 2, and 3. And we found 
the effects for ‌ and ‏ on the solution of (1+1)-
dimensional dispersive long wave equations as 
shown in Figs. 4a, 4b, 5a, and 5b. It shown that ‌ has 
effects on long and short in wave and ‏ has effects on 
move wave only.  

 
Table 1a: Exact solution, 3rd-order approximation solutions ADM (Mohamed, 2010) and SAM of όᾀȟὸ when ‌ ς , ‏ π 

and ᾀ πȢπρ 
t Exact ADM SAM 
0 1.98000066664 1.98000066664 1.98000066664 

0.01 1.9400179935224 1.9400179965071 1.9400178614665 
0.02 1.9000832500842 1.9000833114428 1.9000811646242 
0.03 1.8602282193671 1.860228598649 1.8602178003544 
0.04 1.8204844305057 1.8204858453275 1.8204519384 
0.05 1.7808830595711 1.7808870386801 1.7808047973543 
0.06 1.7414548327879 1.7414641659086 1.7412947478293 
0.07 1.7022299327534 1.7022492142149 1.7019374154519 
0.08 1.6632379082584 1.6632741708006 1.662745783697 
0.09 1.6245075882634 1.6245710228678 1.6237302965644 
0.1 1.5860670005411 1.5861717576181 1.584898961109 

 
Table 1b: Exact solution, 3rd-order approximation solutions ADM (Mohamed, 2010) and SAM of ὺᾀȟὸ when ς , ‏ π and 

ᾀ πȢπρ 
t Exact ADM SAM 
0 0.99980001333258 0.99980001333258 0.99980001333258 

0.01 0.99820107944946 0.99820086649064 0.99820111308927 
0.02 0.99500832154314 0.99500491883283 0.99500884803683 
0.03 0.99023192466936 0.9902147296339 0.99023454277574 
0.04 0.98388708015456 0.98383285816862 0.98389524331417 
0.05 0.97599388320855 0.97586186371178 0.97601363254549 
0.06 0.96657719825563 0.96630430553815 0.96661796371 
0.07 0.95566649352597 0.95516274292249 0.95574201102401 
0.08 0.9432956467829 0.94243973513958 0.94342503665934 
0.09 0.92950272436413 0.9281378414642 0.92971177325638 
0.1 0.91432973597948 0.9122596211711 0.91465242115369 

 
Table 2a: Absolute error between exact solution and 3rd-

order approximation solutions ADM (Mohamed, 2010) and 
SAM of όᾀȟὸ when ‌ ς , ‏ π and ᾀ πȢπρ 

t | Exact - ADM | | Exact - SAM | 
0 0 0 

0.01 2.9847E-09 1.32056E-07 
0.02 6.13586E-08 2.08546E-06 
0.03 3.79282E-07 1.0419E-05 
0.04 1.41482E-06 3.24921E-05 
0.05 3.97911E-06 7.82622E-05 
0.06 9.33312E-06 0.000160085 
0.07 1.92815E-05 0.000292517 
0.08 3.62625E-05 0.000492125 
0.09 6.34346E-05 0.000777292 
0.1 0.000104757 0.001168039 

Total Error 0.000238906 0.003013449 
 

Table 2b: Absolute error between exact solution and 3rd-
order approximation solutions ADM (Mohamed, 2010) and 

SAM of ὺᾀȟὸ when ‌ ς , ‏ π and ᾀ πȢπρ 
t | Exact - ADM | | Exact - SAM | 
0 0 0 

0.01 2.12959E-07 3.36398E-08 
0.02 3.40271E-06 5.26494E-07 
0.03 1.7195E-05 2.61811E-06 
0.04 5.4222E-05 8.16316E-06 
0.05 0.000132019 1.97493E-05 
0.06 0.000272893 4.07655E-05 
0.07 0.000503751 7.55175E-05 
0.08 0.000855912 0.00012939 
0.09 0.001364883 0.000209049 
0.1 0.002070115 0.000322685 

Total Error 0.005274605 0.000808498 
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Exact ◊ Exact ○ 

  
(a) (b) 

Fig. 1: The surfaces of exact solutions for όᾀȟὸ and ὺᾀȟὸ, when ‌ ς , ‏ π and  ᾀɴ ρπȟρπ at  π ὸ πȢρ 
 

ADM ό ADM ὺ 

  
(a) (b) 

Fig. 2: The surfaces of ADM solutions for όᾀȟὸ and ὺᾀȟὸ, when ‌ ς , ‏ π and  ᾀɴ ρπȟρπ at  π ὸ πȢρ 
 

SAM ό SAM ὺ 

  
(a) (b) 

Fig. 3: The surfaces of SAM solutions for όᾀȟὸ and ὺᾀȟὸ, when ‌ ς ,‏ π and  ᾀɴ ρπȟρπ at  π ὸ πȢρ 
 

Effects of ♪ in ◊◑ȟ◄ 

 
♪ Ȣ ‌ ρ ‌ ς ‌ σ 

Fig. 4a: The surfaces of exact solution of όᾀȟὸ, when ‌ πȢυȟρȟςȟσ at ‏ π, ᾀɴ ρπȟρπȟπ ὸ πȢρ 
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Effects of ♯ in ◊◑ȟ◄ 

 
♯ ‏  π ‏ τ ‏ ψ 

Fig. 4b: The surfaces of exact solution of όᾀȟὸ, when ‏ τȟπȟτȟψ at ‌ ρ, ᾀɴ ρπȟρπȟπ ὸ πȢρ 
 
 

Effects of ♪ in ○◑ȟ◄ 

 
♪ Ȣ ‌ ρ ‌ ς ‌ σ 

Fig. 5a: The surfaces of exact solution of ὺᾀȟὸ, when ‌ πȢυȟρȟςȟσ at ‏ π, ᾀɴ ρπȟρπȟπ ὸ πȢρ 
 
 

Effects of ♯ in ○◑ȟ◄ 

 
♯ ‏  π ‏ τ ‏ ψ 

Fig. 5b: The surfaces of exact solution of ὺᾀȟὸ, when ‏ τȟπȟτȟψ at  ‌ ρ, ᾀɴ ρπȟρπȟπ ὸ πȢρ 

 
6. Conclusion 

In this paper, the SAM successfully applied to 
obtain approximate solutions of the (1+1)-
dimensional dispersive long wave. We showed that 
successive approximation method easier, faster and 
more accurate than Adomain’s decomposition 
method as shown especially in Tables 1b and 2b and 
Figs. 2b and 3b. Finally, it has become clear that 
‌ and ‏ have effects on solutions. 
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