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In this paper, a performance comparison of several variations of the non-
linear conjugate gradient method has been investigated. Neural Network-
based prediction models for life insurance sector have been developed and 
their training has been done with a variety of first and second order 
algorithms to find an efficient training algorithm, but keeping the focus on 
conjugate gradient based methods. Traditional second order methods 
require computation of second order derivatives and need to compute 
hessian for quadratic termination; which is a tedious and memory consuming 
task. Here we employ conjugate gradient methods which bypass the 
computation of hessian, but still achieve quadratic termination and thus 
prove to be memory efficient. 
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1. Introduction 

*Prediction modeling is gaining popularity and 
plays an important role in all the important areas. It 
is concerned with the prediction of future 
probabilities or trends, and to analyze these trends a 
variety of traditional statistical methods and modern 
methods are available with their own pros and cons. 
Applications based on traditional methods like 
regression techniques, decision trees based 
prediction, naive bayes classifiers etc. have been 
developed in the recent years. But due to their 
limitations to deal with and learn the complex data 
which is usually present in real life situations; we 
have a need to develop new methods. Novel 
techniques like neural networks, genetic algorithms, 
evolutionary algorithms, fuzzy based techniques, 
support vector machine, hybrid techniques 
(Sundarkumar and Ravi, 2015; Keramati et al., 2014) 
are some of the new upcoming techniques and are in 
the development stage. In this paper, we develop 
prediction models based upon artificial neural 
networks for the insurance sector and compare the 
convergence behavior of first order and second 
order algorithms applied for the training of neural 

                                                 
* Corresponding Author.  
Email Address: parveensehgal@gmail.com (P. Sehgal)  
https://doi.org/10.21833/ijaas.2017.08.010 
2313-626X/© 2017 The Authors. Published by IASE.  
This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/) 

networks, especially the conjugate gradient-based 
techniques. 

Neural networks can learn the complex 
relationships present in the real-life situations and 
fit well for the development of prediction models. 
They can be tuned to learn the historical trends 
present in the large datasets and adapt to new 
patterns without having any initial hypothesis. There 
exist a variety of ANN architectures and a number of 
training techniques of first and second order to train 
the neural networks. In all the methods, the main 
idea is to minimize the gradient of error function 
during training of the network and reach a state of 
minimum gradient value.  

Researchers have developed a variety of 
gradient-based techniques of first and second order 
for optimizing network parameters to converge 
towards the minimum of multi-dimensional error 
gradient function (Antoniou and Lu, 2007). Major 
drawback in first order methods like steepest 
descent is that learning rate has a fixed value and if 
we keep the learning rate low for the safe 
convergence then it takes a long time to achieve the 
minimum of error gradient and if it is kept very high 
then solution can oscillate near point of convergence 
and will never converge. Even if the learning rate is 
kept adaptive as in the case of adaptive learning or 
adaptive momentum techniques, convergence is 
slow because of the absence of second order term 
(Rehman and Nawi, 2012). 

On the other hand, second order conjugate 
gradient technique and its variations use the line 
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search method to adapt the learning rate parameter 
and also avoid the computation of second order 
hessian matrix; as done in older techniques. Here we 
present a comparative study of various conjugate 
gradient techniques and other second order 
methods. To investigate the performance and 
efficiency of conjugate techniques, we have 
developed prediction models in MATLAB Neural 
Network Toolbox (MathWorks, 2012) and trained 
the neural networks by applying the variety of 
training algorithms under consideration. Datasets 
have been imported from life insurance data 
warehouse to develop and test the models. 

2. Literature review

First order algorithms like gradient descent and 
its alternatives fail to find the solution even for 
slightly non-linear cases. These methods take very 
long time to converge and therefore are not 
beneficial in such kind of practical situations (Meza, 
2010). In addition, when error surface is highly 
multi-dimensional and irregular, then convergence 
becomes very difficult and unattainable, as these 
methods employ a smaller and fixed step size for 
learning (Rehman and Nawi, 2012). 

Instead, second order methods like Newton, 
quasi–Newton, Levenberg Marquardt, conjugate 
gradient variations and similar methods are 
preferred (Slavici et al., 2016), which are more 
efficient while training in non-linear cases (Fletcher, 
2013; Shepherd, 2012).  

Second order derivatives enhance the speed of 
convergence and achieve faster learning in 
comparison to other methods, which only utilize first 
order derivatives. Newton's method computes the 
second order derivatives of Taylor’s approximation 
as hessian matrix and therefore finds out the point of 
minimum much faster than first order methods 
(Shanthi et al., 2009; Yu and Wilamowski, 2012). 
This utilizes the curvature information to search a 
more direct route towards the point of minima. But 
computation of higher order derivatives in hessian 
consumes more memory space and creates a 
problem when weight vector and input vector are 
very large in size (Nocedal and Wright, 2006; Rojas, 
2013). 

For an improvement, quasi–Newton methods 
evaluate an approximation for the hessian, but these 
methods need more computations during each 
iteration and which in turn may increase the 
convergence time (Castillo et al., 2006; Robitaille et 
al., 1993). In Gauss–Newton method sum of squared 
function values is minimized to avoid the tedious 
and memory consuming computation of second 
order derivatives, but the main disadvantage is that 
estimation results strongly depend on upon the 
initial selection of the input parameters. 

Conjugate gradient methods (CGM) prove 
superior to quasi–Newton methods in computational 
terms, when the neural network weight vector is 
large in size because it bypasses computation of 
second order derivatives (Haykin, 1994). CGM 

searches the required solution by moving along 
successive conjugate non-interfering directions 
without spoiling minimization during previous steps 
(Hager and Zhang, 2006a). It utilizes line search 
technique to calculate the optimal step size for the 
next iteration and moves along the search direction 
by taking a jump on the path of descent. Line search 
eliminates the need to evaluate memory consuming 
hessian matrix of second derivatives, but the 
involvement of line search offers a bottleneck in all 
iterations. 

Levenberg Marquardt Algorithm (LMA) denotes 
an interpolation between Gauss–Newton method 
and steepest descent method and is considered as a 
trust region approach for Gauss–Newton method 
(Pujol, 2007). LMA is more robust than Gauss–
Newton method because it converges towards 
minimum even if its starting point is far away from 
the point of final convergence. This technique 
provides a numerical solution to the problems, 
which are generally non-linear in nature.  

As suggested by researchers, the computation of 
parameter to decide for new orthogonal directions is 
possible in a number of different ways giving rise to 
different variations of conjugate methods (Hager and 
Zhang, 2006a). The scaled conjugate gradient 
method (SCGM) avoids the complex and time-
consuming line search along conjugate directions in 
each of iteration, by combining the trust region 
approach from the LMA with the CGM approach 
resulting in improved convergence. But, estimation 
of the second order derivatives may be an expensive 
step in SCGM (Møller, 1993). 

3. Materials and methods

3.1. Conjugate gradient methods 

Quadratic approximation for the error 
function 𝐸(𝑊𝐾) in a neighboring point of 𝑊𝐾 , till 
second order term is given by Taylor’s expansion as 
shown below: 

𝐸(𝑊𝐾 + 𝑧) ≈ 𝐸(𝑊𝐾) + 𝐸′(𝑊𝐾)𝑇𝑧 +
1

2
𝑧𝑇𝐸ʺ(𝑊𝐾)𝑧

Because of a large number of weights in the 
weight vector, it is very time-consuming and takes 
more memory to compute second-order 
derivatives 𝐸ʺ(𝑊𝐾), the hessian. 

Therefore, to avoid computation of hessian, 
second order conjugate gradient methods perform a 
line search along conjugate directions in every 
iteration to search for optimal step size and to 
minimize the performance function and thus achieve 
faster convergence than simple gradient descent 
directions.  

Researchers have developed many variations of 
CGM and to define scalar ‘Z’ (as given in following 
equations); which decide for the selection of the next 
search direction (Hager and Zhang, 2006a; Andrei, 
2006). Variations like Fletcher-Reeves, Polak-
Ribiere, Powell-Beale, Hestenes-Stiefel, Daniel, Dai-
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Yuan and some new variations like Hager-Zhang 
variation are usually applied. CGM consumes 
comparatively less memory for problems involving 
large data sets but their convergence is poor in 
comparison to Newton or quasi–Newton methods 
due to the involvement of line search in every step. 

Methods of conjugate gradients are capable of 
training any neural network provided that derivative 
functions exist for weights, inputs, and transfer 
functions. Back-propagation technique of supervised 
learning is applied to compute derivatives of 
performance function with respect to the weights 
and bias variables Xk+1 in the successive iteration. 
New gradient points are computed according to Eq. 1 
(MathWorks, 2012; Sandhu and Chhabra, 2011): 

 
XK+1 =  XK + a∗dXK+1                                                                 (1) 
 

Where, the parameter ‘a’ is calculated by a 
suitable line search algorithm to minimize the 
performance along the new search direction dXk+1. In 
the first iteration, starting search direction dX0 is 
kept as negative of the initial gradient value. But in 
the succeeding iterations, new search directions are 
computed from the new gradient values and from 
the previous search directions, according to Eq. 2 
(MathWorks, 2012; Sandhu and Chhabra, 2011): 

 
dXK+1 =  −gXK+1 + Zdk                                                       (2) 

 
Where ‘gXk+1’ is the current gradient and the 

direction selection parameter ‘Z’ can be calculated in 
several different ways giving rise to a variety of 
conjugate variations. 

3.1.1. Fletcher-Reeves update  

For the Fletcher-Reeves variation of the 
conjugate gradient, computation of ‘Z’ is done as 
shown in Eq. 3 (Hager and Zhang, 2006b; Hagan et 
al., 1996): 

 

Z =
‖gk+1‖2

‖g‖2                                                                                (3) 

3.1.2. Polak-Ribiere update  

For the Fletcher-Reeves variation of the 
conjugate gradient, computation of ‘Z’ is done as 
shown in Eq. 4 (Hager and Zhang, 2006b; Hagan et 
al., 1996): 

 

Z =
(gk+1−gk)′ gk 

‖g‖2                                                                       (4) 

 

The memory requirements for Polak-Ribiere 
Update (it computes four vectors) are slightly more 
than Fletcher-Reeves (it computes three vectors). 

3.1.3. Powell-Beale restarts 

In conjugate gradient based methods, to improve 
the efficiency of the algorithm, the search direction is 
reset to the negative of current gradient value 

periodically when the number of network 
parameters becomes equal to the number of 
iterations. But researchers have also proposed other 
reset methods. Powell suggested a modification of 
the Beale restart and the technique restarts 
depending on orthogonality left for the new search 
direction becomes very less. This is implemented 
using the following inequality (Hager and Zhang, 
2006b): 

 
gkgk+1|≥ 0.2‖gk+1‖2                                                            (5) 

3.2. Scaled conjugate gradient descent 

A computationally expensive line search is 
required (Tezel and Buyukyildiz, 2016) in all 
iterations by conjugate gradient methods discussed 
so far. Møller (1993) and Chel et al. (2011) suggested 
the solution for avoiding the time-consuming line 
search in scaled conjugate gradient method (SCGM) 
by combining the model-trust region approach with 
the conjugate-gradient approach (Borkar et al., 
2016). Memory requirements for SCGM are similar 
to Fletcher-Reeves variation of CGM. The algorithm 
trains any neural network as long as derivative 
functions exist for weight, net input, and transfer 
functions.  

Back-propagation is applied to compute 
derivatives of performance function with respect to 
the weights and bias variables Xk+1 in the successive 
iteration. SCGM depends on the computation of 
conjugate directions but avoids time-consuming line 
search in every iteration. In addition, this method 
avoids the tedious and memory consuming 
computation of hessian; done in traditional second 
order methods (Møller, 1993; Chel et al., 2011). 

4. Experimental observations and results 

4.1. Training the predictive models based on ANN  

To compare the performances of algorithms 
under consideration, a number of model simulations 
have been developed and tested with varying 
parameters in MATLAB Neural Network Toolbox 
(MathWorks, 2012). To develop and test the 
prediction models large datasets from life insurance 
data warehouse have been taken. First order 
algorithms like traingd, traingda, traingdm and 
second order methods like tarincgp, traincgf, 
tarincfb, tarinscg, trainlm have been tested for their 
performance. 

For experimentation initially, an MLP net object 
in neural toolbox has been configured with predictor 
inputs and predicted outputs, hidden layers of 
neurons, transfer functions, and training method 
under consideration. Datasets have been prepared 
for training, validation and testing purpose. During 
training of network model, performance and error 
gradient plots have been investigated for optimal 
results. 
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4.2. Results and graphs obtained 

Best results achieved for each of the conjugate 
methods have been shown in Table 1. 

Training performance for conjugate gradient 
methods based upon Mean Squared Error (MSE) and 
error gradient plots have been presented in the 
following figures. As shown in Figs. 1 and 2, 

performance and gradient plots have been observed 
to analyze the respective convergence and behavior 
of different conjugate methods to achieve the 
minimum of error gradient. Figs. 1(a-d) demonstrate 
MSE versus numbers of epochs plots during the 
training of network with conjugate algorithms. 

 
Table 1: Experiment results of employing different conjugate gradient algorithms 

Training Algorithm 
Training 
function 

Min. 
gradient 

Neurons in 
hidden layer 

Final 
epochs 

Training 
time 

Training 
performance 

Starting 
gradient 

value 

Final 
gradient 

value 
Conjugate gradient 

(Polak–Ribiere 
update) 

traincgp 1e-05 20 97 0:06:24 .0374 0.514 .01280 

Conjugate gradient 
(Fletcher–Reeves 

update) 
traincgf 1e-05 20 62 0:05:16 .0401 0.634 .00255 

Conjugate gradient 
(Powell-Beale 

update) 
traincgb 1e-05 20 39 0:02:52 .0400 0.433 .00301 

Scaled conjugate 
gradient 

trainscg 1e-05 20 517 0:24:21 .0149 .716 9.77e-06 

Experiment results with MATLAB (Neural Network Toolbox) software 

 

  
(a) (b) 

  
(c) (d) 

Fig. 1: Training performance graph with (a) Conjugate gradient Polak–Ribiere update (b) Fletcher –Reeves update (c) Powell-
Beale update (d) Scaled conjugate gradient learning 

 
Fig. 2(a-d) demonstrate error gradient curves for 

the training process. A target value of minimum 
error gradient ‘1e-05’ was set for all the training 
algorithms. All first order methods failed to achieve 
the set target of minimum error, second order 
conjugate algorithms have partially achieved the set 
target and scaled conjugate gradient was able to 
converge completely toward the set target. As shown 
above in Fig. 1(d) for scaled conjugate method has 
taken 517 iterations to reach the target gradient. 

5. Conclusion 

In this research, multilayer feed forward neural 
network have been trained with four different 

variations of conjugate gradient methods and to 
evaluate their relative performances. The 
performance of Scaled Conjugate Gradient method 
(SCGM) comes out to be the best for the given 
datasets and it has converged well toward the set 
target value of minimum gradient. The method has 
shown a performance value 0.0149 and reached the 
gradient value of 9.77e-06. On the other hand, it has 
been observed that first order techniques like 
steepest descent and its variations are not able to 
achieve the set target even in 1000 epochs. It has 
been found that even if conjugate methods using the 
line search could not completely converge toward 
the set target of the order of 10-5, but they have 
reached very near to the set target value. Second 
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best performance has been shown by Fletcher–
Reeves update which reached a minimum gradient of 
0.00255, but Powell-Beale and Polak–Ribiere 

updates are also very close. Hence, the models 
trained with second order conjugate methods can be 
used effectively for the predictive data mining. 

 

  
(a) (b) 

  
(c) (d) 

Fig. 2: Error gradient graph with (a) Conjugate gradient Polak–Ribiere update (b) Fletcher –Reeves update (c) Powell-Beale 
update (d) Scaled conjugate gradient learning (MathWorks, 2012) 
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