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In this paper, we have presented maximum power point tracking (MPPT) 
algorithm for variable speed fixed pitch (VSFP) wind power plant connected 
to grid. The wind power plant is based on squirrel cage induction generator 
(SCIG) fed by a matrix converter (MC). Matrix converter is a power electronic 
interface between generator and grid, which facilitates the mechanism of 
MPPT algorithm. For maximum power point tracking, we have used 
extremum seeking scheme, which, unlike other MPPT techniques is a non-
model based MPPT algorithm. In this paper sinusoidal signal has been used 
as a search disturbance signal. The performance of the ES algorithm has been 
checked for different wind velocities. In the latter section of this paper, we 
have done stability analysis of extremum seeking for wind energy conversion 
system (WECS) using single perturbation method. 
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1. Introduction 

*In last few decades due to environmental issues, 
researchers are more inclined towards the non-
conventional and clean ways to produce energy. 
Among various non-conventional energy resources, 
the wind energy is considered to be most challenging 
source of energy because of its abundancy 
cleanliness, free availability and technical maturity 
(Chen et al., 2013; Barakati, 2008; She et al., 2013; 
Barote et al., 2013).  

The popular structures in wind power plant 
include squirrel cage induction generator (SCIG) 
based wind power plant, doubly fed induction 
generator (DFIG) based wind power plant and 
permanent magnet synchronous generator (PMSG) 
based wind power plant (Wang et al., 2013; Li et al., 
2012; Arani and El-Saadany, 2013). All these systems 
offer good efficiency, less aerodynamic loads and 
easy regulation of active and reactive powers. The 
SCIG provides flexibility under varying wind speed 
due to its asynchronous operation, so here in this 
work we have used SCIG. SCIG also offers economy, 
simplicity and robustness in structure against 
disturbance and vibration. 

In order to extract maximum power from a wind 
power plant at variable wind speeds, an MPPT 
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design is required which alters the shaft speed of 
turbine using varying wind speed method , which 
intern will alter the power output, since the power 
output is proportional to the turbine angular 
velocity. This change in shaft speed is done through a 
power electronic interface between wind generator 
and grid, for which we have to control the switching 
of power electronic converter. Here in this paper we 
have used matrix (ac-dc-ac) converter instead of 
conventional rectifier inverter pair. The advantage of 
using matrix converter is that it offers bidirectional 
power flow capability and controllable input power 
factor.  

In addition it has no energy storage components 
(Nguyen and Lee, 2013; Zhang et al., 2009). By 
switching of matrix converter, we alter the stator 
electrical frequency, which leads to the change in 
turbine shaft speed and drives SCIG to be maximum 
power point (MPP). The techniques available until 
now, which include perturb and observe (P & O) 
methods, fuzzy and neural network based 
techniques, are highly model dependent. The main 
disadvantage of model based optimization 
techniques is that every time we use a new model, 
new controller has to be designed for MPPT, which is 
a tedious task (Bratcu et al., 2007).  

In this work we present extremum seeking 
scheme, which is a non-model based algorithm. Also 
it offers easy tenability, design simplicity and 
performance stoutness (She et al., 2013; Arani and 
El-Saadany, 2013; Komatsu et al., 2001). 
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2. Wind energy conversion system 

A general block diagram of wind energy 
conversion system consists of a wind turbine, a wind 
generator, power electronic interface to achieve 
MPPT at varying wind speeds and load. Here in this 
paper, we are using matrix converter as power 
electronic interface and our wind generator is 

squirrel cage induction generator (SCIG). Since we 
are modeling grid connected wind power plant, we 
have utility grid in place of load. In order to know the 
dynamics of wind turbine, we also need to model the 
aerodynamics of the wind turbine. The block 
diagram considered in this paper is shown in Fig. 1. 

 
Fig. 1: Block diagram of Wind energy conversion system model under study 

 

The power captured by the VSWT is expressed in 
terms of the non-dimensional power coefficient 𝐶𝑃 , 
which is a measure of the ratio of the rotor power to 
the power available in the wind (Eq. 1): 

 

PT =
1

2
ρArCP(λ, β)Vω

3                                                             (1) 

 
Maximum torque extracted from the turbine 

rotor can be given as (Eq. 2) 
 

TT =
1

2ωt
ρArCP(λ, β)Vω

3                                                          (2) 

 
where blade tip speed ratio is defined as 

 

λ =
blade tip speed

wind speed
=
ωt× R

Vω
    

 
𝑉𝜔  = speed of wind in m/s 
A = swept area of wind turbine blade  
𝜔𝑡  = turbine angular speed. 
λ = Tip speed ratio and β = Blade pitch angle 

 
The power coefficient Cp is related to the tip-

speed-ratio λ, and rotor blade pitch angle, β.  In this 
study, the Cp curve is chosen to be (Barakati, 2008) 
(Eq. 3): 

 

Cp = 0.73 
151

Vw
Rωt
−13.635

exp(
Vw
Rωt
−0.003)

                                                              (3) 

 
Fig. 2 shows that under the varying wind speed 

conditions the value of the power coefficient will be 
maximum, for different turbine speeds, but the 
maximum value of Cp remains at the same level. 

Fig. 3 shows the variation of turbine power with 
respect to turbine angular velocity at different wind 

speeds. Fig. 4 shows that if we join the points of at 

which the turbine power is maximum, a third-order 
curve is obtained, which defines the maximum 
power captured by the wind turbine (WT). 

 

 
Fig. 2: power coefficient vs. turbine speed curve 

 

 
Fig. 3: Turbine power vs. turbine speed curve 

 

 
Fig. 4: Turbine speed vs. wind speed curve 

 
The overall model for wind energy conversion 

system may be given by following eight nonlinear 
equations, which includes the state-equation of the 
mechanical shaft, electrical generator, and the matrix 
converter (Krause et al., 2013; Luca and Ulivi, 1988; 
Luca and Ulivi, 1989; Marino et al., 1993) (Eqs. 4-11). 
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d

dt
iα = −a0iα + a1λα + a2ωrλβ +

cos θ0

σLs
V0m                          (4) 

d

dt
iβ = −a0iβ + a1λβ + a1ωrλα +

sin θ0

σLs
V0m                           (5) 

d

dt
λα = a3iα − a4λα − ωrλβ                                                       (6) 

d

dt
λβ = a3iβ − a4λβ +ωrλα                                                        (7) 

d

dt
θ0 = ω0                                                                                       (8) 

d

dt
ωr =

3p2Lm

2LrJ
(iβλα − iαλβ) −

pKs

nJ
θ̃ −

pB

nJ
(ωt −

ωr

pn
)            (9) 

d

dt
θ̃ = ωt −

ωr

pn
                                                                              (10) 

d

dt
ωt = −

Pt(Vw,ωt)

Jtωt
−
Ks

Jt
θ̃ −

B

Jt
(ωt −

ωr

pn
)                              (11) 

3. Extremum seeking for maximum power point 
tracking in wind energy conversion system 

A typical power curve of a WECS as shown in Fig. 
5 can be divided into four major regions. The first 
region contains the velocities below which turbine is 
not able to generate any power due to insufficient 
wind. The second region contains the wind velocities 
from where the generation starts to the velocity up 
till which the power linearly increases with increase 
in wind velocity. This region is known as sub-rated 
power region. This is the region where MPPT 
schemes are applied to extract maximum power. The 
third region consists of wind velocities which are 
sufficient for wind turbine to reach rated power, 
hence power output is limited by wind turbine. The 
fourth region contains the velocities of wind which 
are much stronger and may cause damage to wind 
turbine, hence in this region, the turbine is shut 
down (Ghaffari et al., 2014). 

 

 
Fig. 5: Typical power curve of WT including four operating 

regions (Ghaffari et al., 2014) 

 
Now in this section we present the extremum 

seeking technique for WECS, which is a real time 
optimization techniques and unlike conventional 
MPPT algorithms it does not require system 
modeling and identification as it is a non-model 
based optimization technique. For simulation 
purpose the models of power coefficient and turbine 
power are given Eqs. 3 and 4.  

Here we assume that we can measure and 
manipulate turbine power through MC. Also, we 
know that the turbine power map has one MPP 
under any wind speed. On the basis of which we 

present the following assumption. This assumption 
is for the turbine power map around its MPP for 
𝑉𝑐𝑢𝑡 𝑖𝑛 < 𝑉𝑤 < 𝑉𝑟𝑎𝑡𝑒𝑑  (Fig. 5) (Eqs. 12 and 13). 

 
∂Pt(Vw,ωt)

∂ωt
(ωt
∗) = 0                                                                     (12) 

∂2Pt(Vw,ωt)

∂2ωt
(ωt
∗) < 0                                                                   (13) 

 
If, we carefully study the torque speed 

characteristics of an induction machine, it is 
observed that this curve is very sharp near the 
synchronous speed (stator electrical frequency), 𝜔0. 
At this point the rotor electrical speed 𝜔𝑟 and 
synchronous speed 𝜔0 will be nearly equal. This 
indicates that if we change the stator electrical 
frequency, the electrical rotor speed will change, 
which intern will change the turbine speed 
𝜔𝑡  (Ghaffari et al., 2014). Thus by varying 𝜔0through 
MC, we may change turbine speed 𝜔𝑡  to track MPPT. 
Our ES scheme works on the same line. 

Fig. 6 shows the schematic of this work in which, 
we have employed extremum seeking feedback in 
WECS for MPPT. In order to track maximum power 
we change stator electrical frequency𝜔0. The amount 
and direction of change is estimated by the ES 
feedback loop (Komatsu et al., 2001; Kumar et al., 
2009; Pan et al., 2008; Ghaffari et al., 2014) (Eqs. 14-
16). 

 
Fig. 6: Extremum seeking for MPPT in WECS 

 
ωh = ωωH = ωδωH

′ = O(ωδ)                                               (14) 

ωl = ωωL = ωδωL
′ = O(ωδ)                                                 (15) 

k = ωK = ωδK′ =  O(ωδ)                                                      (16) 

 
where 𝜔, 𝛿 = small positive constants and 𝜔𝐻

′ , 𝜔𝐿
′  

and 𝐾′ = O(1) positive constants. 
By inspecting Eqs. 14 and 15 we can see that 

while designing low pass filter and high pass filter 
for extremum seeking feedback it should note that 
cut off frequencies of both the filter must be lesser 
than that of the perturbation signal. Furthermore, for 
convergence of ES scheme it is necessary that the 
value of adaptation gain k must be very small. 
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4. Stability analysis of extremum seeking 
feedback for IG based wind power plant 

In order to track maximum power through 
extremum seeking feedback scheme, the desired 
closed loop performance of wind power plant is 
obtained by varying voltage amplitude of stator and 
electrical frequency of stator through matrix 
converter. To obtain input output decoupling in the 
dynamics of wind power plant, we employ field 
oriented control (FOC), an auxiliary input and an 
integrator (Luca and Ulivi, 1988; Luca and Ulivi, 
1989; Marino et al., 1993). By making use of 
equations (4)–(13) and one step of integration in 
front of 𝑉0𝑚, the modified equations of WECS are 
given as follows (Eq. 17): 

   
ẋ = f(x) + g1u1 + g2u2                                                            (17) 

 
where 𝑢1= stator electrical frequency,𝜔0 𝑢2 = rate of 
voltage amplitude. It is used to generate the voltage 
amplitude of the SCIG stator.  

The extremum seeking feedback loop gives the 
estimates 𝜔0for MPPT. The other input 𝑢2 has been 
set to zero i.e. Stator voltage has constant peak 
amplitude. Hence (Eqs. 18-29), 

 
ẋ = f(x) + g1u1, xϵR9, uϵR                                                      (18) 

y = ωt, yϵR                                                                                  (19) 

f(x) =

[
 
 
 
 
 
 
 
 
 
 
 −a0x1 + a1x3 + a2x4x7 +

x6 cos x5

σLs

−a0x2 + a1x4 + a2x3x7 +
x6 cos x5

σLs
a3x1 − a4x3 − x4x7
a3x2 − a4x4 + x3x7

0
0

a5(x2x3 − x1x4) − a6x8 − a5(x9 −
x7

pn
)

x9 −
x7

pn

−a9 (x9 −
x7

pn
) − a8x8 −

Tt

Jt ]
 
 
 
 
 
 
 
 
 
 
 

  

x = [iα, iβ, λα, λβ, θ0, V0m, ωr, θ̃, ωt]T  
 

suppose that we know the control law 
 

u = α(x,ω0)                                                                                (20) 

 
parameterized by 𝜔0. The closed loop system  

 
ẋ = f(x, α(x, ω0))                                                                        (21) 

 
then has equlibria parameterized by 𝜔0.  
the system of Fig. 6 may be summarized as- 
 
ẋ = f(x, α(x, ω0 + a sinωt)),                                                   (22) 

ω0 = kξ̇ ,                                                                                        (23) 

ξ̇ = −ωlξ + ωl(y − η)a sinωt,                                                (24) 

η̇ = −ωhη+ωhy,                                                                         (25) 

 
After applying the following coordinate 

transform 
 

ω0̃ = ω0 −ω0
∗ ,                                                                            (26) 

η̃ = η − h ∘ l(ω0
∗),                                                                      (27) 

The system (23)-(25) can be rewritten in 𝜏 = 𝜔𝑡 
as (Eqs. 28-29) 

 

ω
dx

dτ
=  f(x, α(x, ω0 + a sin τ))                                                (28) 

d

dτ
[

ω0̃
ξ
η̃
] = δ [

K′ξ

−ωL
′ ξ + ωL

′ (h(x) − h ∘ l(ω0
∗) − η̃)a sin τ

−ωH
′ η̃ + ωH

′ (h(x) − h ∘ l(ω0
∗))

]  (29) 

 
Before proceeding for the proof of stability we 

make following assumptions: 
 

Assumption 1: Here, we assume that there exists a 
smooth functional in such a way that f(x, α(x, ω0)) =
0 iff = l(ω0) (Krstić and Wang, 2000). 
Assumption 2: With overshoot and decay constants 
uniform in 𝜔0, the system is locally exponentially 
stable for each 𝜔0𝜖𝑅, the equilibrium 𝑥 = 𝑙(𝜔0) 
(Krstić and Wang, 2000). 

 
In view of above two assumptions, we consider 

that the control law depicted in Eq. 20 is stout for its 
parameter𝜔0, this signifies that it is able to 
exponentially stabilize any equilibria produced by 
𝜔0 with an exception that the requirements as given 
by assumption 2 satisfy, ∀ 𝜔0𝜖𝑅. This assumption is 
not limited to existing model but once we have 
designed the local stabilization of control law, the 
same may be applicable without the modeling 
knowledge of either f (x, u) or l(𝜔0). 

One more, very essential assumption for this 
scheme is assumption 3  

 
Assumption 3: Here we assume that ∋ ω0

∗ϵR: 
 
(h ∘ l)′( ω0

∗) = 0 
(h ∘ l)′′( ω0

∗) < 0 
 

The combination of above two equations signify 
the condition for maxima i.e. the output equilibrium 
map 𝑦 = ℎ(𝑙(𝜔0)) will have its maxima at 𝜔0 = ω0

∗ . 
The main objective is to develop the ES feedback 
mechanism in such a way that maximization of 
steady state value of y does not require any 
knowledge of either ω0

∗  or the functions h and l. If we 
replace y by –y in ES feedback design, we will be able 
to track minima of output equilibrium map without 
loss of generality 

5. Stability analysis using singular perturbation 
method 

To make the notations further simpler we write 
(29) as (Eq. 30) 

 
dz

dτ
= δG(τ, x, z)                                                                            (30) 

 
where 𝑧 =(𝜔0̃, 𝜉, 𝜂̃). By (Theorem 4.1 in (Krstić and 
Wang, 2000)) there exists an exponentially stable 
periodic solution 𝑧𝑟

2𝜋(𝜏) such that (Eq. 31) 
 
dzr
2π(τ) 

dτ
= δG(τ, L(zr

2π(τ)), zr
2π(τ))                                        (31) 
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where 𝐿(𝜏, 𝑧) = 𝑙(𝜔0
∗ + 𝜔0 + 𝑎 sin 𝜏). To bring the 

system (30) and (31) in the standard perturbation 
form, we shift state z using the transformation (Eqs. 
32-36) 
 
z̃ = z − zr

2π(τ)                                                                     (32) 
 
and get 
 
dz̃

dτ
=  δG(τ, x, z̃)                                                                   (33) 

ω
dx

dτ
=  F̃(τ, x, z̃)                                                                  (34) 

 
where 
 
G̃(τ, x, z̃) = G̃(τ, x, z̃ + zr

2π(τ)) −  G(τ, L(zr
2π(τ)), zr

2π(τ)  

                                                                                                        (35) 
F̃(τ, x, z̃) = f(x, α(x,ω0

∗ + ω0̃ − ω̃0r
2π(τ) + ω̃0r

2π(τ) + a sin τ, 

                                                                                                        (36) 
we note that (Eq. 37) 
 
x = L(τ, z̃ + zr

2π(τ))                                                                  (37) 
 

is the quasi-steady state, and that the reduced model 
(Eq. 38) 

 
dzr̃

dτ
=  δG(τ, L(τ, zr̃ + zr

2π(τ)), zr̃ + zr
2π(τ))                      (38) 

 
has an equilibrium at the origin 𝑧𝑟̃ = 0 (cf. (35) with 
(37)). The exponential stability of his equilibrium 
can be ensured if the value of a,is sufficiently small 
(Krstić and Wang, 2000). Singular perturbation 
analysis is incomplete without the study of boundary 

layer model. In the time scale 𝑡 − 𝑡0 =
𝜏

𝜔
 (Eq. 39) 

 
dxb

dt
= F̃(τ, xb , + L(τ, zr̃ + zr

2π(τ)), z̃ ) = f(xb +

l(ω0), α(xb + l(ω0)), ω0)                                                        (39) 

 
Here it is worth noting that the expression 𝜔0 =

𝜔0
∗ + 𝜔0̃ + 𝑎 sin 𝜏, is not depending on the time 

variable t. Since 𝑓(𝑙(𝜔0), 𝛼(𝑥𝑏 + 𝑙(𝜔0)), 𝜔0) ≡ 0, this 

signifies that eq (39) hs its equilibrium at 𝑥𝑏 = 0. 
According to the assumption 2 equilibrium is stable 
exponentially and uniformly in in 𝜔0 and hence 
𝑙(𝜔0)). 

 By combining exponential stability of the 
reduced model (38) with the exponential stability of 
the boundary layer model (39), using Tikhonov's 
Theorem on the Infinite Interval [Theorem 9.4 in 
(Khalil, 1996), we deduce that: 

The 𝑧(𝜏) converges exponentially to an 
𝑂(𝜔) surrounding of the periodic solution𝑧𝑟

2𝜋(𝜏), as 
the solution (𝜏) of eq (30) is 𝑂(𝜔)close to the 
solution 𝑧𝑟(𝜏) of Eq. 38. Further 𝑧𝑟(𝜏)is in 𝑂(𝜔)-
neighborhood of the equilibrium𝑧𝑟

𝑎,𝑒 , which indicates 
that the solution of 𝜔0̃(𝜏) of (29) converges 
exponentially to an 𝑂(𝜔 + 𝛿)- surrounding 
of {[ℎ ∘ 𝑙]′′′(𝜔0

∗)/[8(ℎ ∘ 𝑙′′(𝜔0
∗)]}𝑎2 +  𝑂(𝑎3)]} i.e. 

𝜔0(𝜏) = 𝜔0
∗ +𝜔0̃(𝜏) + 𝑎 sin 𝜏 converges 

exponentially to an 𝑂(𝜔 + 𝛿 + 𝑎)- surrounding of 
𝜔0
∗ . The solution 𝑥(𝜏) of (34) satisfies (Eq. 40)  

 

𝑥(𝜏) − 𝑙(𝜔0
∗ +𝜔0̃(𝜏) + 𝑎 sin 𝜏) − 𝑥𝑏(𝑡) = 𝑂(𝜔)              (40) 

 

where, 𝜔0𝑟(𝜏) is the solution of the reduced model 
(20) and 𝑥𝑏(𝑡) is the solution of the boundary layer 
model (39). From (40) we get (Eq. 41) 
 
𝑥(𝜏) − 𝑙(𝜔0

∗) = 𝑙(𝜔0
∗ + 𝜔0̃(𝜏) + 𝑎 sin 𝜏) − 𝑥𝑏(𝑡) + 𝑂(𝜔) −

𝑙(𝜔0
∗)                                                                                              (41) 

 
The exponential convergence of 𝜔0𝑟(𝜏) to the 

periodic solution 𝜔̃0𝑟
2𝜋(𝜏), 𝑂(𝛿) close to the average 

equilibrium {[ℎ ∘ 𝑙]′′′(𝜔0
∗)/[8(ℎ ∘ 𝑙′′(𝜔0

∗)]}𝑎2 +
 𝑂(𝑎3), together with the exponentially decaying 
solution 𝑥𝑏(𝑡) of (39) and exponential convergence 
of 𝑥(𝜏) − 𝑙(𝜔0

∗) by Eq. 41 an 𝑂(𝜔 + 𝛿 + 𝑎)-
neighborhood of zero ensures the exponential 
convergence of 𝑦 = ℎ(𝑥) to an 𝑂(𝜔 + 𝛿 + 𝑎)-
surrounding of its maximal equilibrium ℎ ∘ 𝑙(𝜔0

∗). 

6. Simulation results 

The proposed extremum seeking feedback 
scheme for MPPT in WECS has been evaluated by 
testing it for different disturbances i.e. variation of 
wind speeds in subrated power region using 
MATLAB m-file. Simulation results are presented 
below. Fig. 7 shows the variation of wind speed with 
time, which is applied to WECS. Fig. 8 shows the 
responses of the proposed WECS incorporating the 
ES based control of SCIG for changes in wind speed 
as shown in Fig. 7. It is seen from Fig. 9 that despite 
rapid change in wind speed power coefficient 
turbine torque follows smoothly according to the 
disturbances in wind speed 𝐶𝑃 is regulated to almost 
a constant value with slight variation of the order of 
10−4, while the power level increases as wind speed 
increases. 

 

 
Fig. 7: Variation of wind speed versus time 

7. Conclusion 

In this paper, we have presented extremum 
seeking feedback algorithm for maximum power 
point tracking in WECS. ES scheme estimates the 
stator electrical frequency to steer the wind turbine 
to its maximum power point. We have checked the 
performance of this control system for rapid wind 
variations and found that as soon as we change the 
wind velocity the ES scheme steers the wind turbine 
to its corresponding MPP. The advantageous feature 
of this work is that it does not require knowledge of 
wind speed, turbine or generator parameters. So, 
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once we have designed the controller, it can be 
applied to any WECS model. We have also done the 
stability analysis of Es scheme for WECS and found 
that it successfully converges at MPP. 

 

 
Fig. 8: MPPT process using ES scheme 

 

 
Fig. 9: Variation of power coefficient 
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