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1. Introduction 

*In 1906, the French mathematician Maurice 
Frechet introduced the concept of metric spaces; 
metric space is a very important subject in analysis 
and topology (Fréchet, 1906). In 1965, the concept of 
fuzzy set was introduced by Zadeh (1965). Many 
authors have introduced different ways of the 
concept of fuzzy metric space (Erceg, 1979; Diamond 
and Kloden, 1999; George and Veeramani, 1994) and 
(Gregori and Romaguera, 2000). In this work we give 
a definition of the fuzzy metric space by using the 
ordinary metric and vise versa. 

2. Preliminaries 

In this section, we recall some basic concepts and 
results in both metric and fuzzy metric spaces. 

 

Definition 2.1: A metric space is given by a set X and 
a distance function 𝑑 ∶ 𝑋 × 𝑋 → ℝ defined on X such 
that 𝑥, 𝑦, 𝑧 ∈ 𝑋 (Fréchet, 1906): 
  
(i) 𝑑(𝑥, 𝑦) ≥ 0, 𝑑(𝑥 𝑦) = 0 ↔ 𝑥 = 𝑦  
(ii) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)  
(iii) 𝑑(𝑥, 𝑧)  ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)  

  
Definition 2.2: A fuzzy set A in X is a function with 
domain X and values in [0, 1] (Zadeh, 1965). 

 

Definition 2.3: A binary operation ∗ ∶ [0,1]2 →
[0,1] is called a continuous triangular norm (shortly 
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t-norm) if it satisfies the following conditions 
(Schweizer and Skala, 1960): 
 

(i)   ∗ is associative and commutative,  
(ii)   ∗ is continuous, 
(iii) 𝑎 ∗ 1 = 𝑎 for all 𝑎, 𝑏, 𝑐 ∈ [𝑜, 1] , 
(iv) 𝑎 ∗ 𝑏 ≤ 𝑐 ∗ 𝑑 whenever 𝑎 ≤ 𝑐 and 𝑏 ≤ 𝑎 for all 

𝑎, 𝑏, 𝑐, 𝑑 ∈  [0, 1] 
 

Examples of t-norm are 𝑎 ∗ 𝑏 = 𝑎 𝑏, 𝑎 ∗ 𝑏 =
𝑚𝑖𝑛 {𝑎, 𝑏} and 𝑎 ∗ 𝑏 = 𝑚𝑎𝑥{𝑎, 𝑏}. 

 

Definition 2.4: The 3-tuple (𝑋, 𝑑𝐹 ,∗ ) is called a 
fuzzy metric space if X is an arbitrary (non-empty) 
set, ∗  is a continuous t-norm and 𝑑𝐹   is a fuzzy set on 
𝑋2  ×  [0,∞) satisfying the following conditions, for 
all 𝑥, 𝑦, 𝑧 ∈ 𝑋, each t and 𝑠 > 0 (George and 
Veeramani, 1994): 
 

(i)  𝑑𝐹(𝑥, 𝑦, 𝑡) > 0 
(ii)  𝑑𝐹 (𝑥, 𝑦, 𝑡) = 0  if and only if 𝑥 = 𝑦,  
(iii)  𝑑𝐹 (𝑥, 𝑦, 𝑡) =  𝑑𝐹 (𝑦, 𝑥, 𝑡) , 
(iv)  𝑑𝐹(𝑥, 𝑦, 𝑡)  ∗  𝑑𝐹(𝑦, 𝑧, 𝑡)  ≤  𝑑𝐹(𝑥, 𝑧, 𝑡 + 𝑠) , 
(v)  𝑑𝐹(𝑥, 𝑦, ∙ ) ∶ (0,∞)  → [0, 1] is continuous. 

 

Then is 𝑑𝐹   called a fuzzy metric on X. Then 
𝑑𝐹(𝑥, 𝑦, 𝑡) denotes the degree of nearness between x 
and y with respect to t. 

3. Main results 

The main result is to obtain the fuzzy metric 
spaces from any ordinary metric spaces and vise 
versa and verify the Banach fixed point. 

 
Proposition 3.1: Let d and  𝑑𝐹   are metric and fuzzy 
metric respectively, so the following diagram 
 

𝑋 × 𝑋 × ℝ+  
     𝑑𝐹       
→      𝐼  

𝑑𝑝𝑟 ↓                              ↑ 𝛼  
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𝑋 × 𝑋     
     𝑑       
→         ℝ+  

 
is commutative. Where, 𝑑𝑝𝑟 : (𝑥, 𝑦, 𝑡)  → (𝑡𝑥, 𝑡𝑦), 

 𝑑 (𝑡𝑥, 𝑡𝑦)  → 𝑡𝑟 for some metric 𝑑(𝑥, 𝑦) = 𝑟 > 0 and 

𝛼 ∶ (𝑡𝑟)  →   1 − 
2

𝜋 
 tan−1(𝑡𝑟) = : 𝑡 ̃  ∈ 𝐼. Moreover  

𝑑𝐹 =  𝛼 ∘ 𝑑 ∘ 𝑑𝑝𝑟 . 

 
Proof: It is easy to check that 𝛼 is continuous, since 
𝑡𝑎𝑛−1 in  ℝ+ is continuous this implies that 𝛼 is 
continuous. 

Now we prove that 𝑑 ∘  𝑑𝑝𝑟 = 𝛼
−1 ∘  𝑑𝐹  . For 

(𝑥, 𝑦, 𝑧)  ∈ 𝑋 × 𝑋 × ℝ+, we have 
 

𝑑 ∘  𝑑𝑝𝑟(𝑥, 𝑦, 𝑡) = 𝑑(𝑡𝑥, 𝑡𝑦) = 𝑡𝑟 ≔ 𝑠 > 0. 

 
On the other side, 
 

𝛼−1  ∘  𝑑𝐹(𝑥, 𝑦, 𝑡) =  𝛼
−1(𝑡̃) =  𝛼−1 (1 −

2

𝜋
 𝑡𝑎𝑛−1(𝑡𝑟)) =

 
𝜋

2
 tan[1 − (1 −

2

𝜋
 tan−1(𝑡𝑟))] =  𝑡𝑟  

 

So, the above diagram is commutative. 
 

Lemma 3.2: Let 𝑡1, 𝑡2 ∈  ℝ
+, if 𝑡1  ≤  𝑡2, then 𝛼(𝑡1) ≥

 𝛼(𝑡2) and 𝛼 (𝑡1 + 𝑡2)  ≤ min (𝛼(𝑡1 ), 𝛼( 𝑡2)). 
 

Proof: If 𝑡1  ≤  𝑡2 , this implies that tan−1 𝑡1 ≤
 tan−1 𝑡2 ,   this implies that − tan−1 𝑡1 ≥

 − tan−1 𝑡2,     therefore 1 −
2

𝜋
 tan−1 𝑡1 ≥ 1 −

2

𝜋
 tan−1 𝑡2    hence 𝛼(𝑡1)  ≥  𝛼(𝑡1) 

 
The second assertion is become obvious. 

 
Theorem 3.3: Let (𝑋, 𝑑) be the metric space and 
(𝑋, 𝑑𝐹 , ∗) is a fuzzy metric space with 𝑎 ∗ 𝑏 =
min{𝑎, 𝑏} for all 𝑎, 𝑏 ∈ 𝐼. Then for all , 𝑦, 𝑧 ∈ 𝑋, 
𝑡, 𝑠, 𝑟 ∈ ℝ+, we have (𝑋, 𝛼 ∘   𝑑 ∘  𝑑𝑝𝑟 , ∗)is a fuzzy 

metric space. 
 
Proof: We check that the conditions (i), (ii), (iii) in 
definition 2.4. 
 
For (1), 𝛼 ∘ 𝑑 ∘  𝑑𝑝𝑟 (𝑥, 𝑦, 𝑡) =  𝛼 ∘ 𝑑(𝑡𝑥, 𝑡𝑦) =

 𝛼(𝑑(𝑡𝑥, 𝑡𝑦)) =  𝛼(𝑡𝑟) =  𝑡̃  > 0 .  

For (2), 𝛼 ∘ 𝑑 ∘  𝑑𝑝𝑟 (𝑥, 𝑥, 𝑡) =  𝛼 ∘ 𝑑(𝑡𝑥, 𝑡𝑥) =

 𝛼(𝑑(𝑡𝑥, 𝑡𝑥)) =  𝛼(0) = 1. 

For (3), 𝛼 ∘ 𝑑 ∘  𝑑𝑝𝑟(𝑥, 𝑦, 𝑡) =  𝛼 ∘ 𝑑(𝑡𝑥, 𝑡𝑦) =

 𝛼(𝑑(𝑡𝑥, 𝑡𝑦)) =  𝛼(𝑡𝑟) =  𝑡̃ . 

 
On the other side  
 
𝛼 ∘ 𝑑 ∘  𝑑𝑝𝑟(𝑦, 𝑥, 𝑡) = 𝛼 ∘ 𝑑(𝑡𝑦, 𝑡𝑥) = 𝛼(𝑑(𝑡𝑦, 𝑡𝑥)) =

 𝛼(𝑡𝑟) =  𝑡̃  

 
Now we check (4) 
 
𝛼 ∘ 𝑑 ∘  𝑑𝑝𝑟(𝑥, 𝑧, 𝑡 + 𝑠) =  𝛼 ∘ 𝑑((𝑡 + 𝑠)𝑥, (𝑡 + 𝑠)𝑧) =

 𝛼(𝑑(𝑡 + 𝑠)𝑥, (𝑡 + 𝑠)𝑧) = 𝛼((𝑡 + 𝑠)𝑟) = 𝛼(𝑡𝑟 + 𝑠𝑟)  

 
Using lemma 3.2, we have 
 

𝛼(𝑡𝑟 + 𝑠𝑟) ≥ min(𝛼(𝑡𝑟), 𝛼(𝑠𝑟)) =  𝛼(𝑡𝑟)  ∗  𝛼(𝑠𝑟) =

𝛼(𝑑(𝑡𝑥, 𝑡𝑦)) ∗ 𝛼(𝑑(𝑠𝑦, 𝑠𝑧)) = 𝛼 ∘ 𝑑 ∘  𝑑𝑝𝑟(𝑥, 𝑦, 𝑡) ∗ 𝛼 ∘

𝑑 ∘  𝑑𝑝𝑟(𝑦, 𝑧, 𝑠).  

 

For (5) is trivial. Therefore, (𝑋, 𝛼 ∘ 𝑑 ∘ 𝑑𝑝𝑟 , ∗) is a 

fuzzy metric space. 
 

Remark 3.4: On the other side we can get the 
ordinary metric space from the fuzzy metric space 
from the above commutative diagram. So, if 
(𝑋, 𝛼 ∘ 𝑑 ∘ 𝑑𝑝𝑟 , ∗) is a fuzzy metric space, then the 

associative metric is (𝑋, 𝛼−1 ∘  𝑑𝐹 ∘  𝑑𝑝𝑟
−1 ). 

 
Definition 3.5: Let (𝑋, 𝑑)be a metric space on X, and 
{𝑥𝑛} be a sequence in X then is {𝑥𝑛} called converge 
sequence to some fixed 
 
𝑥 ∈ 𝑋 if ∃ 𝜖 > 𝑜, 𝑁 ∈  ℕ ,  
𝑑(𝑥𝑛, 𝑥) < 𝜖  ∀ 𝑛 > 𝑁  

 
We write also  𝑥𝑛   → 𝑥 if {𝑥𝑛} converge to x; and 

{𝑥𝑛} is called a cauchy sequence  
 

𝑑(𝑥𝑛, 𝑥𝑚) < 𝜖  ∀ 𝑛,𝑚 > 𝑁. 
 

Definition 3.6: Let (𝑋, 𝑑) and (𝑋, 𝑑𝐹 , ∗) are metric 
and fuzzy metric space on X, respectively. And {𝑥𝑛} is 
a sequence in X then the following is equivalent.  
 
(i) {xn} is convergent in the metric space (X, d) 
(ii)  d(xn, x)  <  ε  ∀ n > N 
(iii)  {xn} is convergent in the fuzzy metric space 

(X, α ∘ d ∘ dpr, ∗) 

(iv)  For any 0 <  ε < 1 and t > 0 there exists n > N such 
that 
α ∘ d ∘  dpr(xn, x, t) > 1 − 𝜀 

 
Definition 3.7: A metric space (𝑋, 𝑑) is complete if 
every cauchy sequence in X is convergent.  

 
Definition 3.8: A fuzzy metric space (𝑋, 𝛼 ∘ 𝑑 ∘
 𝑑𝑝𝑟 ,∗ ) is complete iff (𝑋, 𝑑) is complete. 

 
In the following theorem we prove that if any 

self-map has fixed point theorems in the metric 
space, then it has the same fixed point theorem in the 
induced fuzzy metric space and vise versa. We refer 
to Mihet (2004) and Shen et al. (2012) for fixed point 
theorems in the fuzzy metric spaces. 

 
Theorem 3.9: Let (𝑋, 𝑑) be a complete metric space 
on X, suppose the mapping 𝑇 ∶ 𝑋 → 𝑋 satisfy the 
contractive condition, thus 𝑑(𝑇𝑥, 𝑇𝑦)  < 𝑘 𝑑(𝑥, 𝑦) for 
all 𝑥, 𝑦 ∈ 𝑋, 𝑘 ∈ [𝑜, 1) is a constant. If T has a 
unique fixed point in X with respect to the 
metric (𝑋, 𝑑), then T has a unique fixed point with 
respect to the induced fuzzy metric.  

 
(𝑋, 𝛼 ∘ 𝑑 ∘  𝑑𝑝𝑟 ,∗)  

 
Proof: Suppose that T has a unique fixed point in X 
with respect to the metric space (𝑋, 𝑑). So, we have 
𝑑(𝑇𝑥, 𝑥) = 0 for some x. Therefore 
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𝑑𝐹(𝑇𝑥, 𝑥, 𝑡) =  𝛼 ∘ 𝑑 ∘  𝑑𝑝𝑟(𝑇𝑥, 𝑥, 𝑡) = 𝛼 ∘

𝑑(𝑡(𝑇𝑥), 𝑡(𝑇(𝑦)) = 𝛼(𝑟𝑡) =  𝛼(0) = 1  
 

this implies that 𝑇𝑥 = 𝑥 with respect to the Fuzzy 
metric space  
 
(𝑋, 𝛼 ∘ 𝑑 ∘  𝑑𝑝𝑟 , ∗)  

 

if there another fixed point 𝑦 ∈ 𝑋, then 
 
    𝑑𝐹(𝑥, 𝑦, 𝑡) =  𝛼 ∘ 𝑑 ∘  𝑑𝑝𝑟(𝑇𝑥, 𝑇𝑦, 𝑡) =  𝛼 ∘

𝑑(𝑡(𝑇𝑥), 𝑡(𝑇𝑦)) = 𝛼(𝑟𝑡) =  𝛼(0) = 1;  

 
and therefore 𝑥 = 𝑦. 

4. Conclusion 

In this article, we induced fuzzy metric spaces 
from any ordinary metric spaces and vise versa, we 
check that the self-map has a fixed point theorems 
with respect to the induced fuzzy metric spaces if it 
has a fixed point theorems with the ordinary metric 
spaces. 
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