
 International Journal of Advanced and Applied Sciences, 4(5) 2017, Pages: 26-29

Contents lists available at Science-Gate

International Journal of Advanced and Applied Sciences
Journal homepage: http://www.science-gate.com/IJAAS.html

26

A novel approach in detecting code clones in Java using DFS

Vishwachi Choudhary *, Sonam Gupta

Department of Computer Science and Engineering, Ajay Kumar Garg Engineering College (AKGEC), Ghaziabad, India

A R T I C L E I N F O A B S T R A C T

Article history:
Received 9 January 2017
Received in revised form
5 April 2017
Accepted 7 April 2017

Code is the rudimentary element of any software. Code clones may be
defined as the segments of the program which are akin to one another. The
similarity may be either syntactic or semantic. Cloning is easy to implement
but hard to detect. Many researches have been carried out in order to find
the methods for detecting these clones of code as problems are encountered
at the time of maintenance due to these clones in codes. This further
increases the cost of maintenance. The objective of our work is to precisely
detect the code clones. Here, an approach is proposed based on the Abstract
Syntax Tree method. The purpose for adopting AST is that it gives better
detection results as compared to other techniques and is considered to be the
best approach for detecting type 3 code clones. Furthermore, AST offers
syntactic knowledge which can be leveraged to filter certain types of clones.
The results obtained clearly shows that the technique adopted is able to
precisely detect the near-miss clones as compared to the tools namely NICAD
and CLAN.

Keywords:
Clones
Types
Abstract syntax trees
Templates

© 2017 The Authors. Published by IASE. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

*Code cloning is the act of copying the segments
of code and pasting it to another place. At the first
glimpse it seems to be a fascinating concept as the
programmer doesn’t need to write the same code
again and again if the working of two code segments
needs to be similar, but copy-paste strategy is a short
term win.

Copying the code from one position and pasting it
to another has various pitfalls which come into sight
at the time of maintenance and testing of the
software. If there are complications in the original
code that was pasted it will be disseminated to the
cloned/pasted segment too. For example, if a
programmer makes any slight modification in the
code and if the same change is not made in the
cloned part then it may produce inconsistencies. In
the large software systems it becomes really
strenuous to uncover where this code has been
reused. Searching in entire program is time
consuming and practically an infeasible job. Clones
produces bad impact on the design and also on the
system improvement and modification as it is quite
common that the person who developed the original
system is not the one who is maintaining it. In the

* Corresponding Author.
Email Address: vishwachi.choudhary@gmail.com (V. Choudhary)
https://doi.org/10.21833/ijaas.2017.05.004
2313-626X/© 2017 The Authors. Published by IASE.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

long run, the software may become so complex that
even minor changes are hard to make. Clone
detection came into existence to solve this problem.

With the help of clone detection technique, we
can easily find out where the clone exists and can
remove them beforehand so that they don’t create
any problem in future.

The studies reveal that almost (5-10 %) of the
source of large computer programs is duplicated
code (Baxter et al., 1998).

2. Types of code clones

There are various levels of clones as identified by
Bellon et al. (2007). They are:

 TYPE-1: the codes which are exactly similar to one

other without any kind of difference in the source
code are placed under Type-1 clones. They may
also be termed as syntactically similar codes.

 TYPE-2: the codes which are similar to each other
except some of the changes in the white spaces,
variable names, data type, arguments etc. are put
under Type-2 code clones. They are also
syntactically similar codes.

 TYPE-3:the codes with further modifications
allowed in the source code like some of the
additional code lines may be added or the ones
present in one may not be present in another but
both performing the same function are placed
under Type-3 code clones.

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:vishwachi.choudhary@gmail.com
https://doi.org/10.21833/ijaas.2017.05.004
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2017.05.004&domain=pdf&

Vishwachi Choudhary, Sonam Gupta / International Journal of Advanced and Applied Sciences, 4(5) 2017, Pages: 26-29

27

 TYPE-4: they are semantically or behaviorally
similar code segments. They don’t have anything
common in the source code but the functions

performed by them are exactly the similar of each
other.

The example of each kind of the clone is given in
Table 1.

Table 1: Example of four types of clones

Source code (a) Type-1 clone(b) Type-2 clone(c) Type-3 clone (d) Type-4 clone(e)

𝑖𝑛𝑡 𝑚𝑎𝑖𝑛()
{𝑖𝑛𝑡 𝑎 = 1, 𝑖𝑛𝑡 𝑥
= 𝑎 + 2; 𝑟𝑒𝑡𝑢𝑟𝑛 𝑥; }

𝑖𝑛𝑡 𝑚𝑎𝑖𝑛()
{𝑖𝑛𝑡 𝑎 = 1;

𝐼𝑛𝑡 𝑥 = 𝑎 + 2;
𝑟𝑒𝑡𝑢𝑟𝑛 𝑥; // 𝑜𝑢𝑡𝑝𝑢𝑡}

𝑖𝑛𝑡 𝑓𝑢𝑛𝑐()
{𝑖𝑛𝑡 𝑐 = 1; 𝑖𝑛𝑡 𝑞
= 𝑐 + 2;

𝑟𝑒𝑡𝑢𝑟𝑛 𝑞; }

𝑖𝑛𝑡 𝑚𝑎𝑖𝑛()
{𝑓𝑙𝑜𝑎𝑡 𝑠 = 1; 𝑓𝑙𝑜𝑎𝑡 𝑡 = 𝑠 + 2; 𝑡
= 𝑡/+ + 𝑠; 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡; }

𝑖𝑛𝑡 𝑓𝑢𝑛𝑐2()
{𝑖𝑛𝑡 𝑠 = 2;

𝑟𝑒𝑡𝑢𝑟𝑛 + +𝑠; }

3. Root causes for code clones

A study by Kontogiannis et al. (1996) reveals why
programmers just copy and paste the code. They
identified the following reasons by observing the
programmers in their daily practice:

 Sometimes it may be due to the short time limits

given to the programmers by the client for the
development of the software.

 Systems are modularized based on the principles
such as minimizing coupling, information hiding
and maximizing cohesion. In the end –at least for
the systems written in ordinary programming
languages- the system is composed of fixed set of
modules (Koschke, 2007). Ideally, if the system
needs to be updated, only few modifications will be
required.

 Another root cause is that programmers often
reuse the copied text as a template and then
customized the template in the pasted context
(Koschke, 2007). Other potential reasons such as
time pressure, educational deficiencies,
development process, and short sightedness must
also be investigated.

 Phobia of fresh code.
 Complexity of the system.

4. Clone detection methods

There are various methods of detecting the
clones which includes:

4.1. Text based

They are language independent and provide an
easy way to detect the clones among various
programming languages. The major shortcoming of
this method is that it can detect only Type-1 clones
along with some of the Type-2 clones which minor
changes such as different formatting style.

4.2. Token based

In this technique, the code is first of all
transformed into the token sequence. After that the
sequence is formed from some set of tokens which
are then compared to find the clones. The major
advantage of token based technique is that it is fast
with higher recall values.

4.3. Syntax tree based

Here, we use the parser to build parse trees or
abstract syntax trees from the source code. The trees
thus obtained can be processed further using the
tree- matching to find the clones.

Roy et al. (2009) explained that the abstract
syntax tree or parse tree contains the complete
information about the source code. In order to find
the clones using the syntax tree approach, the sub-
trees are compared and those which come out to be
similar are considered as the clones. The code
corresponding to these sub-trees are returned as
clone pairs.

4.4. Graph based

A program dependency graph (PDG) represents
control and data flow dependencies of a function of
source code (Rattan et al., 2013). In other words, it
considers the semantic information encoded in the
dependency graph. Clones may be identified as
isomorphic sub-graphs in a program dependency
graph (Krinke, 2001).

4.5. Metrics based

In Metrics- based approach, a number of metrics
are assessed for the code segments which can
involve the number of lines, number of input
statements, number of output statements, return
statements, function calls etc. in each of the
segments. The metric values are then compared
instead of the source code directly. The two
segments whose metrics values comes out to be
similar to each other are considered as clone pairs.

5. Proposed approach

Observing the advantages and disadvantages of
various techniques developed so-far, here abstract
Syntax Tree based approach is used to detect the
code clones. Our approach will find the syntactic
clones in linear time and space.

Here we used the Depth First Search (DFS)
algorithm which is an algorithm for searching in a
tree. One starts at the root and explores as far as
possible along each branch before backtracking. The
approach adopted is as follows:

1. Firstly the code will be passed into the ANTLR
parser. ANTLR (another tool for language

Vishwachi Choudhary, Sonam Gupta / International Journal of Advanced and Applied Sciences, 4(5) 2017, Pages: 26-29

28

recognition is a parser generator that uses LL (*) for
parsing (https:// en.wikipedia.org/wiki/ANTLR).
ANTLR can generate lexers, parsers, tree parsers and
combined lexer parsers (https://
en.wikipedia.org/wiki/ANTLR). The purpose of
doing so is to obtain the syntax tree representation
of the code. The example of AST formed for a
particular code is (Fig. 1):

𝑥 = 𝑎 + 𝑏;
𝑦 = 𝑎 ∗ 𝑏;
𝑤ℎ𝑖𝑙𝑒(𝑦 > 𝑎)
{𝑎 = 𝑎 + 1;
𝑥 = 𝑎 + 𝑏;
}

Fig. 1: AST for source code

2. The representation of tree acquired goes through
the steps discussed below:

 DFS (Depth First Search) is applied to both the

trees in parallel.
 Then for each of the node of the tree, convert it into

the template. The procedure for template
conversion is as follows:

 Template conversion is the procedure of

converting the source code into a new form
which is uniform intermediate representation of
source code.

 Type 1 clones are exactly similar to each other so
there is no need to convert them into templates.

 For type 2 clones, the clone methods may contain
difference in names of variables ,identifiers, data
types, white spaces etc. for converting them into
template, we can replace all the identifiers names
into a common name as ‘X’ and all the data types
into a common data type ‘DATA’.

 For type 3 and 4: in case of type 3-4 clone
detection, various constructs like branches,
iterations can also be changed. Therefore we
need a general method for converting them into a
form which is common. The method for the
conversion is given in the Table 2:

 Then for each node (converted into template)
check if the children of the node in the tree exist.
If it exists, store them in prefix order in an array
(apply this procedure on both the trees whose
nodes are now present in the form of templates)

 Compare the elements in both the arrays. If
similar elements exist, store them in a separate
list.

 Now, for all the elements/nodes which exist in
the list, apply Levenshtein (1966) distance
algorithm to find out the distance between the
nodes.

 It is applied considering two nodes at a time and

comparing them element-by-element.
 If the two nodes comes out to be
 Exactly similar, their cost will be set as 0 otherwise

1 in the opposite case.
 Now for all the pairs of nodes in the tree whose

Levenshtein (1966) distance/ cost comes out to be
0 are stored in an array and are marked as the
clone pairs.

Table 2: Template conversion method

No.
Equivalence

category
Possible

constructs
Proposed pattern

1.
Iterative

equivalence

For
while

do-while

Iteration <initial>
<condition>
<inc/dec>

2.
Conditional
equivalence

If
else

else-if
?:

Switch

Selection
<condition>

3.
Input

equivalence

Scanf
system.in

input.readline

Read<variable>

4.
Output

equivalence

Printf
system.out

Write<variable>

5.
Declaration
equivalence

int
char
float

double
string

Multiple
declaration to

single declaration

6. Braces { }
Braces are

removed in the
code

6. Results

The proposed approach has been tested on
various open source software available. The
implementation is done with the help of the self-
created tool with input of JAVA project files. The tool
is able to find out precisely Type1, Type 2 and Type 3
code clones. The project sources used is shown in the
Table 3.

Table 3: Open source projects used

Project name Lines of line of code
Java Netbeans-Javadoc 14K

Spule 13K
EIRC 11K

Eclipse-ant 35K
JHotDraw 40K

The source codes of the above projects are fed

into our system and the clones are detected in their
source codes. The results obtained are as follows in
Table 4. The results obtained in the form of clone
pairs are in Table 5.

Vishwachi Choudhary, Sonam Gupta / International Journal of Advanced and Applied Sciences, 4(5) 2017, Pages: 26-29

29

7. Comparison with existing tools

The tool developed using the proposed approach
is being compared with the existing tools. The two

tools are used other than the proposed one. They are
NICAD and CLAN. They all are applied onto the
projects. The results obtained are in Figs. 2 and 3.

Table 4: Result of proposed approach
Project Name Type-1 clones Type-2 clones Type-3 clones

Java Netbeans-javadoc 196 205 300
Spule 60 70 125
EIRC 122 125 160

Eclipse-ant 380 370 445
JHotDraw 303 320 640

Table 5: Results in clone pairs
Project Name Type-1 clone pairs Type-2 clone pairs Type-3 clone pairs

Java Netbeans-javadoc 190 200 302
Spule 60 68 115
EIRC 116 121 148

Eclipse-ant 360 370 420
JHotDraw 290 301 595

Fig. 2: Clones in eclipse-ant

Fig. 3: Clones in java net beans

8. Conclusion and future work

In this paper, we have proposed an approach to
detect Type-1, 2 and 3 code clones. The proposed
approach quickly detects Type-2 and 3 clones which
normally are not being detected by all the existing
approaches and if they do so, then not as precisely as
the proposed approach.

In this approach we are able to feed only a single
source code file at a time. For future work, we may
apply the detection at the directory level which may
contain multiple numbers of files in it and detects
the clone pairs in them.

References

Baxter ID, Yahin A, Moura L, Sant'Anna M, and Bier L (1998).
Clone detection using abstract syntax trees. In the
International Conference on Software Maintenance, IEEE,
Bethesda, USA: 368-377. https://doi.org/10.1109/ICSM.1998.
738528

Bellon S, Koschke R, Antoniol G, Krinke J, and Merlo E (2007).
Comparison and evaluation of clone detection tools.
Transactions on Software Engineering, 33(9): 577-591.

Kontogiannis KA, DeMori R, Merlo E, Galler M, and Bernstein M
(1996). Pattern matching for clone and concept detection.
Journal of Automated Software Engineering, 3(1–2): 77-108.

Koschke R (2007). Survey of research on software clones. In the
Dagstuhl Seminar on Duplication, Redundancy, and Similarity
in Software, 06301, LZI, Merzig, Germany: 1-24. Available
online at: http://drops.dagstuhl.de/opus/volltexte/2007/962
/pdf/06301.KoschkeRainer.962.pdf

Krinke J (2001). Identifying similar code with program
dependence graphs. In the 8th Working Conference on Reverse
Engineering, IEEE, Stuttgart, Germany: 301-309.
https://doi.org/10.1109/WCRE.2001.957835

Levenshtein A (1966). Binary codes capable of correcting
deletions insertions and reversals. Soviet Physics Doklady,
10(8): 707-710.

Rattan D, Bhatia R, and Singh M (2013). Software clone detection:
A systematic review. Information and Software Technology,
55(7): 1165-1199.

Roy CK, Cordy JR, and Koschke R (2009). Comparison and
evaluation of code clone detection techniques and tools: A
qualitative approach. Science of Computer Programming,
74(7): 470-495.

0

200

400

600

800

1000

1200

1400

NICAD CLAN Proposed

Type-3

Type-2

Type-1

0

100

200

300

400

500

600

700

800

NICAD CLAN PROPOSED

Type-3

Type-2

Tpye-1

	A novel approach in detecting code clones in Java using DFS
	Introduction
	Types of code clones
	Root causes for code clones
	Clone detection methods
	Text based
	Token based
	Syntax tree based
	Graph based
	Metrics based

	Proposed approach
	Results
	Comparison with existing tools
	Conclusion and future work
	References

