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In this article we introduce and study some I-convergent double sequence 
spaces 2𝑆

𝐼
 

(𝑀 ) , 2𝑆0
𝐼

 

(𝑀 ) , 2𝑆∞
𝐼
 

(𝑀 ) with the help of compact operator T 
on the real space ℝ and an Orlicz function M. We study some of its 
topological and algebraic properties and prove some inclusion relations on 
these spaces. 
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1. Introduction 

*Let ℕ, ℝ, ℂ be the sets of all natural, real, and 
complex numbers respectively. We denote 

 

2𝜔 = {𝑥 = (𝑥𝑖𝑗 
) ∶  𝑥𝑖𝑗 

∈  ℝ 𝑜𝑟 ℂ }                              (1.1) 
 

showing the space of all real or complex double 
sequences. 
 
Definition 1.1: Let X and Y be two normed linear 
spaces. An operator  𝑇 ∶  𝑋 →  𝑌 is said to be a 
compact linear operator (or completely continuous 
linear operator), if :(i) T is linear. (ii) T maps every 
bounded sequence (𝑥𝑘) in X onto a sequence T(𝑥𝑘) in 
Y which has a convergent subsequence. 

The set of all compact linear operators 𝐶(X, Y) is a 
closed subspace of ℬ(X, Y) and 𝐶(X, Y) is a Banach 
space if Y is a Banach space. Throughout the paper, 
we denote 2𝑙∞, 2𝑐 and 2𝑐0 as the Banach spaces of 
bounded, convergent, and null double sequences of 
reals respectively with the norm: 
  
║𝑥║ = sup

𝑖,𝑗∈ℕ
𝑥𝑖𝑗 .                                       (1.2) 

 

Following Başar and Altay (2003) and Sengonul 
(2007), we introduce the double sequence spaces 2𝑆 
and 

2𝑆0  with the help of compact operator T on ℝ as 
follows: 
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2𝑆  = {𝑥 = (𝑥𝑖𝑗 
) ∈  2𝑙∞ ∶

  𝑇 (𝑥) ∈  2𝑐} 

2𝑆0   
= {𝑥 = (𝑥𝑖𝑗 

) ∈  2𝑙∞ ∶
  𝑇 (𝑥) ∈  2𝑐0}. 

 
As a generalization of usual convergence, the 

concept of statistical convergent was first introduced 
by Fast (1951) and also independently by Buck 
(1953) and Schoenberg (1959) for real and complex 
sequences. Later on, it was further investigated from 
a sequence space point of view and linked with the 
Summability theory by Šalát (1980) and Tripathy 
(2004). 
 
Definition 1.2: A double sequence 𝑥 = (𝑥𝑖𝑗 

) ∈ 2𝜔 is 
said to be I-convergent to a number L if for every 𝜖 > 
0, we have 
 
{(𝑖, 𝑗)  ∈  ℕ ×  ℕ ∶  |𝑥𝑖𝑗 

−  𝐿|  ≥  𝜖 }  ∈  𝐼.                        (1.3) 
 

In this case, we written 𝐼 − lim
𝑖𝑗

(𝑥𝑖𝑗) = 𝐿. The 

notation of ideal convergence (I-convergence) was 
introduced and studied by Kostyrko et al. (2000, 
2005). Later on, it was studied by Šalát et al. (2004, 
2005), Tripathy and Hazarika (2009, 2011), Khan 
and Ebadullah (2011, 2012, and 2013). Now, we 
recall the following definitions: 

 
Definition 1.3: Let X be a non-empty set. Then, a 
family of sets I ⊆ 2X is said to be an Ideal in X if 
 
1. φ ∈ I; 
2. I is additive; that is, 𝐴, 𝐵 ∈  𝐼 ⇒  𝐴 ∪  𝐵 I ∈ 𝐼; 
3. I is hereditary that is, 𝐴 ∈  𝐼, 𝐵 ⊆  𝐴 ⇒  𝐵 ∈  𝐼. 

 
An Ideal 𝐼 ⊆  2𝑋

 

  is called non trivial if 𝐼 ≠  2𝑋
 . 

A non-trivial ideal 𝐼 ⊆ 2𝑋
  is called admissible if 

{{𝑥} ∶  𝑥 ∈  𝑋}  ⊆  𝐼. 
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A non-trivial ideal I is maximal if there cannot 
exist any non-trivial ideal 𝐽 ≠ 𝐼 containing I as a 
subset. 

 
Definition 1.4: A non-empty family of sets ℱ ⊆  2𝑋

 is 
said to be filter on X if and only if 
 
1. ∅ ∉  ℱ; 
2. For, A, B ∈   ℱ we have 𝐴 ∩  𝐵 ∈  ℱ; 
3. For each A ∈  ℱ and 𝐴 ⊆  𝐵 implies B ∈ ℱ.  

 
For each ideal I, there is a filter 

ℱ (𝐼)  corresponding to I. That is, 
 

ℱ(𝐼) = {𝐾 ⊆ 𝑁 ∶  𝐾
𝑐

 

∈  𝐼}, where 𝐾
𝑐

 

= 𝑁 − 𝐾.     (1.4) 

 
Definition 1.5: A double sequence (𝑥𝑖𝑗 

)  ∈  2𝜔 is 
said to be I - null if L = 0. In this case, we write 
 
𝐼 − lim 𝑥𝑖𝑗 

=  0.                           (1.5) 
 

Definition 1.6: A double sequence (𝑥𝑖𝑗 
) ∈ 2𝜔 is said 

to be I-Cauchy if for every 𝜖 >  0  there exists 
numbers 𝑚 = 𝑚(𝜖), 𝑛 = 𝑛(𝜖) such that 
 
{(𝑖, 𝑗)  ∈  ℕ ×  ℕ ∶  |𝑥𝑖𝑗  

−  𝑥𝑚𝑛|  ≥  𝜖 } ∈  𝐼.                      (1.6) 

 
Definition 1.7: A double sequence (𝑥𝑖𝑗 

)  ∈  2𝜔 is 
said to be I-bounded if there exists M > 0 such that 
 
{(𝑖, 𝑗)  ∈  ℕ ×  ℕ ∶  |𝑥𝑖𝑗 |  >  𝑀 } ∈  𝐼.                             (1.7) 

 
Definition 1.8: A double sequence space E is said to 
be solid or normal if (𝑥𝑖𝑗 

) ∈ 𝐸  implies that 
(𝛼𝑖𝑗𝑥𝑖𝑗 

) ∈ 𝐸 for all sequence of scalars (𝛼𝑖𝑗 
) with 

|𝛼𝑖𝑗|  <  1 for all (i, j) ∈ ℕ × ℕ. 
 

Definition 1.9 A double sequence space E is said to 
be symmetric if (xπ(i,j)) ∈ E whenever (xij ) ∈ E, where 
𝜋(𝑖, 𝑗)  is a permutation on ℕ. 

 
Definition 1.10: A double sequence space E is said 
to be sequence algebra if (𝑥𝑖𝑗. 𝑦𝑖𝑗 

) ∈  𝐸 whenever 
(𝑥𝑖𝑗 

), (𝑦𝑖𝑗 
) ∈  𝐸. 

 
Definition 1.11: A double sequence space E is said 
to be convergence free if (𝑦𝑖𝑗 

) ∈ 𝐸 whenever 
(𝑥𝑖𝑗 

) ∈ 𝐸 and 𝑥𝑖𝑗 
= 0 implies 𝑦𝑖𝑗 

= 0, for all (i, j)∈ 
ℕ × ℕ.  

  
Definition 1.12: Let K = {(𝑛𝑖, 𝑘𝑗 

)  ∶   𝑖, 𝑗 ∈  N;  𝑛1  
<

 𝑛2  
<  𝑛3  

< . . . .  and  𝑘1  
<  𝑘2 

<  𝑘3 
< . . . . }  ⊆

 ℕ ×  ℕ and E be a double sequence space.  A K-step 
space of E is a sequence spaces: 
 
𝜆

𝐾

𝐸 = {(𝛼𝑖𝑗𝑥𝑖𝑗 
) ∶  (𝑥𝑖𝑗 

)  ∈  𝐸 }.  

 
Definition 1.13: A cannonical preimage of a 
sequence (xnikj) ∈ E is a sequence (bnk) ∈ E defined 

as follows: 
 

  𝑏𝑛,𝑘= {  
𝑥𝑛,𝑘          for 𝑛, 𝑘 ∈ 𝐾

0,            otherwise  
 

 

Definition 1.14: A sequence space E is said to be 
monotone if it contains the cannonical preimages of 
all its step spaces. 

 
Definition.1.15: A function 𝑀 ∶  [0, ∞)  →  [0, ∞) is 
said to be an Orlicz function if it satisfies the 
following conditions; 
 
1. M is continuous, convex and non-decreasing, 
2. M (0) = 0, M (x) > 0 and M (x) → ∞ as x → ∞. 

 
Remark: (i) If the convexity of an Orlicz function is 
replaced by𝑀 (𝑥 + 𝑦) ≤ 𝑀 (𝑥) + 𝑀 (𝑦), then this 
function is called Modulus function (Tripathy and 
Hazarika, 2011).  
(ii) If M is an Orlicz function, then 𝑀 (𝜆𝑋) ≤  𝜆𝑀 (𝑥) 
for all λ with 0 < 𝜆 < 1 (Tripathy and Hazarika, 
2011). An Orlicz function M is said to satisfy ∆2-
condition for all values of u if there exists constant 
𝐾 > 0 such that 𝑀 (𝐿𝑢) ≤ 𝐾𝐿𝑀 (𝑢) for all values of L 
> 1 (Tripathy and Hazarika, 2011). 

 
Lindenstrauss and Tzafriri (1971) used the idea 

of an Orlicz function to construct the sequence space 
 

𝑙𝑀 = {𝑥 ∈ 𝜔, ∑ 𝑀 (
𝑥𝑘

𝜌
) < ∞   for some   𝜌 > 0.   

∞

𝑘=1
}  (1.8) 

 

The space l∞ becomes a Banach space with the 
norm  

 

║𝑥║ = inf {𝜌 > 0, ∑ 𝑀 (
|𝑥𝑘|

𝜌
)∞

𝑘=1  ≤ 1},                                (1.9) 

 

which is called an Orlicz sequence space. The space 
lM is closely related to the space lp which is an Orlicz 
sequence space with 𝑀 (𝑡)  =  𝑡𝑝  for 1 ≤  𝑝 <  ∞. 

Later on, some Orlicz sequence spaces were 
investigated by Hazarika and Esi (2013), Maddox 
(1970), Parashar and Choudhary (1994), Bhardwaj 
and Singh (2000), Et (2001), Khan et al. (2016) 
Tripathy and Hazarika (2011), and many others. 

Initially, as a generalization of statistical 
convergence, the notation of I-convergence was 
introduced and studied by Kostyrko et al. (2000). 
Later on, it was studied by Khan and Ebadullah 
(2013), Hazarika and Esi (2013), Šalát et al. (2004, 
2005) and many others. We used the following 
lemmas for establishing some results of this article. 

 
Lemma 1.1: Every solid space is monotone 
(Tripathy and Hazarika, 2011). 
 
Lemma 1.2:  Let F (I) and 𝑀 ⊆  𝑁 .  If 𝑀 ∉
 𝐼, then 𝑀 ∩  𝐾 ∉  𝐼. 
 
Lemma 1.3:  If 𝐼 ⊆ 2𝑁 

and  𝑀 ⊆  𝑁 . If 𝑀 ∉
 𝐼, then 𝑀 ∩  𝑁 ∉  𝐼. 

2. Main results 

In this article, we introduce the following double 
sequence spaces: 
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2𝑆𝐼(𝑀) = {𝑥 = (𝑥𝑖𝑗) ∈ 2𝜔: 𝐼 − lim𝑀 (
|𝑇(𝑥𝑖𝑗)−𝐿|

𝜌
) =

0, for some 𝐿 ∈ ℂ, 𝜌 > 0},                  (2.1) 

 

2𝑆0
𝐼(𝑀) = {𝑥 = (𝑥𝑖𝑗) ∈ 2𝜔: 𝐼 − lim𝑀 (

|𝑇(𝑥𝑖𝑗)|

𝜌
) = 0, 𝜌 >

0},                       (2.2) 

 

2𝑆∞
𝐼 (𝑀) = {𝑥 = (𝑥𝑖𝑗) ∈ 2𝜔: ∃ 𝐾 > 𝑂𝑠. 𝑡. {𝑖, 𝑗 ∈

ℕ: 𝑀 (
|𝑇(𝑥𝑖𝑗)|

𝜌
) ≥ 𝐾, 𝜌 > 0} ∈ 𝐼}                                         (2.3) 

 

2𝑆∞(𝑀) = {𝑥 = (𝑥𝑖𝑗) ∈ 2𝜔: 𝑠𝑢𝑝
𝑖𝑗

𝑀 (
|𝑇 (𝑥𝑖𝑗) |

𝜌 ) < ∞, 𝜌 > 0 ∈ 𝐼}. 

                                 (2.4) 
 
We also denote 
 

2𝑀∞
𝐼 (𝑀) = 2𝑆𝐼(𝑀) ∩ 2𝑆∞(𝑀) and 2𝑀𝑆0

𝐼 (𝑀) = 2𝑆0
𝐼 (𝑀) ∩

2𝑆∞(𝑀). 

 
Theorem 2.1: For any Orlicz function M, the classes 
of double sequence 
 

2𝑆0
𝐼 (𝑀), 2𝑆𝐼(𝑀) , 2𝑀𝑆0

𝐼 (𝑀)and 2𝑀∞
𝐼 (𝑀)  

 
are linear spaces. 

 

Proof: Let 𝑥 = (𝑥𝑖𝑗), (𝒴𝑖𝑗) ∈ 2𝑆𝐼(𝑀) be any two 

arbitrary elements and let 𝛼, 𝛽 be scalars. Now, since 

𝑥 = (𝑥𝑖𝑗 ), (𝑦𝑖𝑗) ∈ 2𝑆𝐼(𝑀) ⇒ ∃ some positive 

numbers L1, L2 ∈ ℂ  𝑎𝑛𝑑  𝜌1, 𝜌2 > 0. Such that 
 

𝐼 − lim
𝑖𝑗

𝑀 (
|𝑇(𝑥𝑖𝑗)−𝐿1|

𝜌1
) = 0,                                                   (2.5) 

 
and 
 

𝐼 − lim
𝑖𝑗

𝑀 (
|𝑇(𝒴𝑖𝑗)−𝐿2|

𝜌2
) = 0.                                                   (2.6) 

 
For any 𝜖 > 𝑜, the sets 
 

𝐴1 = {(𝑖, 𝑗) ∈ ℕ × ℕ: 𝑀 (
|𝑇(𝑥𝑖𝑗)−𝐿1|

𝜌1
) ≥

𝜖

2
∈ 𝐼}                     (2.7) 

and 
 

𝐴2 = {(𝑖, 𝑗) ∈ ℕ × ℕ: 𝑀 (
|𝑇(𝒴𝑖𝑗)−𝐿2|

𝜌2
) ≥

𝜖

2
∈ 𝐼}.                   (2.8) 

 

Let 𝜌3 = 𝑚𝑎𝑥{2|𝛼|𝜌1, 2|𝛽|𝜌2}. Since M is non-
decreasing and convex function, we have  
 

𝑀 (
|𝑇(𝛼𝑥𝑖𝑗+𝛽𝒴𝑖𝑗)−(𝛼𝐿1+𝛽𝐿2)|

𝜌3
) =

𝑀 (
|𝛼𝑇(𝑥𝑖𝑗)+𝛽𝑇(𝒴𝑖𝑗)−𝛼𝐿1−𝛽𝐿2|

𝜌3
) ≤ 𝑀 (

|𝛼||𝑇(𝑥𝑖𝑗)−𝐿1|

𝜌3
) +

𝑀 (
|𝛽||𝑇(𝒴𝑖𝑗)−𝐿2|

𝜌3
) <  𝑀 (

|𝑇(𝑥𝑖𝑗)−𝐿1|

𝜌1
) + 𝑀 (

|𝑇(𝒴𝑖𝑗)−𝐿2|

𝜌2
)        (2.9) 

 

therefore, from (2.7), (2.8) and (2.9), we have 
 

{(𝑖, 𝑗) ∈ ℕ × ℕ: 𝑀 (
|𝑇(𝛼𝑥𝑖𝑗+𝛽𝒴𝑖𝑗)−(𝛼𝐿1+𝛽𝐿2)|

𝜌3
) ≥ 𝜖, } ⊂

(𝐴1⋃𝐴2) ∈ 𝐼  

this implies that 
 

{(𝑖, 𝑗) ∈ ℕ × ℕ: 𝑀 (
|𝑇(𝛼𝑥𝑖𝑗 + 𝛽𝒴𝑖𝑗) − (𝛼𝐿1 + 𝛽𝐿2)|

𝜌3
) ≥ 𝜖, }

∈ 𝐼 

⟹ lim
𝑖𝑗

𝑀 (
|𝑇(𝛼𝑥𝑖𝑗 + 𝛽𝒴𝑖𝑗) − (𝛼𝐿1 + 𝛽𝐿2)|

𝜌3
) = 0 

⟹  𝛼𝑥𝑖𝑗 + 𝛽𝑦𝑖𝑗 ∈ 2𝑆𝐼(𝑀) 

⟹  2𝑆𝐼(𝑀) is linear space and the proof of others 
follow similarly. 

 
Remark: For an Orlicz function M, the spaces 
2𝑀𝑠𝑜

𝐼 (𝑀), 𝑎𝑛𝑑 2𝑀𝑠
𝐼(𝑀) are Banach space normed by  

 

║𝑥║ = 𝑖𝑛𝑓 {𝜌 > 𝑜: sup
𝑖𝑗

𝑀 (
|𝑇(𝑥𝑖𝑗)|

𝜌
) < 1, 𝜌 > 0}. 

 
Theorem 2.2: Let 𝑀1; 𝑀2  be two Orlicz functions 
and satisfying ∆2 condition, then 
 
𝑎) 𝑋(𝑀2) ⊆ 𝑋(𝑀1𝑀2) 

b) 𝑋(𝑀1)⋂𝑋(𝑀2) ⊆ 𝑋(𝑀1 + 𝑀2) for X =
2𝑆𝐼, 2𝑆0

𝐼  , 2𝑀𝑠 
𝐼 (𝑀)and 2𝑀𝑆0

𝐼  

Proof: a) Let  𝑥 = (𝑥𝑖𝑗) ∈ 2𝑆0
𝐼 (𝑀2) be an arbitrary 

element. 𝑇ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝜌 > 0  𝑠. 𝑡 
 

𝐼 −  lim
𝑖𝑗

𝑀2 (
|𝑇(𝑥𝑖𝑗)|

𝜌
) = 0.                                            (2.10) 

 

Let  𝜖 > 0 and choose 0 < 𝛿 < 1 such that 𝑀1(𝑡) <

𝜖 for 0 ≤ 𝑡 ≤ 𝛿. Put 𝒴𝑖𝑗 = 𝑀2 (
|𝑇(𝑥𝑖𝑗)|

𝜌
) and consider, 

 
lim

𝑖𝑗
𝑀1 (𝒴𝑖𝑗) = lim

𝒴𝑖𝑗≤𝛿,𝑖,𝑗∈ℕ
𝑀1 (𝒴𝑖𝑗)  + lim

𝒴𝑖𝑗>𝛿,𝑖,𝑗∈ℕ
𝑀1 (𝒴𝑖𝑗). 

                                        (2.11) 
 

Now, since 𝑀1 is an Orlicz function so we have 
𝑀1(𝜆𝑥) ≤ 𝜆𝑀1(𝑥), 0 < 𝜆 < 1. Therefore we have, 

 
lim

𝒴𝑖𝑗≤𝛿,𝑖,𝑗∈ℕ
𝑀1 (𝒴𝑖𝑗)  ≤ 𝑀1(2) lim

𝒴𝑖𝑗≤𝛿,𝑖,𝑗∈ℕ
𝑀1 (𝒴𝑖𝑗)             (2.12) 

 

for 𝒴𝑖𝑗 > 𝛿, we have 𝒴𝑖𝑗 <
𝒴𝑖𝑗

𝛿
< 1 +

𝒴𝑖𝑗

𝛿
. Now, since 

𝑀1 is non-decreasing and convex, it follows that, 
 

𝑀1(𝒴𝑖𝑗) < 𝑀1(1 +
𝒴𝑖𝑗

𝛿
) <

1

2
𝑀1(2) +

1

2
𝑀1(

2𝒴𝑖𝑗

𝛿
).             (2.13) 

 

Since 𝑀1 satisfies the ∆2- condition we have, 
 

𝑀1(𝒴𝑖𝑗) <
1

2
𝐾(

𝒴𝑖𝑗

𝛿
)𝑀1(2) +

1

2
𝐾𝑀1(

2𝒴𝑖𝑗

𝛿
). <

1

2
𝐾

𝒴𝑖𝑗

𝛿
𝑀1(2) +

1

2
𝐾

𝒴𝑖𝑗

𝛿
𝑀1(2) = 𝐾

𝒴𝑖𝑗

𝛿
𝑀1(2).                                                  (2.14) 

 

This implies that, 
 

 𝑀1(𝒴𝑖𝑗) < 𝐾(
𝒴𝑖𝑗

𝛿
)𝑀1(2)                                          (2.15) 

 
hence, we have 
 

lim
𝒴𝑖𝑗>𝛿,𝑖,𝑗∈ℕ

𝑀1 (𝒴𝑖𝑗)  ≤

max  {1, 𝑘𝛿−1 𝑀1(2) lim
𝒴𝑖𝑗>𝛿,𝑖,𝑗∈ℕ

𝑀1 (𝒴𝑖𝑗)                       (2.16) 
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therefore from (2.10) and (2.11) we have 
 
𝐼 − lim

𝑖𝑗
𝑀1(𝒴𝑖𝑗) = 0   

 ⟹  𝐼 − lim
𝑖𝑗

𝑀1𝑀2(
|𝑇(𝑥𝑖𝑗))|

𝜌
) = 0.  

 

This implies that 𝑥 = (𝑥𝑖𝑗) ∈  2𝑆0
𝐼(𝑀1𝑀2).  Hence 

 𝑋(𝑀2) ⊆ 𝑋(𝑀1𝑀2) for 𝑋 = 2𝑆0
𝐼  The other cases can 

be proved in similar way.  

(b) Let 𝑥 = (𝑥𝑖𝑗) ∈  2𝑆0
𝐼

(𝑀1) ∩ 2𝑆0
𝐼

(𝑀2). Let  𝜖 > 0 be 

given, then ∃ 𝜌 > 0. Such that, 
 
𝐼 − lim

𝑖𝑗
𝑀1 (𝑥𝑖𝑗) = 0                                          (2.17) 

 

and 
 
𝐼 − lim

𝑖𝑗
𝑀2 (𝑥𝑖𝑗) = 0                                    (2.18) 

 

therefore 
 

𝐼 − lim
𝑖𝑗

𝑀1 + 𝑀2(
|𝑇(𝑥𝑖𝑗)|

𝜌
) = 𝐼 − lim

𝑖𝑗
𝑀1 (

|𝑇(𝑥𝑖𝑗)|

𝜌
) + 𝐼 −

lim
𝑖𝑗

𝑀2 (
|𝑇𝑥𝑖𝑗|

𝜌
)  

 

from Eqs. (2.17) and (2.18) 
 

⟹ 𝐼 − lim
𝑖𝑗

(𝑀1 + 𝑀2)(
|𝑇(𝑥𝑖𝑗)|

𝜌
) = 0. 

 

We get 
 
𝑥 = (𝑥𝑖𝑗) ∈  2𝑆0

𝐼(𝑀1+ 𝑀2). 

 

Hence we get 
 
𝑥 = (𝑥𝑖𝑗) ∈  2𝑆0

𝐼 (𝑀1+ 𝑀2). 

 

For 2𝑆𝐼, 2𝑀𝑠 
𝐼 (𝑀)and 2𝑀𝑆0

𝐼  the inclusion are similar. 

 

Corollary: 𝑋 ⊆ 𝑋(𝑀) For X =2𝑆𝐼 , 2𝑆0
𝐼 , 2𝑀𝑠 

𝐼 and 2𝑀𝑆0
𝐼 . 

 
Theorem 2.3: For any Orlicz function M, the spaces 
2𝑆0 

𝐼 (𝑀)and 2𝑀𝑆0
𝐼 (𝑀) are solid and monotone. 

 
Proof: Here we consider 2𝑆0 

𝐼 (𝑀)and for 2𝑀𝑆0
𝐼 (𝑀) 

the proof shall be similar. Let 𝑥 = 𝑥𝑖𝑗 ∈  2𝑆0 
𝐼 (𝑀) be 

an arbitrary element, ⟹ ∃𝜌 > 0 such that 
 

𝐼 − lim
𝑖𝑗

𝑀(
|𝑇(𝑥𝑖𝑗)|

𝜌
) = 0.               (2.19) 

 

Let (𝛼𝑖𝑗) be a sequence of scalars with |𝛼𝑖𝑗| ≤ 1 

for 𝑖. 𝑗 ∈ ℕ. 
Now, M is an Orlicz function and for 𝜖 > 0, the 

results follows from the following inclusion 
 

{(𝑖, 𝑗) ∈ ℕ × ℕ: 𝑀(
|𝑇(𝛼𝑖𝑗𝑥𝑖𝑗)|

𝜌
) ≥ 𝜖} ⊆ {(𝑖, 𝑗) ∈ ℕ ×

ℕ: 𝑀(
|𝑇(𝑥𝑖𝑗)|

𝜌
) ≥ 𝜖. }                                                                  (2.20) 

 

This implies that, 
 

𝐼 − lim
𝑖𝑗

𝑀(
|𝑇(𝛼𝑖𝑗𝑥𝑖𝑗)|

𝜌
) = 0.                     (2.21) 

 
Thus we have  

(𝛼𝑖𝑗𝑥𝑖𝑗) ∈  2𝑆0 
𝐼 (𝑀). 

 
Hence 2𝑆0 

𝐼   is solid. Therefore 2𝑆0 
𝐼 (𝑀) is monotone. 

Since every solid sequence space is monotone. For 
2𝑀𝑆0

𝐼 (𝑀) the proof shall be similar. 

 
Theorem 2.4: For any Orlicz function M, the space 
2𝑆 

𝐼(𝑀) and 2𝑀𝑠
𝐼(𝑀) are neither solid nor monotone 

in general. 
 

Proof: Here we give counter example for 
establishment of this result. Let 𝑥 = 2𝑆 

𝐼and 2𝑀𝑠
𝐼 . Let 

us consider 𝐼 = 𝐼𝛿  and 𝑀(𝑥) = 𝑥2 , for all 𝑥 = 𝑥𝑖𝑗 ∈

[0, ∞) and T an identity operator on ℝ. Consider, the 
K-step space 𝑋𝐾(𝑀) of 𝑋(𝑀) defined as follows: Let 
𝑥 = (𝑥𝑖𝑗) ∈ 𝑋(𝑀) and 𝒴 = (𝒴𝑖𝑗) ∈ 𝑋𝐾(𝑀) be such 

that 
 

(𝒴𝑖𝑗) = {
𝑥𝑖𝑗    ,       if 𝑖 + 𝑗 even,

0      ,           otherwise.
                     (2.22) 

 

Consider the sequence (𝑥𝑖𝑗) defined by (𝑥𝑖𝑗) = 1 

for all 𝑖, 𝑗 ∈ ℕ. Then 𝑥 = (𝑥𝑖𝑗) ∈ 2𝑆 
𝐼(𝑀) and 2𝑀𝑠

𝐼(𝑀), 

but K-step space preimage does not belong to 
2𝑆 

𝐼(𝑀) and 2𝑀𝑠
𝐼(𝑀). Thus 2𝑆 

𝐼(𝑀) and 2𝑀𝑠
𝐼(𝑀) are 

not monotone and hence they are not solid. 
 

Theorem 2.5: For an Orlicz function M and an 
identity operator T on ℝ, the spaces 2𝑆0

𝐼(𝑀) and 
2𝑆 

𝐼(𝑀) are sequence algebra. 
 

Proof: Here we consider 2𝑆0
𝐼(𝑀). Let 𝑥 = (𝑥𝑖𝑗) and 

𝒴 = (𝒴𝑖𝑗) ∈ 2𝑆 
𝐼(𝑀) be any two arbitrary elements. 

𝑇ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝜌1, 𝜌2 > 0 such that, 
 

𝐼 − lim
𝑖𝑗

𝑀(
|𝑇(𝑥𝑖𝑗)|

𝜌1
) = 0.                                                           (2.23) 

 

and 
 

𝐼 − lim
𝑖𝑗

𝑀(
|𝑇(𝒴𝑖𝑗)|

𝜌2
) = 0.                                                           (2.24) 

Let 𝜌 = 𝜌1, 𝜌2 > 0 then 
 

𝑀(
|𝑇(𝑥𝑖𝑗)𝑇(𝒴𝑖𝑗)|

𝜌
) = 𝑀(

|𝑇(𝑥𝑖𝑗)|

𝜌1
) 𝑀(

|𝑇(𝒴𝑖𝑗)|

𝜌2
) ⟹ 𝐼 −

lim
𝑖𝑗

𝑀 (
|𝑇(𝑥𝑖𝑗)𝑇(𝒴𝑖𝑗)|

𝜌
) = 0. 

 
Therefore we have (𝑥𝑖𝑗𝒴𝑖𝑗) ∈  2𝑆0

𝐼(𝑀). Hence 2𝑆0
𝐼(𝑀) 

is sequence algebra. 
 

Theorem 2.6: Let M be an Orlicz function. Then 
 
2𝑆0

𝐼(𝑀) ⊊ 2𝑆 
𝐼(𝑀) ⊊ 2𝑆∞

𝐼 (𝑀). 

 
Proof: Let M be an Orlicz function. Then, we have to 
show that 

 
2𝑆0

𝐼(𝑀) ⊊ 2𝑆 
𝐼(𝑀) ⊊ 2𝑆∞

𝐼 (𝑀). 
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Firstly, 2𝑆0
𝐼(𝑀) ⊊ 2𝑆 

𝐼(𝑀) is obvious. Now, let 𝑥 =
(𝑥𝑖𝑗) ∈ 2𝑆 

𝐼(𝑀) be any arbitrary element ⟹ ∃𝜌 > 0 

such that ⟹ 𝐼 − lim
𝑖𝑗

𝑀 (
|𝑇(𝑥𝑖𝑗) −𝐿|

𝜌
) = 0  for 𝐿 ∈ ℂ.  

Now, 𝑀 (
|𝑇(𝑥𝑖𝑗) |

2𝜌
) ≤

1

2
𝑀 (

|𝑇(𝑥𝑖𝑗) −𝐿|

𝜌
) +

1

2
𝑀 (

|𝐿 |

𝜌
). 

Taking supremum over 𝑖, 𝑗 to both sides, we have 

𝑥 = (𝑥𝑖𝑗) ∈ 2𝑆 
𝐼(𝑀). Thus 

 
2𝑆0

𝐼(𝑀) ⊊ 2𝑆 
𝐼(𝑀) ⊊ 2𝑆∞

𝐼 (𝑀). 

 
Theorem 2.7: The set 2𝑀𝑠

𝐼(𝑀) is closed subspace of 
2𝑆∞

𝐼 (𝑀) . 
 

Proof: Let 𝑥𝑖𝑗
(𝑝𝑞)

 be a cauchy sequence in 2𝑀𝑠
𝐼(𝑀) 

such that 𝑥𝑖𝑗
(𝑝𝑞)

→ 𝑥. We show that 𝑥 = (𝑥𝑖𝑗) ∈

2𝑀𝑠
𝐼(𝑀).Since,𝑥𝑖𝑗

(𝑝𝑞)
∈ 2𝑀𝑠

𝐼(𝑀) the ther exists 𝑎𝑝𝑞, 

and𝜌 > 0 such that 
 

{𝑖, 𝑗 ∈ ℕ: 𝑀 (
|𝑇(𝑥𝑖𝑗

(𝑝𝑞)
)|

𝜌
) ≥ 𝜖} ∈ 𝐼. 

 

We need to show that  
 
1. 𝑎𝑝𝑞, converges to a. 

2. If 𝑈 = {𝑖, 𝑗 ∈ ℕ: 𝑀 (
|𝑇( 𝑥𝑖𝑗)−𝑎|

𝜌
) < 𝛿},  then 𝑈𝑐 ∈ 𝐼. 

 

Since  (𝑥𝑖𝑗
(𝑝𝑞)

) be a Cauchy sequence in 2𝑀𝑠
𝐼(𝑀) the 

for a given 𝜖 > 0 there exists 𝑘0 ∈ ℕ  such that 

sup
𝑖𝑗

𝑀(
|𝑇(𝑥𝑖𝑗

(𝑝𝑞)
)−𝑇(𝑥𝑖𝑗

(𝑟𝑠)
)|

𝜌
) <

𝜖

3
, for all 𝑝, 𝑞, 𝑟, 𝑠 ≥ 𝑘0. For 

a given 𝜖 > 0, we have 
 

𝐵𝑝𝑞𝑟𝑠 = {𝑖, 𝑗 ∈ ℕ: (
|𝑇(𝑥𝑖𝑗

(𝑝𝑞)
)−𝑇(𝑥𝑖𝑗

(𝑟𝑠)
)|

𝜌
) <

𝜖

3
},  

𝐵𝑝𝑞 = {𝑖, 𝑗 ∈ ℕ: (
|𝑇(𝑥𝑖𝑗

(𝑝𝑞)
)−𝑎𝑝𝑞|

𝜌
) <

𝜖

3
},   

𝐵𝑟𝑠 = {𝑖, 𝑗 ∈ ℕ: (
|𝑇(𝑥𝑖𝑗

(𝑟𝑠)
)−𝑎𝑟𝑠|

𝜌
) <

𝜖

3
}.  

 

Then 𝐵𝑝𝑞𝑟𝑠
𝑐 , 𝐵𝑝𝑞

𝑐 , 𝐵𝑟𝑠
𝑐 ∈ 𝐼. Let 𝐵𝐶 = 𝐵𝑝𝑞𝑟𝑠

𝑐 ⋂𝐵𝑝𝑞
𝑐 ⋂𝐵𝑟𝑠

𝑐 , 

where 𝐵 = {𝑖, 𝑗 ∈ ℕ: 𝑀(
|𝑎𝑝𝑞−𝑎𝑟𝑠|

𝜌
) < 𝜖}, then 𝐵𝐶 ∈ 𝐼. 

We choose 𝑘0 ∈ 𝐵𝐶 , then for each 𝑝, 𝑞, 𝑟, 𝑠 ≥ 𝑘0 we 
have 
 

𝐵 = {𝑖, 𝑗 ∈ ℕ: 𝑀 (
|𝑎𝑝𝑞−𝑎𝑟𝑠|

𝜌
) < 𝜖}  ⊇ [{𝑖, 𝑗 ∈

ℕ: 𝑀(
|𝑇(𝑥𝑖𝑗

(𝑝𝑞)
)−𝑎𝑝𝑞|

𝜌
) <

𝜖

3
) }  ∩ {𝑖, 𝑗 ∈ ℕ: 𝑀(

|𝑇(𝑥𝑖𝑗
(𝑝𝑞)

)−𝑇(𝑥𝑖𝑗
(𝑟𝑠)

)|

𝜌
<

𝜖

3
)}  ∩ {𝑖, 𝑗 ∈ ℕ: 𝑀(

|𝑇(𝑥𝑖𝑗
(𝑟𝑠)

)−𝑎𝑟𝑠|

𝜌
) <

𝜖

3
) }]  

 

Then (𝑎𝑝𝑞) is a Cauchy sequence in ℂ. So, there 

exists a scalar 𝑎 ∈ ℂ such that 
 

(𝑎𝑝𝑞) → 𝑎 as 𝑝, 𝑞 → ∞. 

 
For the next step, let 0 < 𝛿 < 1  be given. Then, 

we show that if, 
 

𝑈 = {𝑖, 𝑗 ∈ ℕ: 𝑀(
|𝑇(𝑥𝑖𝑗) − 𝑎|

𝜌
) < 𝛿} 

 

then 𝑈𝑐 ∈ 𝐼. Since 𝑥𝑖𝑗
(𝑝𝑞)

→ 𝑥, then there exists 

𝑝0, 𝑞0 ∈  ℕ such that, 
 

𝑃 = {𝑖, 𝑗 ∈ ℕ: 𝑀(
|𝑇 (𝑥𝑖𝑗

(𝑝0𝑞0)
) − 𝑇(𝑥)|

𝜌
) <

𝛿

3
} ⟹ 𝑃𝐶 ∈ 𝐼. 

 
The numbers 𝑝0, 𝑞0 be so chosen such that we have 
 

𝑄 = {𝑖, 𝑗 ∈ ℕ: 𝑀(
|𝑎𝑝0𝑞0

− 𝑎|

𝜌
) <

𝛿

3
} 

 

such that 𝑄𝐶 ∈ 𝐼. Since (𝑥𝑖𝑗
(𝑝𝑞)

) ∈  2𝑀𝑠
𝐼(𝑀). 

We have  
 

{𝑖, 𝑗 ∈ ℕ: 𝑀(
|𝑇 (𝑥𝑖𝑗

(𝑝0𝑞0)
) − 𝑎𝑝0𝑞𝑜

|

𝜌
) ≥ 𝛿} 

 

then we have a subset S of ℕ such that 𝑆𝐶 ∈ 𝐼, where 
 

𝑆 = {𝑖, 𝑗 ∈ ℕ: 𝑀(
|𝑇 (𝑥𝑖𝑗

(𝑝0𝑞0)
) − 𝑎𝑝0𝑞0

|

𝜌
) <

𝛿

3
}.  

 
Let 𝑈𝐶 = 𝑃𝐶 ∪ 𝑄𝐶 ∪ 𝑆𝐶 , where 

 

𝑈 = {𝑖, 𝑗 ∈ ℕ: 𝑀(
|𝑇(𝑥) − 𝑎|

𝜌
) < 𝛿}. 

 

Therefore, for each 𝑖, 𝑗 ∈ 𝑈𝐶 , we have 
 

{𝑖, 𝑗 ∈ ℕ: 𝑀(
|𝑇(𝑥)−𝑎|

𝜌
) < 𝛿 ⊇ [{𝑖, 𝑗 ∈ ℕ: 𝑀(

|𝑇(𝑥𝑖𝑗

(𝑝0𝑞0)
)−𝑇(𝑥)|

𝜌
) <

𝛿

3
} ∩ {𝑖, 𝑗 ∈ ℕ: 𝑀

|𝑎𝑝0𝑞𝑜−𝑎|

𝜌
) <

𝛿

3
} ∩ {𝑖, 𝑗 ∈

ℕ: 𝑀(
|𝑇(𝑥𝑖𝑗

(𝑝0𝑞0)
)−𝑎𝑝0𝑞𝑜|

𝜌
) <

𝛿

3
}.  

 

Hence the result 2𝑀𝑠
𝐼(𝑀) ⊂ 2𝑆∞

𝐼 (𝑀) follows. 

3. Conclusion 

In this paper we have studied a more general 
type of convergence for double sequences, that is I-
Convergence as well as I-Cauchy in a more general 
setting i.e. compact operator is used to defined I-
convergence for double sequence space. These 
spaces and results provide new tools to deal with the 
convergence problems of double sequences 
occurring in many branches of science and 
engineering. 

Acknowledgement 

The authors would like to record their gratitude 
to the reviewer for his careful reading and making 
some useful corrections which improved the 
presentation of the paper. 

 



Khan et al/ International Journal of Advanced and Applied Sciences, 4(4) 2017, Pages: 43-48 

48 

References 

Başar F and Altay B (2003). On the space of sequences of p-
bounded variation and related matrix mappings. Ukrainian 
Mathematical Journal, 55(1): 136-147. 

Bhardwaj V and Singh N (2000). Some sequence spaces defined by 
Orlicz functions. Demonstratio Mathematica. Warsaw 
Technical University Institute of Mathematics, 33(3): 571-582. 

Buck RC (1953). Generalized asymptotic density. American 
Journal of Mathematics, 75(2): 335-346. 

Et M (2001). On some new Orlicz spaces. Journal of Analysis, 9: 
21–28. 

Fast H (1951). Sur la convergence statistique. In Colloquium 
Mathematicae, 2(3-4): 241-244. 

Hazarika B and Esi A (2013). Some I-convergent generalized 
difference lacunary double sequence spaces defined by Orlicz 
function. Acta Scientiarum. Technology 35(3): 527–537. 

Khan VA and Ebadullah K (2011). On some I-Convergent sequence 
spaces defined by a modulus function. Theory and 
Applications of Mathematics and Computer Science, 1(2): 22-
30. 

Khan VA and Ebadullah K (2013). Zweier I-convergent sequence 
spaces defined by Orlicz function. Analysis, 33(3): 251-261. 

Khan VA, Ebadullah K, and Suantai S (2012). On a new I-
convergent sequence space. Analysis International 
Mathematical Journal of Analysis and Its Applications, 32(3): 
199-208.

Khan VA, Shafiq M, Rababah RKA, and Esi A (2016). On some I-
convergent sequence spaces defined by a compact operator. 
Annals of the University of Craiova-Mathematics and 
Computer Science Series, 43(2): 141-150. 

Kostyrko P, Ma˘caj M, Sˇala´t T, and Silezaik M (2005). I-
convergence and extremal I-limits points. Mathematica 
Slovaca, 55(4): 443-464. 

Kostyrko P, Wilczyński W, and Šalát T (2000). I-convergence. Real 
Analysis Exchange, 26(2): 669-686. 

Lindenstrauss J and Tzafriri L (1971). On Orlicz sequence spaces. 
Israel Journal of Mathematics, 10(3): 379-390. 

Maddox IJ (1970). Elements of functional analysis. Cambridge at 
the University Press, Cambridge, UK. 

Parashar SD and Choudhary B (1994). Sequence spaces defined by 
Orlicz functions. Indian Journal of Pure and Applied 
Mathematics, 25: 419-419. 

Šalát T (1980). On statistically convergent sequences of real 
numbers. Mathematica Slovaca, 30(2): 139-150. 

Šalát T, Tripathy BC, and Ziman M (2004). On some properties of 
I-convergence. Italian Journal of Pure and Applied 
Mathematics, 28(2): 274-286. 

Šalát T, Tripathy BC, and Ziman M (2005). On I-convergence field. 
Italian Journal of Pure and Applied Mathematics, 17(5): 1-8 

Schoenberg IJ (1959). The integrability of certain functions and 
related summability methods. The American Mathematical 
Monthly, 66(5): 361-375. 

Sengonul M (2007). On the Zweier sequence space. Demonstratio 
Mathematica. Warsaw Technical University Institute of 
Mathematics, 40(1): 181-196. 

Tripathy BC (2004). On generalized difference paranormed 
statistically convergent sequences. Indian Journal of Pure and 
Applied Mathematics, 35(5): 655-664. 

Tripathy BC and Hazarika B (2009). Paranorm I-convergent 
sequence spaces. Mathematica Slovaca, 59(4): 485-494. 

Tripathy BC and Hazarika B (2011). Some I-convergent sequence 
spaces defined by Orlicz functions. Acta Mathematicae 
Applicatae Sinica, English Series, 27(1): 149-154. 

https://www.google.it/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwic58azkZHSAhXMCMAKHaKnDg0QFggaMAA&url=http%3A%2F%2Fijpam.uniud.it%2Fjournal%2Fhome.html&usg=AFQjCNFuRQsOCIsitMlVlCfIXrPi8KSJcw&bvm=bv.146786187,d.bGg

	On some new i-convergent double sequence spaces defined by a compactoperator
	Introduction
	Main results
	Conclusion
	Acknowledgement
	References


