
International Journal of Advanced and Applied Sciences, 4(12) 2017, Pages: 94-99

Contents lists available at Science-Gate

International Journal of Advanced and Applied Sciences
Journal homepage: http://www.science-gate.com/IJAAS.html

94

Load-balanced parallel architectures for 2-D water quality model
PARATUNA-WQ on OpenMP

Wai Kiat Tan 1, 2, *, Hock Lye Koh 1, Su Yean Teh 2

1School of Mathematical Sciences, Sunway University, Jalan Universiti, Bandar Sunway, 47500 Selangor, Malaysia
2School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
3Jeffrey Sachs Center on Sustainable Development (JSC), Sunway University, Jalan Universiti, 47500 Bandar Sunway, Selangor,
Malaysia

A R T I C L E I N F O A B S T R A C T

Article history:
Received 15 March 2017
Received in revised form
10 August 2017
Accepted 15 September 2017

Because of the potential speedup, parallel algorithms have recently been
developed for improving serial applications in ocean and coastal
hydrodynamics and water quality simulations. Developing a parallel
program, however, is a difficult task that requires special and expensive
processing resources. Motivated by the potential benefits of parallelization,
this paper develops a load-balanced parallel architecture on OpenMP to
improve on an in-house serial two-dimensional water quality simulation
model to a parallel application named PARATUNA-WQ. Analysis of the
performance of speedup is discussed to justify the use of parallel architecture
in water quality simulation model. Speedup achieved by PARATUNA-WQ is
close to the maximum theoretical speedup predicted by the Amdahl Law.
Further enhancement for application to very large computational domain
consisting of 25 million computational nodes is possible by integrating MPI
architecture into the framework of OpenMP, the result of which will be
reported in a subsequent paper.

Keywords:
PARATUNA-WQ
Water quality simulation model
Environmental sustainability
OpenMP
High performance computing

© 2017 The Authors. Published by IASE. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

*Because of the potential speedup, parallel
algorithms have recently been developed for
improving serial applications in ocean and coastal
hydrodynamics and water quality simulations.
Writing a parallel program is a difficult task that
requires special and expensive processing resources.
Motivated by the potential benefit of parallelization,
this paper develops a load-balanced parallel
application named PARATUNA-WQ on OpenMP to
improve on an in-house serial two-dimensional
water quality simulation model TUNA-WQ. Fast
urban development along coastal regions worldwide
to accommodate growing populations has led to
increasingly severe pollution in the coastal water. An
example would be the Mekong River and its Delta,
flowing for some 4000 km from the head water in
Tibet to the estuary in Ho Chi Minh City.
Enhancement of water quality in the Mekong could
benefit from fruitful research in robust mathematical

* Corresponding Author.
Email Address: waikiatt@sunway.edu.my (W. K. Tan)
https://doi.org/10.21833/ijaas.2017.012.019
2313-626X/© 2017 The Authors. Published by IASE.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

simulation models. These models are useful for
assessing the cost-effectiveness of competing
treatment technology and control measures. Such
mathematical model simulations lead to the spatial-
temporal distributions of selected key water quality
parameters to permit optimal choice of management
options. We have earlier developed a serial water
quality simulation model code-named TUNA-WQ to
simulate the hydrodynamics and pollutant transport
in offshore, coastal and estuarine systems based
upon serial architectures (Chong et al., 2016). The
main code TUNA is designed to simulate the two-
dimensional vertically integrated hydrodynamic
flows subject to tidal influence, initial and boundary
conditions. Other forcing terms include an abrupt
vertical uplift of ocean seabed that generates a
tsunami (Koh et al., 2009; Teh et al., 2009). For
realistic and accurate simulation of tsunami, it is
essential to consider large computational domains
with high spatial resolutions in the near shore
coastal regions. This requirement gives rise to a
scenario with a large number of computational
nodes, frequently exceeding 10 million nodes,
resulting in long computational time in excess of
hours or even days. Hence, it is necessary to speed
up the computational time in order to render the
model robust. One approach is to utilize the power of

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:waikiatt@sunway.edu.my
https://doi.org/10.21833/ijaas.2017.012.019
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2017.012.019&domain=pdf&

Tan et al/ International Journal of Advanced and Applied Sciences, 4(12) 2017, Pages: 94-99

95

parallel architecture involving simultaneous run of
many processors. Similarly, the modelling of
transport of pollutants with long half-life such as
radioactive isotopes transported over a large oceanic
space would require long computational time.
Likewise, simulation of the aquatic ecosystems in the
Mekong over the annual cycles would require
several days of runtime. Parallel architecture may be
used to speed up the computing time. In parallel
computing, it is essential to provide an evenly
distributed load balance of computational tasks
among the participating processors (Dongarra et al.,
2003; Liu and Liu, 2003). Good load balancing and
effective traffic control are the keys to efficient
parallelization (Wang et al., 2012). In the following
section, we provide a brief overview of
parallelization of four serial water quality simulation
models for improving their performance.

2. Overview of parallelization

Firstly, TELEMAC is an integrated modelling suite
for simulating offshore, coastal and estuarine
systems, subject to free-surface flows, including
flooding and drying processes. It has been
undergoing continuous enhancement by the French
EDF for the past 20 years. The TELEMAC suite
includes (a) TELEMAC-2D for solving the depth-
integrated shallow water equations to simulate the
coastal environment when the horizontal length
scale of the flow is greater than the vertical scale,
and (b) TELEMAC-3D where the full Navier–Stokes
equations are solved (Hervouet, 2007).

TELEMAC-2D has been used for simulating tidal
currents off the coast of Brittany in France in the
vicinity of a renewable energy marine turbine farm
to estimate available energy. TELEMAC-3D has been
used for assessing the effects of fresh water
discharges on the salinity distribution in a coastal
lagoon Berre Lagoon in southern France (Moulinec
et al., 2011).

The authors implemented parallel architecture on
the original serial TELEMAC codes to optimize
performance made available by High Performance
Computing (HPC) on several high-end platforms.
Secondly, a parallel numerical simulation model
CONDIFP was developed for the analysis of depth-
averaged convection–diffusion problems on the
Caltech Center for Advanced Computing Research
Intel Touchstone Delta System, using up to 512
computational processors with an aggregate peak
speed of 38.4 gigaflops and 19.5 gigabytes of
memory. The original serial CONDIFP encountered
the problem with uneven load distributions (Pirozzi,
1997).

A subsequent parallel improvement overcomes
this uneven load allocation problem implemented on
the Intel Paragon XP/S Model L38 Platform to
illustrate the parallel versatility and reliability
(Pirozzi and Zicarelli, 2000). Thirdly, a serial
estuarine hydrodynamic and sediment transport
model has been parallelized by Message Passing
Interface (MPI) method based on domain

decomposition techniques on IBM/SP2 machine
using High Performance Fortran HPF FORTRAN 90
code and applied to study tidal currents and
sediment transports in the Belgian coast (Yu et al.,
1998). Fourthly, MPI method based on domain
decomposition techniques has also been used to
parallelize serial estuarine hydrodynamic and
sediment transport model SW2D code. The parallel
model PARSW2D is applied to analyze tidal currents
and sediment transports in the estuary and offshore
area of Zhejiang in China with good performance,
reducing computational time by a factor of 30 to less
than one day of computation time for simulation of
annual sediment transport by tidal currents
(Wenlong et al., 2014). Other achievements have
been reported in the parallelization of two-
dimensional shallow water depth-integrated
hydrodynamic and sediment transport model (Wang
and Zhang 2009; Yang and Cai, 2011).

3. Serial TUNA-WQ

TUNA-WQ is a serial two dimensional vertically-
integrated water quality model that simulates tidal
dynamics and pollutant transport to study the
ecological and water quality scenarios in an aquatic
environment. TUNA-WQ consists of two modules,
namely hydrodynamics model TUNA and transport
model WQ. The TUNA module solves the two-
dimensional shallow water equations, as shown in
Eqs. 1-3, using an explicit staggered finite difference
method, while WQ module solves the transport
equation, as shown in Eq. 4.

𝜕𝜂

𝜕𝑡
+ 𝐻

𝜕𝑈

𝜕𝑥
+ 𝐻

𝜕𝑉

𝜕𝑦
= 0 (1)

𝜕𝑈

𝜕𝑡
+𝐻

𝜕(𝑈2)

𝜕𝑥
+ 𝐻

𝜕(𝑈𝑉)

𝜕𝑦
+ 𝑔

𝜕𝜂

𝜕𝑥
+

𝑔𝑛2

𝐻4 3⁄ 𝑈√𝑈
2 + 𝑉2 = 0 (2)

𝜕𝑉

𝜕𝑡
+ 𝐻

𝜕(𝑉2)

𝜕𝑦
+ 𝐻

𝜕(𝑈𝑉)

𝜕𝑥
+ 𝑔

𝜕𝜂

𝜕𝑦
+

𝑔𝑛2

𝐻4 3⁄
𝑉√𝑈2 + 𝑉2 = 0 (3)

𝜕𝑆

𝜕𝑡
= 𝐸𝑥

𝜕2𝑆

𝜕𝑥2
+ 𝐸𝑦 −

𝜕2𝑆

𝜕𝑦2
− 𝑈

𝜕𝑆

𝜕𝑥
− 𝑉

𝜕𝑆

𝜕𝑦
− 𝛼𝑆 +𝑊 (4)

Here, η (m) is water elevation above mean sea

level, H (m) is mean water depth, U (m/s) and V
(m/s) are velocity components in x- and y-
directions, g (m/s2) is gravitational acceleration, n
(s/m1/3) is Manning’s friction coefficient, S (kg/m3) is
concentration of a substance, Ex (m2/s) and Ey (m2/s)
are dispersions in x- and y- directions, α (s-1) is decay
rate of the substance and W (kg/s) is loading rate.

TUNA-WQ was originally developed with Fortran
77, but upgraded to Fortran 90 with its pseudocode
displayed in Fig. 1. Upon execution, an input file is
required to initialize constant parameters and loop
controls with user defined values. This is followed by
dynamic allocations of array for all dependent
variables to setup the computational domain (i.e.
number of computational nodes). The simulation
will then begin, after computing the initial
conditions, up to a user defined number of iterations
N. In each iteration, η in Eq. 1 is first computed using
the U and V from the previous iteration. After
computing the boundary conditions, Eqs. 2 and 3 are
solved by using the η computed from the current

Tan et al/ International Journal of Advanced and Applied Sciences, 4(12) 2017, Pages: 94-99

96

iteration. Eq. 4 is then solved for S using the U and V
computed from the current iteration. At the end of
every iteration, outputs such as concentration and
velocity field can be stored at a user defined interval.

Fig. 1: Pseudocode of TUNA-WQ

4. Runtime analysis of serial TUNA-WQ

We first present the computational runtime
analysis for the serial TUNA-WQ. For this purpose, a
computational domain consisting of a channel with
dimension of 20 km by 10 km in x- and y- directions
respectively and a mean water depth of 10 m chosen.
A tidal wave of amplitude of 1.0 m and wave period
of 12.42 hours flowing in west-east direction in the
open channel is simulated with a substance being
released at the center of the domain. The simulation
setup is summarized in Table 1.

Table 1: Computational domain and simulation setup

Nodes ∆x ∆t Iteration N T = N × ∆t
201×101 100 m 1 s 172800 48 hours

TUNA-WQ is compiled using Intel Visual Fortran
(IVF) Compiler 16.0 and the simulation is performed
in Windows 10 Pro with Intel Core i5-4460
Processor (6M Cache, 3.2 GHz). The total runtime for
this simulation is 43.875 s. Three simulation
snapshots of concentration and velocity field at time
t = 38, 41 and 44 hours are displayed in Fig. 2.

In addition, an application of software
performance analysis, namely Intel VTune Amplifier,
is utilized to perform a profiling on TUNA-WQ
simulation to investigate time spent in each
computational subroutine. In this simulation, the
computation of transport Eq. 4 is the most time-
consuming component, taking up 48.02% of the total
runtime. This is followed by the computations of Eqs.
2 and 3, taking up 20.63% and 19.48% of the total
runtime, respectively, as displayed in Fig. 3. On the
other hand, the computations of boundary
conditions and substance release have the least

impact among the computational subroutines. Note
that, the sum of time spent in computational
subroutine shown in Fig. 3 is 99.31%, whereas the
remaining 0.69% of total runtime is taken up by
other subroutines.

Fig. 2: TUNA-WQ simulation snapshots

Fig. 3: Time spent in TUNA-WQ computational

subroutines

5. OpenMP parallelization in PARATUNA-WQ

In this section, we parallelize the computational
subroutines in TUNA-WQ by means of OpenMP
(Open Multi-Processing) implementation. OpenMP is
an implementation of multi-threading, a method of
parallelization whereby a master thread (with
thread ID 0) forks out a specified number of slave
threads (with thread ID > 0) and divides a task
allocation among them. The threads, including
master and slave, then run concurrently within a
parallel region. Upon exiting the parallel region, all
slave threads will join back into the master thread,
resulting in serial process to continue until the end
of the program.

The profiling results for TUNA-WQ previously
obtained via VTune Amplifier indicated that the
computation subroutines within the loop of
ITERATION < N takes up 99.31% of runtime.
Therefore, we construct a parallel region to

10.71

0.14

20.63 19.48

0.33

48.02

0

10

20

30

40

50

60

Eq. (1) BC Eq. (2) Eq. (3) SR Eq. (4)

T
im

e
sp

en
t

(%
)

Computation

Eq. - Equation
BC - Boundary condition
SR - Substance release

Tan et al/ International Journal of Advanced and Applied Sciences, 4(12) 2017, Pages: 94-99

97

accommodate the loop using !$OMP PARALLEL
directive with data attribute clauses default, shared
and private, as displayed in Fig. 4. The clause default
(none) is used to ensure that each variable in the
parallel region is declared using either shared or
private clause for careful implementation. In
PARATUNA-WQ, all dynamic allocated array
variables and constant parameters are declared as
shared, allowing the data to be visible and accessible
by all threads simultaneously. On the other hand, all
dummy variables, loop counters and dummy loop
counters are declared as private, allowing each
thread to have a local copy and later use it in !$OMP
DO SCHEDULE directive. Note that, a subroutine
CPU_TIME() and OpenMP runtime subroutine
OMP_GET_WTIME() are called before and after the
execution of parallel region to record the elapsed
CPUs time and elapsed wall clock time for
investigating the performance of parallelized
PARATUNA-WQ.

Fig. 4: Implementation of OpenMP directives in TUNA-WQ

To parallelize the computations within the loop of

ITERATION < N, the !$OMP DO SCHEDULE directive
is implemented on the computations of Eqs. 1-4. The
directive !$OMP DO SCHEDULE is a work-sharing
construct that ‘chops’ the number of iterations in
chunk and later assigns the chunk to threads
according to the defined scheduling clause. In this
parallelization of PARATUNQ-WQ, the dynamic
scheduling clause is implemented. In dynamic
scheduling clause, the number of iterations is
‘chopped’ using a specified integer of chunk which is
assigned to each thread. Once a particular thread
finishes its chunk, it returns to get another chunk
from the loop that is left. In this paper, chunk = 10 is
used in dynamic scheduling clause. Furthermore,
!$OMP SINGLE directive is implemented in the

computations of boundary conditions and substance
release, because these computational subroutines do
not consume much simulation runtime.

The simulation described above is repeated for
five times using both serial and parallel TUNA-WQ to
compare the total runtime, as summarized in Table
2. The parallel implementation of OpenMP in
PARATUNA-WQ reduces the runtime from 43.8587 s
in TUNA-WQ to 18.6556 s in PARATUNA-WQ,
resulting in a speedup factor of 2.35, with four CPUs.
In addition, Intel VTune Amplifier is utilized to
monitor the number of CPUs simultaneously utilized
throughout the simulation. As observed in Fig. 5, the
parallel process (more than 1 active CPUs) in TUNA-
WQ takes up 12.49 s, while the serial process (1
active CPU) takes up 4.49 s, indicating 67% of the
simulation runtime is taken up in parallel process.

Table 2: Comparison of total runtime between serial

TUNA-WQ and parallel PARATUNA-WQ

Simulation
Total runtime (s)

Speedup (Ts/
Tp)

TUNA-WQ
(Ts)

PARATUNA-
WQ (Tp)

1 43.8750 18.7292 2.34
2 43.9062 18.8110 2.33
3 43.5906 18.8011 2.32
4 44.0625 18.4854 2.38
5 43.8594 18.4511 2.38

Average 43.8587 18.6556 2.35

Fig. 5: Number of CPUs simultaneously utilized

6. Amdahl law

Amdahl’s law states that the maximum speed up
in parallelizing a serial algorithm is limited
asymptotically by the serial fraction f of the code, as
given in Eq. 5, in which m is the number of
processors (Kathavate and Srinath, 2014). The serial
fraction f of the code is the component that is not
possible to parallelize. With increasing values of m,
theoretical speedup reaches the limiting asymptotic
value of 1/f. For OpenMP PARATUNA-WQ, f is
approximately 0.2, implying the limiting theoretical
speedup of 5.0 when m becomes very large. In
OpenMP implementation of PARATUNA-WQ, m is 4,
giving theoretical speedup = 2.5, compared to the
actual speedup of 2.35. A higher theoretical speedup
of 4 can be obtained with 16 processors. Further
increase in speedup is no longer significant beyond
16 processors. It should be noted that Amdahl’s law
assumes that the percentage of serial code f is
independent of the problem size, which is not
necessarily true, as overhead and synchronization
tends to decrease with increasing computational

1.68

4.49

3.62

4.55 4.32

0

1

2

3

4

5

6

0 1 2 3 4

E
la

p
se

d
 t

im
e

(s
)

Number of CPUs simultaneously utilized

Tan et al/ International Journal of Advanced and Applied Sciences, 4(12) 2017, Pages: 94-99

98

nodes. Hence, the fraction f of time spent on
executing serial code decreases with increase in
problem size, for example increase in number of
computational nodes (Padua, 2011). With very large
number of computational nodes, the theoretical
speedup is given by Eq. 6, known as the Gustafson
Law. Fig. 6 display the theoretical speedup given by
the Amdahl Law as a function of m, with three
different values of f. Fig. 7 shows the comparison of
speedup predicted by the Amdahl Law and Gustafson
Law, indicating significant deviation between the
two theoretical estimates.

𝑠𝑝𝑒𝑒𝑑𝑢𝑝𝐴𝑚𝑑𝑎ℎ𝑙 =
1

𝑓+(1−𝑓) 𝑚⁄
 (5)

𝑠𝑝𝑒𝑒𝑑𝑢𝑝𝐺𝑢𝑠𝑡𝑎𝑓𝑠𝑜𝑛 = 𝑚 − 𝑓(𝑚 − 1) (6)

Fig. 6: Amdahl law

Fig. 7: Gustafson law versus Amdahl law for f = 0.2

7. Discussions

Running the MPI applications with several MPI
processes but using only one single processor
machine gives a good pre-indication about the
speedup behavior of MPI applications, before
running them on real powerful cluster machines or
on an expensive parallel system. This approach was
applied to reasonably predict the speedup of MPI
applications that solve the wave equation and prime
numbers generator problems using multiple physical
processors (El-Nashar, 2011). In an upcoming paper,
we will report our research findings on the
performance of PARATUNA-RP that is used to
simulate tsunami run-up heights and inundation
distances along coastal beaches. PARATUNA-RP
parallel architecture is based upon integrating MPI
architecture into the framework of OpenMP.
Parallelizing serial applications requires dedicated
and expensive processing resources, prompting a
debate between the overhead cost of parallelization
and the benefit of speedup. The nature of the
problem (for example the size of computational

domain) is one of the most important factors that
affect the parallel speedup. If the problem can be
divided into independent subdomains with minimal
communication-other than to split up the domain
and to combine the final results-then this is a great
parallelization opportunity, with the parallel
applications exhibiting an almost linear speed up
(Padua, 2011).

Parallel applications on the OpenMP
programming platform has been shown to achieve
significant speedup compared to the serial
algorithm. For example, the parallel algorithm for
the simple matrix multiplication on the OpenMP
performs better than the sequential algorithm, with
a maximum speedup of 1.96 achieved with only two
processors, which is almost equal to the theoretical
speedup of 2.00 with m = 2 and f = 0.0, by the
Amdahl Law. However, the improvement in
performance gained by the use of multi-processors
depends very much on the algorithms used and their
implementation. In particular, possible gains are
limited by the fraction f of the algorithm that can be
run in parallel simultaneously on multi-processors,
an effect that is described by the Amdahl's law
(Kathavate and Srinath, 2014). The parallelized
application using OpenMP can further be fine-tuned
and improved by reducing the value of f using the
facilities provided by the Intel Vtune Amplifier tool.
The parallel algorithms using OpenMP interface has
been used for computing the solution of dense
system of linear equations, for computing the value
of Pi and for analyzing the speedup of parallel
algorithms on multi-processor system. The
numerical experiments show that the parallel
algorithms achieve good performance in terms of
speedup compared to the serial application (Sharma
and Gupta, 2012).

8. Conclusion

This paper has presented a successful parallel
implementation of a two dimensional vertically-
integrated water quality application PARATUNA-WQ
on OpenMP. It is noted that the value of f will
decrease and the speedup will increase with
increasing size of computational domain. Hence
parallelization of serial tsunami model TUNA on
large computational domain will achieve speedup
closer to the theoretical speedup if many multi-
processors are used. As noted earlier, an optimal
number of processors should be around 16, in which
case the speedup is close to the asymptotic upper
bound given by 1/f.

The next upcoming paper will address the
implementation of parallel algorithm on existing
serial TUNA, with the hope of achieving a speedup of
at least 10. With a computational domain consisting
of 25 million nodes, existing serial TUNA took 7 days
runtime. The parallel PARATUNA, however, will take
less than one day of runtime to simulate. We hope to
implement PARATUNA-WQ for studying the Mekong
aquatic ecosystems in the future.

0

2

4

6

8

10

0 20 40 60 80 100 120 140

Sp
ee

d
u

p

Number of processors, m

f = 0.1

f = 0.2

f = 0.3

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35

Sp
ee

d
u

p

Number of processors, m

Gustafson's lawf = 0.2

Amdalh's law

Tan et al/ International Journal of Advanced and Applied Sciences, 4(12) 2017, Pages: 94-99

99

Acknowledgment

TWK and TSY thank the International Centre for
Theoretical Physics (ICTP) in Trieste, Italy for
fellowships to participate in several high
performance computing (HPC) Workshops, Schools
and Symposiums. Financial support provided by
Grant #203/PMATHS/6730101 is gratefully
acknowledged. TWK and KHL thank Sunway
University Business School for supporting this
research publication.

References

Chong MSL, Teh SY, and Koh HL (2016). TUNA-WQ simulation of
suspended sediments transport. In: Salleh S, Aris NA, Bahar A,
Zainuddin ZM, Maan N, Lee MH, and Yusof YM (Eds.),
American Institute of Physics (AIP) Conference Proceedings,
AIP Publishing, 1750(1). http://dx.doi.org/10.1063/
1.4954550

Dongarra J, Fox G, Kennedy K, White A, Foster I, Gropp W, and
Torczon L (2003). Sourcebook of parallel computing. Morgan
Kaufmann Publishers, Burlington, USA.

El-Nashar AI (2011). To parallelize or not to parallelize, speed up
issue. International Journal of Distributed and Parallel
Systems, 2(2): 14-28.

Hervouet JM (2007). Hydrodynamics of free surface flows:
Modelling with the finite element method. John Wiley & Sons,
Hoboken, USA.

Kathavate S and Srinath NK (2014). Efficiency of parallel
algorithms on multi core systems using openmp. International
Journal of Advanced Research in Computer and
Communication Engineering, 3(10): 8237-8241.

Koh HL, Teh SY, Liu PLF, Ismail AIM, and Lee HL (2009).
Simulation of Andaman 2004 Tsunami for assessing impact on
Malaysia. Journal of Asian Earth Sciences, 36(1): 74-83.

Liu GR and Liu MB (2003). Smoothed particle hydrodynamics: A
meshfree particle method. World Scientific, Singapore,
Singapore.

Moulinec C, Denis C, Pham CT, Rouge D, Hervouet JM,
Razafindrakoto E, Barber RW, Emerson DR, and Gu XJ (2011).

TELEMAC: An efficient hydrodynamics suite for massively
parallel architectures. Computers and Fluids, 51(1): 30-34.

Padua D (2011). Encyclopedia of parallel computing. Springer
Science and Business Media, Berlin, Germany.

Pirozzi MA (1997). Numerical simulation of fluid dynamic
problems on distributed memory parallel computers.
Concurrency and Computation: Practice and Experience,
9(10): 989-998.

Pirozzi MA and Zicarelli M (2000). Environmental modeling on
massively parallel computers. Environmental Modeling and
Software, 15(5): 489-496.

Sharma SK and Gupta K (2012). Performance analysis of parallel
algorithms on multi-core system using openmp. International
Journal of Computer Sciences, Engineering and Information
Technology, 2(5): 55-64.

Teh SY, Koh HL, Liu PLF, Izani AMI, and Lee HL (2009). Analytical
and numerical simulation of tsunami mitigation by mangroves
in Penang, Malaysia. Journal of Asian Earth Sciences, 36(1):
38-46.

Wang D, Long H, and Wang Z (2012). A load-balanced parallel
algorithm of smooth particle hydrodynamics. In the 16th
International Conference on Internet Computing for Science
and Engineering (ICICSE’12), IEEE, Henan, China, 193-197.
https://doi.org/10.1109/ICICSE.2012.62

Wang J and Zhang M (2009). Parallel computer technology study
on 2D numerical model of flow and sediment in rivers. Journal
of Waterway and Harbor, 30: 222-225.

Wenlong C, Yingbiao S, Xiuguang W, Zhiyong L, and Rongsheng W
(2014). Parallel computer technology study on hydrodynamic
and sediment transport mathematical model in estuaries
based on MPI. In the 13th International Conference on
Distributed Computing and Applications to Business,
Engineering and Science (DCABES'14), IEEE, Xian Ning, China:
42-45. https://doi.org/10.1109/DCABES.2014.12

Yang C and Cai XC (2011). A parallel well-balanced finite volume
method for shallow water equations with topography on the
cubed-sphere. Journal of Computational and Applied
Mathematics, 235(18): 5357-5366.

Yu CS, Berlamont J, Embrechts H, and Roose D (1998). Modeling
coastal sediment transport on a parallel computer. Physics
and Chemistry of the Earth, 23(5): 497-504.

https://doi.org/10.1109/ICICSE.2012.62

	Load-balanced parallel architectures for 2-D water quality modelPARATUNA-WQ on OpenMP
	1. Introduction
	2. Overview of parallelization
	3. Serial TUNA-WQ
	4. Runtime analysis of serial TUNA-WQ
	5. OpenMP parallelization in PARATUNA-WQ
	6. Amdahl law
	7. Discussions
	8. Conclusion
	Acknowledgment
	References

