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The results of studies of transient and recurrent processes in open systems 
are shown. Questions related to the features of fractional systems - 
generalized memory are considered. As a criterion for estimating the 
dynamics of the studied processes, we propose a generalized Poincare 
spectrum characterizing the dimensionality of the geometric, information, 
and dynamic properties of transient and recurrent processes. The proposed 
axiomatic shows the connection between generalized memory and the 
repetition of Poincare. Developed a mathematical model of the transition 
process in multidimensional fractional chaotic systems. 
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1. Introduction

*In most cases of new effects discovered in recent
years include the research processes in nonlinear 
dissipative systems and environments. Problems 
outlined in the book will be considered in the context 
of modern scientific field – physics of open systems 
(Marwan et al., 2007; Ibedou and Miyata, 2008; 
Butkovskiy et al., 2013; Grigorenko and Grigorenko, 
2003). 

Noteworthy new features of so-called reversible 
mappings that allow for new look into the physical 
processes in the chaotic and stochastic systems. 

It is known that the dynamic system with 
complex trajectories character can be described in 
terms of the geometry of limit sets in the phase 
space, as well as the evolution of the phase 
trajectories in time. Feature of the temporal 
dynamics of reversible is the so-called Poincare 
return, meaning that any trajectory, starting from a 
point  𝑥0 of the phase space, eventually an infinite 
number of times will pass arbitrarily close to the 
initial conditions.  

Depending of the system operation mode return 
will either (in the motion is stable periodic) or quasi-
periodic (driving in 𝑛- dimension of the torus), or be 
a random sequence of time 𝜏𝑘 = 𝑡𝑘+1 − 𝑡𝑘 when 𝑡𝑘 
corresponds to time path to enter the 𝜀- 
neighborhood of 𝑥0. So, for the first time of chaotic 
attractor’s limited return: 𝜏𝑘 = 𝑡𝑘+1 − 𝑡𝑘 < 𝑧  for all 
𝑘 = 1,2, …, which is a consequence of the presence of 
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a minimal set in the system. Movement of the 
attraction satisfied specified properties, Poincare 
called Poisson stable.  

It continues to be the actual problem analyses 
and synthesis of a large number of interacting 
heterogeneous information flow in complex 
structures. In the process of evolution, in an open 
system, increase information flows and objects leads 
to a complication of information components that 
causes a buildup of chaotic processes, which 
translate the system into a state of dynamic chaos.  

Wherein the system produces a new random 
information, the rate of this process is the higher the 
greater the degree of randomness. In this important 
to keep track of Poincare return time as the main 
indicators and characteristics, show the dynamics of 
the system in time repeatability. Great interests are 
the processes of mixing multidimensional 
heterogeneous system. In this context, attention is 
drawn to the processes of mixing multidimensional 
heterogeneous systems. By mixing multidimensional 
systems may be coherent structures that require 
analyses and evolution on this structure. 

The resonance caused works by Lekien et al. 
(2007), Shadden (2011), and Kusch and Ottino 
(1992) devoted to the study of coherent Lagrange 
structures, which are ranges of fields of finite-time 
Lyapunov exponent (FTLE). These ranges can be 
considered as a finite-time mixed formation. Concept 
of this work is applicable to flows with random time-
dependent and in particular, flows which are defined 
in a finite-time interval. This problem is further 
updated in the analyses of nonlinear mixed physical 
systems, in which examples of Lagrangian coherent 
structures are stable and unstable manifolds of fixed 
points and periodic orbits. Along with the mixing 
process occurs problem of mixed transport flow. To 
their arises paradigm consideration of analysis and 
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synthesis of structure as the “mixing-transport-
control” of nonlinear physical processes.  

It should be noted that the asymptotic 
distribution of Poincare recurrences is exponential 
for a wide class of mixing system, even if they 
uniformly hyperbolic.  

Some preliminary investigations show that at 
least for the skew and for the mixing return times 
spectra also hold for the successive Poincare 
recurrences. Currently, there is intensification of 
research into the processes and phenomena, 
characterized by nonlocality, nonmarcov, 
hereditarily, fractality, nonhamiltonian. It is also paid 
great attention to studying the degree of non-locality 
and the power of long-term memory. Are 
mathematical methods of one of the modern areas of 
theoretical physics– fractional dynamics. This is 
especially true when it comes to fractal structure 
systems. It is important to note that the description 
of the properties of systems with fractal structure 
cannot be used Euclidean representation geometry. 
There is a need to analyze these processes in terms 
of fractional geometry (Nigmatullin, 1992). 

Systems with fractal feature characterized by 
such effect as memory, complex spatial processes of 
mixing and self-organization. Thus formed a new 
scientific field-physic of open systems, in which the 
combined areas such as synergy, dissipative 
structures, deterministic chaos, fractional dynamics 
in the various branches of science. Methods of 
integral-differential fractional and fractional 
calculus, a history spanning more than three 
hundred years, back to the research of prominent 
mathematicians, such as Riesz (1949) and Brox 
(2017). 

New opportunities in mathematics and 
theoretical physics in the open when the order of 𝛼 
differential operator 𝐷𝑥

𝛼 becomes arbitrary 
parameter. Here fractional derivative index allows to 
consider features of open systems. The book uses 
fundamental research of Chirikov (1979), Zaslavsky 
(2002), Tarasov (2010), and others.  

In spite of the anomalous chapter, the 
consideration is in terms of Poincare return time. 
Important practical problem when working with 
nonlinear systems is their discrete in the time 
mapping, which allows to conclude that the nature of 
the continuous flow. 

In addition, the book discusses issues of transient 
in multidimensional chaotic systems of fractional 
order and offered nontraditional chaotic and 
stochastic filters, the base of which is integrative 
component of the average Poincare return time. 

Above actualizes the problem of the research of 
transients in multidimensional chaotic and 
stochastic systems of fractional-order. It should be 
noted there is a reassessment role of chaos in the 
process of evolution of nonlinear multidimensional 
systems. Noted that the chaos is necessary for the 
system output to one of the possible attractors; 
chaos is at the heart of combining mechanisms 
simpler structures in complex, and finally can act as 
a system of behavior change regimes.  

It is important to note the features of a collective 
of multidimensional processes and phenomena in 
the fractional chaotic systems, in the context of the 
observed transients.  

A big role in the description of the behavior of 
open systems plays a synergetic view of its evolution 
as a whole that is in terms of attractors, transition 
states, stability, bifurcations, of dynamical chaos and 
other. A basic element of his research is to follow the 
phase portrait and its changes when you change the 
synergetic model parameters.  

From the position of mathematics synergetic 
aspect of the process of evolution is a change in the 
topological structure of the phase space of an open 
system.  

Tracking change this structure, as the transition 
process requires the formation of a generalized 
criterion that recognizes entering the system in one 
or another state.  

It is known that transient is a process whose 
parameters vary over time. Bat it should be noted 
that transition may occur both in domestic and 
external perturbation. The above describes the 
structure of the research multidimensional chaotic, 
stochastic and kinetic fractional-order systems (Fig. 
1). Implementation of such a frame work should be 
based on some of the main provisions. 

It should be noted that deviation of the state of a 
synergetic system from the position of 
thermodynamics equilibrium is accompanied by 
development of chaotic, stochastic transients, 
destroying properties of ergodicity, additiveness and 
local equilibrium; entropy reduction; fractional 
structure and search for a new stability state. 
Important it is regard is the use of Tsallis entropy. 

Moreover the implementation of the tasks on the 
stability of multidimensional chaotic systems of 
fractional order can manifest hidden oscillation, that 
are not established after the transition process from 
the neighborhoods of the stationary states. Here a 
simple simulation can lead to erroneous results.  

Therefore, numerous results dealing with 
mechanisms of the generation of attractors, their 
localization in the phase space, and the evolution of 
their characteristics where obtained with the use of 
computer modeling well– known examples of the 
existence of hidden attractor in multidimensional 
models of automated control systems are given by 
counterexamples to the Vaidyanathan and Volos 
(2017) conjecture, where the unique stable-in-small 
equilibrium co-exists with an orbital stable cycle. 
Thus, the control problem is the development a 
mathematical model studies of transient and 
recurrent processes in the multi-dimensional chaotic 
systems of fractional order.  

Significant role information the trends play an 
entropy oscillation that arising near the steady state 
systems (Liu and Teel, 2014).  

Treads can be mathematically represented the 
inequalities or sign extremum. In addition to this 
group of laws include equilibrium conditions, 
stability criteria, the criteria of evolution, the 
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minimum entropy production theorem, the law of 
increasing entropy, and others (Liu and Teel, 2014). 

With regard to the entropy, it can only be 
changed in irreversible processes. Reversibility is 
characteristic for conservative system. 

 
fBm – fractional Brownian motion, fLevy – fractional Levy motion, Imp – impulsive function, fCN – fractional Colored noise, P-W – piecewise function, fGn – 

fractional Gaussian noise, q – p – quasi-periodic, ch – q-p – chaos – quasi-periodic, ch-stoch – chaos – stochastic, ch – hyp-ch – chaos – hyper-chaos, hyp – ch – 
hyp - hyper-chaos - chaos - hyper-chaos, bifur – bifurcation. F T E – fractional time evolution 

 
Fig. 1: The investigated problems of chaotic systems, the interference components affecting them, the development of 

processes, and the measured parameters 
 

In such systems, entropy is always constant and 
self-organizing them is not possible. Philosophical 
concept of recover the whole of nature to the state it 
was the beginning of the process (Liu and Teel, 
2014).  

2. Basic provisions 

2.1. Recurrence Poincare 

In the 1880s Henri Poincare had obtained a 
number of important results, which formed the basis 
of the modern theory of dynamical systems. 

In particular, he noted the complexity of the 
behavior of the system in the vicinity of the so-called 
homoclinic trajectory (trajectory tends to a fixed 
point or a periodic trajectory with both→ ∞, and 
when 𝑡 → −∞) (Nigmatullin, 1992), it was published 
in 1890, as the “recurrence theorem” (Marwan et al., 
2007). 

This theorem is the basis of the modern of 
measure preserving transformations, known as the 
ergodic theory.  

Let 𝑋open area in 𝑛 - dimensional space with a 
homeomorphism 𝑇 for 𝑥 yourself, keep the volume. 
With repeated MSE 𝑇 of any point 𝑥 generates a 

sequence, 𝑇𝑥, 𝑇2𝑥,… , 𝑇(𝑥)
𝑖 , …, called positive semi 

orbit 𝑥. When 𝑥 ∈ 𝐺 for any infinity set of positive 
values …, we speak of a recurring point 𝑥 of an open 
set 𝐺 ⊂  𝑋. 

On a content level Poincare theorem states for 
any open set 𝐺 ⊂  𝑋 points, returning relatively, are 
all points 𝐺, except for some set of the first category 
measure zero. Formally takes place 

 

Theorem 1: Let 𝑇 – be a measure-preserving 
transformation of a probability space (𝑋, 𝜇) and let 
𝐴 ⊂  𝑋. be a measurable set (Marwan et al., 2007). 
Then for any natural number 𝑁 ⊂  𝑁 

 

𝐴({𝑥 ∈ 𝐴: {𝑇𝑛(𝑥)}𝑛≥𝑁 ⊂ (𝑋\𝐴)}) = 0  
 

where 𝑇- recurrence time; 𝑋- arbitrary measurable 
set; 𝜇(∙) - probability measure; 𝑥- parameter of 
normalized number; 𝑁- set of natural numbers. 
Short proof of this theorem in (Marwan et al., 2007).  

2.2. Topological order space 

Definition 1: The number is called as a metric order 
of a compact 𝐴 

 
𝑘 = 𝑙𝑖𝑚(−𝑙𝑛𝑁𝐴(𝜀)/𝑙𝑛𝜀)  

 
where 𝜀- the sphere of radius 𝜀; 𝑁(𝜀) - number of 
spheres in a final sub covering of a set. 
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The lower bound of metric orders for all metrics 
of a compact 𝐴 (called by metric dimension) is equal 
his Lebesgue to dimension.  

However it appeared that the metric order 
entered in Liu and Teel (2014) coincides with the 
lower side the fractal dimension of Hausdorff-
Bezikovich defined in the terms “box-counting”. 
Takes place: 

 
Theorem 2: For any compact metric space 𝑋 
(Ibedou and Miyata, 2008). 

 

dim𝑋 = 𝑖𝑛𝑓 {lim
𝜀→0

𝑙𝑜𝑔𝑁𝜀,𝑑(𝑋)

−𝑙𝑜𝑔𝜀
: 𝑑 𝑖𝑠 𝑎 𝑎𝑚𝑒𝑡𝑟𝑖𝑐 𝑜𝑛 𝑋}  

 
where  

 
𝑁𝑠,𝑑(𝑋) =

𝑚𝑖𝑛{|𝑈|: 𝑈 𝑖𝑠 𝑎 𝑓𝑖𝑛𝑖𝑡𝑒𝑜𝑝𝑒𝑛 𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔 𝑋 𝑤𝑖𝑡ℎ 𝑚𝑒𝑠ℎ ≤ 𝜀}.  

 
From here (𝑋, 𝑑𝑓),- compact fractal metric space 

with dimension 𝑑𝑓. 

Here it is important to note that at the description 
of properties of systems with fractional structure it 
is impossible to use representation of Euclidean 
geometry. There is a need of the analysis of these 
processes for terms of geometry of fractional 
dimension.  

 
Remark: Butkovskiy et al. (2013) presented results 
of communication of a fractional 
integrodifferentiation (in Riemann-Liouville or 
Gryunvalda-Letnikov’s terms) with Koch’s curves. 

 
It is noted that biunique communication between 

fractals and fractional operators does not exist: 
fractals can be generated and described without use 
of fractional operations, and defined the fractional 
operator not necessarily generates defined 
(unambiguously with it connected) fractal process or 
fractal variety. 

However use of fractional operations allows 
generating other fractal process (variety) which 
fractal dimension is connected with an indicator of a 
fractional integrodifferentiation a linear ratio on the 
basis of the set fractal process (variety). Butkovskiy 
et al. (2013) fractional integrals of Riemann -
Liouville are understood as integrals on space of 
fractional dimension. 

Thus the indicator of integration is connected 
with dimension of space an unambiguous ratio.  

In this regard consideration of dimension of 
chaotic systems of a fractional order causes interest. 
So, Grigorenko and Grigorenko (2003) was noted 
that dimension of such systems can be defined by the 
sum of fractional exponents , and  < 3 is the most 
effective.  

Let the chaotic fractional system of Lorentz take 
place (Vladimirsky and Ismailov, 2016): 

 
𝑑𝛼

𝑑𝑡𝛼
𝑥 = 𝜎(𝑦 − 𝑥)

𝑑𝛽

𝑑𝑡𝛽
𝑦 = 𝜌𝑥 − 𝑦 − 𝑥𝑧᾿

𝑑𝛾

𝑑𝑡𝛾
𝑧 = 𝑥𝑦 − 𝑏𝑧  

here  
 
𝜎 = 10, 𝜌 = 28, 𝑏 = 8 3⁄ ; 0 < 𝛼, 𝛽, 𝛾 ≤ 1, 𝑟 ≥ 1 . 

 
Then fractional dimension of system of the 

equations will have an appearance (Grigorenko and 
Grigorenko, 2003): 

 
𝛼 + 𝛽 + 𝛾 = .  

 
So, for example, for Lorentz’s system with 

fractional exponents 𝛼 = 𝛽 = 𝛾 = 0.99, effective 
dimension  = 2.97. 

This, in the context of fractional dynamics let 𝑋̃- 
any set of nonlinear physical systems, 𝐴𝛼- a subset of 
a set 𝑋̃ of systems of a fractional order with memory 
𝐴𝛼 ⊂ 𝑋̃. Then a triad (𝑋̃, 𝐴𝛼,)- compact fractional 

metric space with dimension . 

Let’s designate 𝑊 ∈ (𝑋, 𝑑𝑓) on the basis and 

Remarks (𝑋̃, 𝐴𝛼,) ⊂ 𝑊 (Nigmatullin, 1992). 

Let’s consider transformation 𝑊at an angle of 
communications of average time of return of 
Poincare 〈𝜏〉 with 𝑑𝑓  and “residual” memory (𝑡). 

Here: 
 

𝑔: 〈𝜏〉 𝑑𝑓𝑙: 𝑑𝑓𝐽(𝑡): 〈𝜏〉(𝑔, 𝑙)  

 
From here 𝑈 ∈ (𝑋, 〈𝜏〉) - the generalized compact 

metric space of Poincare with dimension 〈𝜏〉.  

2.3. Generalized memory 

As said, the analysis and synthesis of 
multidimensional chaotic system of fractional-order 
there was a problem with memory estimation.  

 
Axiomatic: Let the trajectory of the generalized 
memory system is of the form (Liu and Teel, 2014; 
Vladimirsky and Ismailov, 2015; Vladimirsky and 
Ismailov, 2016): 
 
𝑄𝐺𝑀 = 𝑄≥0⋃𝑄≤0  

 
Definition 2: 𝑄≥0 ⊂ 𝑄𝐺𝑀 - it called semi-trajectory to 
the trajectory 𝑄𝐺𝑀 , if each 𝑡 > 0 it the inclusion  

 

𝑄≥0 ⊂ 𝑂𝜀
𝑚𝑒𝑚⋃ ([𝑡𝑗 , 𝑡𝑗+1], 𝑗).

𝑗−1
𝑗=1   

 

Here 𝑄≥0[𝑡𝑗, 𝑡𝑗+1] - segment of the semi-trajectory 

memory of responsible values 𝑡 ⊂ [𝑡𝑗 , 𝑡𝑗+1] and 𝑂𝜀
𝑚𝑒𝑚 

𝜀- neighborhood of the corresponding set.  
 

Definition 3: 𝑄≤0 ⊂ 𝑄𝐺𝑀 It called semi-trajectory to 
the trajectory 𝑄𝐺𝑀 , if each 𝑡 < 0 it the inclusion 

𝑄≤0 ⊂ 𝑂𝜀
𝑙𝑚⋃ ([𝑠𝑘 , 𝑠𝑘−1], −𝑘 + 1).

𝑗−1
𝑗=1   

 

Here 𝑄≤0[𝑠𝑘, 𝑠𝑘−1]- segment of the semi-trajectory 
“loss memory” of responsible values ∈ [𝑠𝑘, 𝑠𝑘−1] and 
𝑂𝜀
𝑙𝑚 − 𝜀 - neighborhood of the corresponding set. 

 

Definition 4: Semi-trajectory 𝑄≥0 ⊂ 𝑄 recurrent if 
for every 𝑡 > 0 inclusion 
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𝑄≥0 ⊂ 𝑂𝜀⋃ ([𝑡𝑗 , 𝑡𝑗+1], 𝑗)
𝑗−1
𝑗=1 .  

 

Here 𝑄≥0 ⊂ [𝑡𝑗 , 𝑡𝑗+1] - segment of the semi-trajectory 

recurrent of responsible values 𝑡 ⊂ [𝑡𝑗, 𝑡𝑗+1]. 
 

Definition 5: Semi-trajectory 𝑄≤0 ⊂ 𝑄 not recurrent 
if for every 𝑡 < 0 it the inclusion 

 
𝑄≤0 ⊂ 𝑂𝜀⋃ ([𝑠𝑘 , 𝑠𝑘−1], 𝑘 + 1)

𝑘
𝑘=1 .  

 

Remark: It is known the average return time of 
Poincare is determined by the fractal dimensions the 
trajectories of generalized memory, GM. Hence the 
memory loss will be determined by the difference 
between global and local fractal dimensions, which 
means that the recurrence and no-recurrence semi-
trajectories respectively. 

2.4. Formation of loss memory 

It is a known that during the Poincare recurrence 
characterizes as a “residual”, and the real memory of 
the fractional-order system. Hence the equivalence 
between the spectrums of the Poincare returns time 
and distribution of generalized memory.  

Los memory is determined by the difference 
between the global and the local fractal dimensions, 
which means, respectively, reversible and 
irreversible processes. Loss of information 
numerically defines the entropy.  

2.5. The spectrum of the dimensions of the 
Poincare returns times 

From the perspective of mathematics synergetic 
aspect of the process of evolution is a change of a 
topological structure of the phase space of an open 
system.  

Tracking change this structure as transient 
process requires the formation of a generalized 
criterion for recognizing the system in a certain state 
of chaos-quasi-periodic-hyper chaos and so on.  

In the work, as a generalized criterion proposed 
spectrum of dimensions Poincare return time, 
describing how geometric, information, and 
dynamics characteristics of the transient process. 
That is generalized criterion is formed on the basis 
of synergetic principles. Spectrum of dimensions for 
the Poincare return time   is a functional dependence  
𝛼𝑞̃ dimension type characteristics from the scale 

𝑞 expressed in terms of the Hausdorf dimension 
𝑑𝑖𝑚𝐻  (Eq. 1) (Afrajmovich et al., 2011): 

 
𝛼𝑞̃ = 𝑑𝑖𝑚𝐻 (𝑥)(1 − 𝑞 ℎ⁄ ) ,                    (1) 

where 𝑞– scale, 𝑥- invariant set, ℎ- topological 
entropy.  

Weng et al. (2015) Showed that the transport 
exponent 𝜇 defined by the relationship lim ℎ(𝜇) =

ℎ(𝑑𝑓) and lim ℎ(𝜇) = ℎ(𝑑𝑓 + 1) respectively. Noted 

that 𝜇𝑜𝑝𝑡 defined as (Eq. 2) (Weng et al., 2015): 
 

𝜇𝑜𝑝𝑡 ≈ 𝑑𝑓 + 2 −
𝑙𝑜𝑔(2)

2(𝑙𝑜𝑔(2)+3+𝑑𝑓)
                                                  (2) 

where 𝑑𝑓 - fractal dimension. However, in practical, 

is used (Eq. 3) 
 

𝜇𝑜𝑝𝑡 ≈ 𝑑𝑓 + 2                                               (3) 
 

In addition, knowing that ℎ ≤ ∑ 𝑖𝑖>0
, where 𝑖- 

Lyapunov exponents, spectrum dimensions of the 
Poincare return time will look (Eq. 4): 

 

𝛼𝑞̃̃ = 𝑑𝑓(𝑋){(1 − 𝑞 ℎ⁄ )(𝜇 − 2)(𝑄≥0)(ℎ())}                         (4) 
 

Thus, there is functional dependence of the 
memory of the transport exponent mixing 
heterogeneous chaotic maps, as well as the 
Lyapunov exponent.  

2.6. Tsallis entropy 

The interaction of complex heterogeneous chaotic 
fractional systems caused a revision of traditional 
Boltzmann entropy estimation.  

Attempt of this review contained in 
thermodynamics Tsallis, which leads to a statistical 
physics not Boltzmann type: individual particles 
with Boltzmann statistics + strong interactions  
new degrees of freedom with no Boltzmann statistics 
+ lack of interaction. Tsallis the entropy has the form 
(Eq. 5) (Tsallis and Tirnakli, 2010): 

 

𝑆𝑞̃ = −∑ (𝑃𝑖
𝑞̃
𝑙𝑛𝑔(𝑃𝑖))𝑖 = (1 − ∑ 𝑃𝑖

𝑞̃
𝑖 )/(𝑞̃ − 1)                    (5) 

 

where 𝑞̃- measure is not extensiveness of the system 
and can take an values: −∞:+∞, 𝑖 - systems status 
number, 𝑃𝑖- the probability of finding the system in 
state 𝑖, 𝑖- summing over all states.  

Then the entropy oscillations in the segment 𝑄≤0 
of memory loss will be determined by the entropy 
Tsallis 𝑆𝑞̃.  

3. A mathematical model of transition processes 

In this section seems paradigm 
transience/recurrence/stability for 
multidimensional chaotic and stochastic systems of 
fractional order. Here is an important problem is on 
formation of the axioms that reflect this paradigm. A 
quick lock at the various systems in the context of 
this paradigm. Basic principles and definitions: 

3.1. Generalized transition state theory (TST) 

Definition 6: Any form of TST, such as micro 
canonical variation TST, canonical variation TST, and 
improved canonical variation TST, in which the 
transition state is not necessarily located at the 
saddle point, is referred to as generalized transition. 
Formally have the following: 

 
Definition 7: We say that 𝑋 is recurrent if 

lim inf𝑡→∞‖𝑋𝑡‖ = 0 a.s. We say that 𝑋 is transient if  

lim inf𝑡→∞ =0 a.s.  
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3.2. The transient signal model 

Definition 8: A transient signal 𝑥𝑑[𝑛] is formed as 
linear combination of a finite number 𝑑 of real 
decaying exponentials with the structure (Eq. 6) 
(Lahlou and Oppenheim, 2014): 

 
𝑥𝑑[𝑛] = ∑ 𝑘(𝜌𝑘)

𝑛, 𝜌𝑘 ≠ 0,−1 < 𝜌1
𝑑
𝑘=1 < ⋯ < 𝜌𝑑 < 1    (6) 

 

for all 𝑛 ≥ 0. 
Here 𝛼 = {𝛼𝑘}𝑘=1

𝑑 - amplitude coefficient, 
𝑥𝑑 = {𝑥𝑑[𝑛]}𝑛=0

𝑁−1- parameter sequence, 
𝜌 = {𝜌𝑘}𝑘=1

𝑑 - attenuation signal.  

3.3. The discrete transient transforms 

Definition 9: The Discrete Transient Transform 
(DTT) 𝑋[𝑘] and inverse DTT (IDDT) of a general 
length 𝑁 sequence 𝑥[𝑛]  are defined as (Eqs. 7 and 8) 
(Lahlou and Oppenheim, 2014): 

 
𝑋[𝑘] = ∑ 𝑥[𝑛]

𝑘
[𝑛],    1 ≤ 𝑘 ≤ 𝑁𝑁−1

𝑛=0                            (7) 

𝑥[𝑛] = ∑ 𝑋[𝑘]
𝑘
[𝑛],    0 ≤ 𝑛 ≤ 𝑁 − 1𝑁

𝑘=1                           (8) 

 

where   is a real exponential basis and  is the 
corresponding dual basis. Recurrence and 
Transience in Markov chain (Norris, 1998). 

 

Definition 10: Let (𝑋𝑛)𝑛≥0 be a Markov chain with 
transition matrix: 
 

We say that a state 𝑖 is recurrent if 
 
𝑃𝑖(𝑋𝑛 = 𝑖 𝑓𝑜𝑟 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦 𝑚𝑎𝑛𝑦 𝑛 ) = 1  
 

We say that 𝑖 is transient if 
 
𝑃𝑖(𝑋𝑛 = 𝑖 𝑓𝑜𝑟 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦 𝑚𝑎𝑛𝑦 𝑚 ) = 0  
 

Thus a recurrent state is one to which you keep 
coming back and a transient state is one which you 
eventually leave for ever. Norris (1998) showed the 
study of these states. For stochastic systems have the 
following  

 

Definition 11: Brownian motion {𝐵(𝑡): 𝑡 ≥ 0} is 
(Teo, 2012): 

 

𝑖. transient if lim
𝑡→∞

|𝐵(𝑡)| = ∞ a.s. 

𝑖𝑖. point recurrent if a.s. for every 𝑥 ∈ 𝑅𝑑  , there is an 
increasing sequence such that 𝐵(𝑡𝑛) = 𝑥 for all 𝑛 ∈
𝑁. 
𝑖𝑖𝑖. neighborhood recurrent if a.s. for every 𝑥 ∈
𝑅𝑑  , and 𝜀 > 0, there exists an increasing sequence 𝑡𝑛 
such that 𝐵(𝑡𝑛) ∈ 𝐵𝜀(𝑥) for all 𝑛 ∈ 𝑁. 

Thus Altmann and Tél (2008) obtained a 
description on the Poincare recurrences of chaotic 
systems in terms of the ergodic theory of transient 
chaos. 
Hybrid fractional noise: The sawtooth wave, called 
the “castle rim function” by Trott is the periodic 
function (Eq. 9): 

 

𝑆(𝑥) = 𝐴𝑓𝑟𝑎𝑐 (
𝑥

𝑇
+ 𝜑)                                      (9) 

 
where 𝑓𝑟𝑎𝑐(𝑥) is the fractional part 𝑓𝑟𝑎𝑐(𝑥) ≡ 𝑥 −
[𝑥], 𝐴 is the amplitude, 𝑇 is period of the wave, and 𝜑 
is its phase. Here 

 

 𝑓𝑟𝑎𝑐(𝑥) ≡ {
𝑥 − [𝑥] 𝑥 ≥ 0 𝑐𝑒𝑙𝑙𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑥 − [𝑥] 𝑥 < 0 𝑐𝑒𝑙𝑙𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
. 

 
Fractional order colored noise: The integer order 
time-correlated (colored) noise is given by the 
following relation (Eq. 10) (Norris, 1998): 

 
𝜇𝑘+1 = 𝜔𝑘𝜇𝑘 + 𝜔𝑘 ,                         (10) 

 
where 𝜇𝑘 ∈ 𝑅 is a time-correlated noise, 𝑓 ᾿ ∈ 𝑅 is a 
parameter of this noise, and 𝜔𝑘 ∈ 𝑅 is an 
uncorrelated noise, for example, white Gaussian 
noise. This can be rewritten in the difference from 
(Eq. 11) (Sierociuk and Ziubinski, 2014): 

 
∆𝜇𝑘+1
1 = 𝑓𝜇𝑘 +𝜔𝑘                                (11) 

 
where 𝑓 = 𝑓 ᾿ − 1. 

The relation can be generalized onto a fractional 
order time-correlated noise. The colored fractional 
order noise is given as follows (Eq. 12) (Sierociuk 
and Ziubinski, 2014): 

 
∆𝜇𝑘+1
𝛼 = 𝑓𝜇𝑘 +𝜔𝑘                                  (12) 

 
where in this, case 𝜇𝑘 is a fractional colored noise, 𝛼 
is an order of the noise and 𝜔𝑘 is an uncorrelated 
noise. This equation is a discrete equivalent of 
fractional differential equation witch describes 
dynamics of the correlated noise. The hybrid scheme 
of fractional noise given as follows (Eq. 13): 

 
𝑁 = 𝑆(𝑥)⋃∆𝜇𝑘+1

𝛼                                 (13) 

 

Analysis of the above offers transient chaotic 
system of fractional-order and Poincare recurrence 
consider as the trajectories of generalized memory 𝑄 
is mapping to the spectrum of dimensions Poincare 
 (Eq. 14). 

 

𝑑𝑒𝑓 = 𝑄𝛼𝑞̃  .                                      (14) 

 

Regarding stability it will be defined as local 
stability of Lyapunov semi-trajectories 𝑄≥0. 

Further continue the recovery of the signal, 
followed by an analysis of his character that will be 
noted in section. 

3.4. Transient with recovery 

The implementation of the tasks on the stability 
of multidimensional chaotic systems of fractional 
order can manifest hidden oscillation, that are not 
established after the transition process from the 
neighborhoods of the stationary states. Here a 
simple simulation can lead to erroneous results.  
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Therefore, numerous results dealing with 
mechanisms of the generation of attractors their 
localization in the phase space, and the evolution of 
their characteristics where obtained with the use of 
computer modeling well – known examples of the 
existence of hidden attractor in multidimensional 
models of automated control systems are given by 
counterexamples to the Vaidyanathan and Volos 
(2017) conjecture, where the unique stable-in-small 
equilibrium co-exists with an orbital stable cycle 
(Leonov and Kuznetsov, 2011). 

Effectively verified conditions for the existence 
hidden orbital stable cycles in some class 
multidimensional systems were obtained in Leonov 
and Kuznetsov (2011). 

In this regard Ismailov (2016) proposed structure 
of the “SSA-lifting scheme”, produced a 
reconstruction signal. 

4. The example of the tasks of synchronization 
with the tracking control is the following 

Formulation of the tasks: Consider the 
following n-dimensional-fractional-order chaotic 
system (Eq. 15) (Vladimirsky and Ismailov, 2015; 
Vladimirsky and Ismailov, 2016)  

 
𝐷𝑞𝑋 = 𝐹(𝑋, 𝑋0, 𝜃)                                    (15) 

 
where 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛)

𝑇 ∈ 𝑅𝑛 denotes the n-
dimensional state vector of the original system; 𝑋0- 
represents the system initial state, 𝑞 =
(𝑞1, 𝑞2, … , 𝑞𝑛)

𝑇 ∈ 𝑅𝑛 is a set of fractional order of the 
original system, and 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝐷)

𝑇 ∈ 𝑅𝐷 is the 
value of original system parameters.  

Let the fractional-order derivative of the function 
𝑓(𝑡). In the Caputo sense is defined as Eq. 16 
(Vladimirsky and Ismailov, 2015; Vladimirsky and 
Ismailov, 2016): 

 

𝐷𝑞𝑓(𝑡) = 𝐽𝑚−𝑞𝑓(𝑚)(𝑡).                        (16) 
 

Here, 𝑞 is the fractional order, 𝑚 is an integer that 

satisfies 𝑚− 1 ≤ 𝑞 < 𝑚, 𝑓(𝑚)(𝑡) is the ordinary 𝑚 - 
th derivative of, and 𝐽𝜇 is the Riemann -Liouville 
integral operator of order 𝜇 > 0, defined by Eq. 17 
(Vladimirsky and Ismailov, 2015; Vladimirsky and 
Ismailov, 2016): 

 

𝐽𝜇𝑔(𝑡) =
1

(𝜇)
∫ (𝑡 − 𝜏)𝜇−1𝑔(𝜏)𝑑𝜏
𝑡

0
,                          (17) 

 

where () denotes the gamma function. A 
particularly important case in many engineering 
applications is 0 < 𝑞 < 1. In this situation, Eq. 16 
together with Eq. 17 represented as Eq. 18 

 

𝐷∗
𝑞
𝑓(𝑡) =

1

(1−𝑞)
∫ (𝑡 − 𝜏)−𝑞𝑓𝑡(𝜏)𝑑𝜏
𝑡

0
.                      (18) 

The operator 𝐷∗
𝑞
 is often called “𝑞 th- order 

Caputo differential operator” and will be used 
throughout the paper. 

Topological synchronization: Unlike traditional 
methods of synchronization in Vladimirsky and 
Ismailov (2016) and Afrajmovich et al. (2011) 

proposed the concept of topological synchronization 
of coupled chaotic systems. 

 
Definition 12: Two systems are topologically 
synchronized, if Poincare return times behave a 
similar way.  

Thus match the dimensions of these two 
systems– a necessary condition for the topological 
synchronization: well indicates the “average 
similarity”. It is known that the synchronization 
feature is the preservation of a certain frequency: in 
this case, is the relationship between the Poincare 
return times. Invariance of these ratios, are the 
timing mode.  

4.1. Synchronization between the two fractional 
hyperchaotic systems 

In the general case, synchronization of chaotic 
fractional-order systems, united has the form Eq. 19 
(Vladimirsky and Ismailov, 2015; Vladimirsky and 
Ismailov, 2016): 

 
𝑑𝛼𝑋

𝑑𝑡𝛼
= 𝑓(𝑥),

𝑑𝛼𝑌

𝑑𝑡𝛼
= 𝑔̂(𝑌) + 𝑈(𝑡)                             (19) 

 

where 𝛼- order of derivative, 𝛼 ∈ (0, 1], master’s 𝑋 ∈
𝑅𝑛 and slave 𝑌 ∈ 𝑅𝑛 systems; 𝑓: 𝑅𝑛 → 𝑅𝑛 and 
𝑔̂: 𝑅𝑛 → 𝑅𝑛- vector fields master and slave systems. 
In the general case condition synchronization 
systems defined as: 𝑈(𝑡) = (𝑢1, … , 𝑢𝑛)

𝑇, i.e. 
lim
𝑡→∞

‖𝑋 − 𝑌‖, where ‖∙‖ - Euclidean norm.  

4.2. Topological control 

Consider the following general structure of the 
fractional-order nonlinear system under control (Eq. 
20) (Vladimirsky and Ismailov, 2015; Vladimirsky 
and Ismailov, 2016): 

 

0𝐷𝑡
𝑞
𝑥(𝑡) = 𝑓(𝑥(𝑡) + 𝐵𝑢(𝑡))                         (20) 

 

where 𝑢(𝑡) = [𝑢1(𝑡)𝑢2(𝑡)…𝑢𝑚(𝑡)]
𝑇 is 𝑚- 

dimensional input vector that will be used and 
following control structure will be considered for 
state feedback (Eq. 21): 

 
𝑢(𝑡) = 𝑢𝑒𝑞(𝑡) + 𝑢𝑠𝑤(𝑡)                             (21) 

 

where 𝑢𝑒𝑞(𝑡) is equivalent control and 𝑢𝑠𝑤(𝑡) is the 

switching control of the system. 
With regard to the task the topological control 

will be submitting a number of definitions. 
 

Definition 13: The system topologically controllable 
if and only if coincides with x̂ on the basis of the 
criterion metrics “proximity” Hausdorf. 
 
Theorem 3: Let 𝐸 and 𝐹 is compact subset 𝑅𝑛, 𝜀 > 0. 
Hausdorf distance 𝐻(𝐸, 𝐹) satisfies the relation. 
𝐻(𝐸, 𝐹) ≤ 𝜀̂𝐸 ⊂ 𝐹 + 𝜀̂  and 𝐹 ⊂ 𝐸 + 𝜀̂, 

 

where 𝜀̂ > 0 the allowable threshold. 
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Synchronization, control and stability of 
fractional order and the context of the 
generalized memory: Common challenges in the 
implementation of topological synchronization and 
topological control are a base – definition, theorem 
and intelligent iterative algorithm.  

 
 

Fractional-order iterative learning control 
scheme (Fig. 2) is given as (Vladimirsky and 
Ismailov, 2015; Vladimirsky and Ismailov, 2016): 

 

𝑈𝑘+𝑝
(𝛼) (𝑡) = 𝐹(𝑈𝑘(𝑡), 𝑒𝑘(𝑡)), 

 

where  𝑒𝑘(𝑡) = 𝑌𝑑(𝑡) − 𝑌𝑘(𝑡).  
 

Definition 14: Two systems topologically 
controllable if and only if they are synchronized 
topologically. 

 
Remark: If you synchronize at the same time 
regularity at the exit system there is a situation 
called passive control.  

 
Otherwise the usual iterative procedure for the 

organization of regular structure on the system 
output.  

 

 
Fig. 2: The basic scheme of the algorithm used to make 

iterative training of the control system with 𝑌𝑑(𝑡)being the 
trajectory,  𝑈𝑘(𝑡)and 𝑌𝑘(𝑡)the input and output signals 

4.3. Poincare recurrence diagram 

Mapping the system on the two-dimensional 
square matrices [𝑁, 𝑁] and of formula: 

 
𝑅𝑖,𝑗
𝑚,𝜀𝑖 = 𝜃(𝜀𝑖 − ‖𝑥𝑖 − 𝑥𝑗‖), 𝑖, 𝑗 = 1,… , 𝑁, 𝑖 ≠ 𝑗, 𝑥 ∈ 𝑈᾿   

 
where 𝑁- number of considered (examined) 
condition 𝑥𝑖 , 𝜀 - size of a neighborhood of a point 𝑥 
at the moment 𝑖; ‖∙‖ - norm; 𝜃(∙)- function of 
Heaviside.  

 

4.4. Topological stability of hyperchaotic-order 
systems  

Determine the stability of the zero solution on the 
system 
𝑑𝑥

𝑑𝑡
= ̂𝑞 , ̂𝑞 = {𝜔𝑛}𝑛=0

𝑁 , ̂𝑞 ∈ ̂
𝑞

.  
 

Proposition: Let 𝐺𝑀 ∈ 𝑈 be structure of generalized 
memory. If there exist a differentiable observed 
𝑉:  𝑅𝑛 → 𝑅+ such that the two following hold: 

 

(𝑖)- if trajectory will pass thought the point 0, i.e. 
𝑉̇(𝑥) ≤ 0, the system is stable with 𝑑𝑓(〈𝜏〉) and 

matches 𝐺𝑀; 
(𝑖𝑖)- if trajectory will pass below the point 0, the 
system is asymptotically stable with 𝑑𝑓(〈𝜏〉). 

 

Let the two hyperchaotic fractional-order 
systems: 

 

 Fractional-order Rabinovich-Fabrikant system 
following (Vladimirsky and Ismailov, 2016): 

 

{
 
 

 
 𝑥1̇ = 𝑥2(𝑥3 − 1 + 𝑥1

2) + 𝛾𝑥1,

𝑥2̇ = 𝑥1(3𝑥3 + 1 − 𝑥1
2) + 𝛾𝑥2,

𝑥3̇ = −2𝑥3(𝑥1𝑥2 + 𝛼),

𝑥4̇ = −3𝑥3(𝑥2𝑥4 + 𝛿) + 𝑥4
2

   (22) 

 

where = 0.14, 𝛾 = 1.1, −0.01 ≤ 𝛿 ≤ 7650. 
 The fractional-order Chen system as follows 

(Vladimirsky and Ismailov, 2016): 
 
𝑑𝛼𝑥

𝑑𝑡𝛼
= 𝑎(𝑦 − 𝑥) + 𝑤 + 𝑁    (23) 

𝑑𝛼𝑦

𝑑𝑡𝛼
= 𝑏𝑥 − 𝑥𝑧 + 𝑐𝑦,  

𝑑𝛼𝑥

𝑑𝑡𝛼
= 𝑥𝑦 − 𝑑𝑧,  

𝑑𝛼𝑤

𝑑𝑡𝛼
= 𝑦𝑧 + 𝑟𝑤,  

 

where 𝑎 = 35, 𝑏 = 7, 𝑐 = 12, 𝑑 = 3, 𝑟 = 0.5 and 𝛼 =
0.9, 𝑁 - hybrid scheme of fractional noise.  

Iterative learning algorithm for topological 
synchronization on schematic “master-slave” with 
white tracking control for fractional-order 
hyperchaotic systems shows in Fig. 3 (Vladimirsky 
and Ismailov, 2016; Afrajmovich et al., 2011). 

Further, using the signal reconstruction algorithm 
of the scheme “SSA-lifting scheme”, we get a 
complete picture of the process of transition 
hyperchaos-chaos-chaos (Fig. 3). 

Thus, there is a transient “hyperchaos-chaos” the 
trajectory is a generalized memory GM. With regard 
to tracking control, it is carried low exposure to 
hybrid noise 𝑁. Fractal dimensions:  

 

𝑑𝑓(𝑅 − 𝐹) = 1.2708, 

𝑑𝑓(𝑐ℎ𝑒𝑛) = 1.3710, 

∆= 0.1002. 
 

Poincare average return time is: 
 

〈𝜏〉𝑅−𝐹 = 4.0159, 〈𝜏〉𝑐ℎ𝑒𝑛 = 4.3279. 
 

Effects of the “proximity” define as: 
 

𝐻(〈𝜏〉𝑅−𝐹 , 〈𝜏〉𝑐ℎ𝑒𝑛) ≤ 𝜀̃ 〈𝜏〉𝑅−𝐹 ⊂ 〈𝜏〉𝑐ℎ𝑒𝑛 + 𝜀̃ , 
 

where 𝜀̃ = 0.3121. 
Examples of graphic images transformation 

results using the above-described algorithms over 
time series of chaotic and hyper-chaotic systems are 
shown in Fig. 4. 
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a 

 
b 

 
c  

d 
Fig. 3: Sequence of reconstruction of the signal according to the scheme "SSA-lifting scheme"  

and their recurrence diagrams: a, b – semi-trajectories of chaos; c, d – Poincare diagrams 

 

5. Conclusion 

It is important to note the non-traditional model 
of the transition and recurrence processes and 
evolution of its properties using the generalized 
Poincare return time spectrum. The results obtained 
can be used in the transition process in chaotic and 
hyperchaotic fractional systems. In shows a 
complete picture of the transient type “hyperchaos-
chaos-chaos”. 
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d 

 
e 

 
f 

Fig. 4: Gallery of graphic images showing the stages of the 
time series of chaotic and hyper-chaotic systems: 

a, b, c– transition trajectory of Tsallis entropy; Lyapunov 
indices: d– stability, e– exponent, f– dimension 
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