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Irregularly shaped rigid bodies, which move with high velocity through a 
resistive medium, take specific stable orientations during the motion. The 
paper shows physical models for estimation of the center of pressure for 
irregularly shaped bodies and for assessing the dynamic stability of such 
bodies. Using the developed physical models and the results of numerical 
simulations for the body of an irregular shape (a geometry similar to the 
fragments of high explosive projectile), a center of pressure and stability 
analysis was performed for the given body. It has been shown, based on 
rotation about one axis, that there is a zone of stability for the body in certain 
orientations, but to determine it more precisely it is necessary to 
continuously change two angles about two mutually perpendicular axes that 
perpendicular to the velocity vector of the center of mass. Generally, for each 
body, there is an orientation in which the body is in a stable zone (oscillation 
around the center of mass), but it is difficult to find that zone since one has to 
perform an extremely large number of numerical simulations for each body 
of a different shape. 
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1. Introduction

*Studying stability of the body moving through the
atmosphere is complex, especially for irregularly 
shaped bodies. In the analysis of the stability of the 
body, one of the tasks is to determine the position of 
the center of pressure relative to the center of mass 
cm. The total aerodynamic force acts at the point
called the center of pressure cp. The effect of force at
one point can be replaced by the action of the same
force in the center of mass and moment of force with
respect to the center of mass. The center of pressure
is the point where the total aerodynamic moment is
zero.

The magnitude, direction, and position of the 
center of pressure depend on the shape, body 
dimensions, orientation to the air flow and the 
characteristics of the air flow (density, velocity, 
degree of compressibility, etc.). When the attack 
angle of the body changes, the pressure field around 
the body changes. Because of this, the center of 
pressure changes also with the change of attack 
angle (change of body orientation). 
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Stability is the property of a body that causes it 
when disturbed from a condition of equilibrium or 
steady motion to develop forces or moments that 
restore the original condition. Generally, we 
distinguish between static and dynamic stability, 
with subgroups: stable, neutral and unstable. Static 
stability refers to the ability of the body to return to 
its original position or orientation, i.e. to maintain its 
original orientation without any other dynamic 
movement. Dynamic stability refers to the ability of 
the body to return to its original position, i.e. to 
maintain its original orientation through the 
interaction of disturbed movement with other 
movements of the body. 

Static stability depends on body design and there 
are three types of static stability (Fig. 1):  

 Stable - the body tries to maintain itself in the
initial conditions,

 Marginally stable - the body remains in a
disordered state, and

 Unstable - the body strives to move away from the
initial conditions in the direction of the disorder.

Depending on the relative position of the center 
of pressure (cp) and center of mass (cm), there are 
the following cases (Fig. 2): 

 cm in front of cp (stabilizing moment - statically
stable),

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:kljuno@mef.unsa.ba
https://doi.org/10.21833/ijaas.2017.010.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2017.010.001&amp;domain=pdf&amp


Elvedin Kljuno, Alan Catovic /International Journal of Advanced and Applied Sciences, 4(10) 2017, Pages: 1-9 

2 
 

 cm behind cp (destabilizing moment - statically 
unstable), and 

 cm and cp coincide - a neutral case. 

 
Fig. 1: Schematic view of three types of static stability 

(stable, neutral and unstable) 

 

 
Fig. 2: Center of pressure position relative to center of 

mass for body 

 
The assessment of the center of pressure and the 

stability of the irregularly shaped body that moves 
through the atmosphere is complex, and in the 
literature no research has been found that deals with 
this problem.  

2. The physical models  

2.1. Determination of the center of pressure 

In order to estimate the position of the center of 
pressure for an irregularly shaped body, it is 
necessary to know the values of the resulting 
aerodynamic force and moment and their 
components. For an irregularly shaped body this is 
possible using numerical simulations because 
simulations take into account their real geometry. 

Fig. 3 shows the center of pressure cp and body 
center of mass cm for an irregularly shaped body. The 
same image shows the resultant aerodynamic force 

vector 𝐹⃗𝑎𝑒𝑟𝑜 and an elementary aerodynamic force 

vector 𝑑𝐹⃗𝑎𝑒𝑟𝑜 on the body element dA. These vectors 
are, in general, arbitrarily oriented in space.  

Fig. 3 also shows the direction of the force vector 
those changes during the movement, which means 
that the position of the center of pressure changes 

also during the movement. Velocity relv  is the 
relative fluid velocity (relative to the body). In 

general, vectors 𝐹⃗𝑎𝑒𝑟𝑜  and 𝑣⃗𝑟𝑜 are not parallel. 
Fig. 4 gives a schematic representation of the 

aerodynamic force and moment (mutually 
perpendicular vectors) on the irregularly shaped 

body, as well as the radius vector r  of the elementary 
surface dA. The total moment of aerodynamic forces 
for the center of mass is: 

 

𝑀⃗⃗⃗𝑎𝑒𝑟𝑜 = ∮ 𝑟 × 𝑑𝐹⃗⃗⃗𝑎𝑒𝑟𝑜𝐴
.                    (1) 

 

 
Fig. 3: Schematic representation of the aerodynamic force 

and center of pressure 

 

 
Fig. 4: Schematic representation of the aerodynamic force 

and moment on the irregularly shaped body 
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To determine the center of pressure for the 
irregularly shaped body let us consider Fig. 3. The 

aerodynamic force moment 𝑀⃗⃗⃗𝑎𝑒𝑟𝑜 can be defined for 
the arbitrary selected coordinate system by a cross 
product: 

 

𝑀⃗⃗⃗𝑎𝑒𝑟𝑜 = [𝑑 × 𝐹⃗𝑎𝑒𝑟𝑜],                      (2) 

 

where vector 𝑑 (Fig. 3) is  
 

𝑑 = 𝑟𝑐𝑝∗ − 𝑟𝑐𝑚.                       (3) 

 

Vector of moment 𝑀⃗⃗⃗𝑎𝑒𝑟𝑜 is perpendicular to the 

plane made by vectors 𝐹⃗𝑎𝑒𝑟𝑜 and 𝑑.  
In (3) 𝑟𝑐𝑝∗ is the position vector of the center of 

pressure cp*, 𝑟𝑐𝑚 is the position vector of the center 
of the mass of cm relative to the arbitrarily selected 
coordinate system. If the position of the center of 
pressure is determined relative to the center of mass 
(where the coordinate system is most often defined), 
the position vector 𝑟𝑐𝑚 in (3) can be neglected. 

The cross product in (2) is reduced to a system of 

equations with three unknowns, vector 𝑑 

components dx, dx and dz. The magnitude of vector 𝑑 
represents the distance between the center of 
pressure and the center of mass of the body: 

 

|𝑑| = √𝑑𝑥
2 + 𝑑𝑦

2 + 𝑑𝑧
2.                        (4) 

 
The system of equations from (2) has a nontrivial 

solution (singular matrix) since it is linearly 
dependent because the center of pressure can be 
anywhere in the direction of aerodynamic force 𝐹⃗𝑎𝑒𝑟𝑜 
(Fig. 3), i.e. any position of the center of pressure in 
this direction satisfies the condition (2). 

In order to solve the system of equations (2), it is 
necessary to define an additional condition, i.e. 
additional equation. This equation is obtained from 

the condition that the vector 𝑑  is perpendicular to 

the direction of force 𝐹⃗𝑎𝑒𝑟𝑜 (the scalar product of two 
perpendicular vectors is equal to zero), which can be 
written: 

 

𝑑  ⋅ 𝐹⃗𝑎𝑒𝑟𝑜 = 0.                     (5) 

 
Now, the final system of equations can be written 

as:  
 
𝑑𝑦𝐹𝑧 − 𝑑𝑧𝐹𝑦 = 𝑀𝑥,                   (6a) 

𝑑𝑧𝐹𝑥 − 𝑑𝑥𝐹𝑧 = 𝑀𝑦,                   (6b) 

𝑑𝑥𝐹𝑦 − 𝑑𝑦𝐹𝑥 = 𝑀𝑧,                   (6c) 

𝑑𝑥𝐹𝑥 + 𝑑𝑦𝐹𝑦 + 𝑑𝑧𝐹𝑧 = 0.                  (6d) 

 
The system of four equations (6a-6d) with three 

unknowns (dx, dy and dz) is linearly dependent and 
could be unambiguously solved by the substitution 
method if there were no numeric errors (in 
numerical simulations) manifested by a small 

deviation of vectors 𝐹⃗𝑎𝑒𝑟𝑜 and 𝑀⃗⃗⃗𝑎𝑒𝑟𝑜 from their 
mutual orthogonality. After each simulation has been 

completed (for each orientation of the body for given 
Mach number), the orthogonality condition of these 
two vectors should be satisfied, that is, their scalar 
product should be zero. Only when the condition of 

orthogonality for vectors 𝐹⃗𝑎𝑒𝑟𝑜 and 𝑀⃗⃗⃗𝑎𝑒𝑟𝑜 is satisfied 
then any combination of three of the four equations 

(6a-6d) will give a vector 𝑑, with equation (6d) being 
included. 

In case when the condition of orthogonality for 

vectors 𝐹⃗𝑎𝑒𝑟𝑜 and 𝑀⃗⃗⃗𝑎𝑒𝑟𝑜 (obtained via simulations) is 
not satisfied, optimization of system of equations 
(6a-6d) should be done using optimization function 
S: 

 

𝑆 = (𝑑𝑦𝐹𝑧 − 𝑑𝑧𝐹𝑦 − 𝑀𝑥)
2

+ (𝑑𝑧𝐹𝑥 − 𝑑𝑥𝐹𝑧 − 𝑀𝑦)
2

+

(𝑑𝑥𝐹𝑦 − 𝑑𝑦𝐹𝑥 − 𝑀𝑧)
2

+ (𝑑𝑥𝐹𝑥 + 𝑑𝑦𝐹𝑦 + 𝑑𝑧𝐹𝑧)
2

.                 (7) 

 
The method used in Eq. 7 is similar to the least 

squares method but is not the same as this is not 
interpolation or approximation of the function. From 
(7), the parameters dx, dy and dz (vector 
components) in which the function S achieves its 
minimum could be determined. The conditions of the 
local extreme (using partial derivatives) for function 
S are: 

 
𝜕𝑆

𝜕𝑑𝑥
=

𝜕𝑆

𝜕𝑑𝑦
=

𝜕𝑆

𝜕𝑑𝑧
= 0,                    (8) 

 
where we now get a new system with three 
equations and three unknowns: 

 
𝑑𝑥(𝐹𝑥

2 + 𝐹𝑦
2 + 𝐹𝑧

2) + 𝑑𝑦(−𝐹𝑥𝐹𝑦 + 𝐹𝑥𝐹𝑦) + 𝑑𝑧(−𝐹𝑥𝐹𝑧 +

𝐹𝑥𝐹𝑧) = 𝐹𝑦𝑀𝑧 − 𝐹𝑧𝑀𝑦,                  (9a) 

𝑑𝑥(−𝐹𝑥𝐹𝑦 + 𝐹𝑥𝐹𝑦) + 𝑑𝑦(𝐹𝑥
2 + 𝐹𝑦

2 + 𝐹𝑧
2) + 𝑑𝑧(−𝐹𝑦𝐹𝑧 +

𝐹𝑧𝐹𝑦) = 𝐹𝑧𝑀𝑥 − 𝐹𝑥𝑀𝑧,                  (9b) 

𝑑𝑥(−𝐹𝑥𝐹𝑧 + 𝐹𝑥𝐹𝑧) + 𝑑𝑦(−𝐹𝑦𝐹𝑧 + 𝐹𝑧𝐹𝑦) + 𝑑𝑧(𝐹𝑥
2 + 𝐹𝑦

2 +

𝐹𝑧
2) = 𝐹𝑥𝑀𝑦 − 𝐹𝑦𝑀𝑥.                  (9c) 

 
After removing repeating parts, the above 

expressions are reduced to the following system: 
 

𝑑𝑥𝐹𝑎𝑒𝑟𝑜
2 = (𝐹⃗𝑎𝑒𝑟𝑜 × 𝑀⃗⃗⃗𝑎𝑒𝑟𝑜)

𝑥
,               (10a) 

𝑑𝑦𝐹𝑎𝑒𝑟𝑜
2 = (𝐹⃗𝑎𝑒𝑟𝑜 × 𝑀⃗⃗⃗𝑎𝑒𝑟𝑜)

𝑦
,               (10b) 

𝑑𝑧𝐹𝑎𝑒𝑟𝑜
2 = (𝐹⃗𝑎𝑒𝑟𝑜 × 𝑀⃗⃗⃗𝑎𝑒𝑟𝑜)

𝑧
,                (10c) 

 
where 𝐹𝑎𝑒𝑟𝑜

2 = 𝐹𝑥
2 + 𝐹𝑦

2 + 𝐹𝑧
2 (squared magnitude of 

total force vector  𝐹⃗𝑎𝑒𝑟𝑜), and (𝐹⃗𝑎𝑒𝑟𝑜 × 𝑀⃗⃗⃗𝑎𝑒𝑟𝑜)
𝑥

, 

(𝐹⃗𝑎𝑒𝑟𝑜 × 𝑀⃗⃗⃗𝑎𝑒𝑟𝑜)
𝑦

, and (𝐹⃗𝑎𝑒𝑟𝑜 × 𝑀⃗⃗⃗𝑎𝑒𝑟𝑜)
𝑧
 are 

projections of the cross product 𝐹⃗𝑎𝑒𝑟𝑜 × 𝑀⃗⃗⃗𝑎𝑒𝑟𝑜 onto 
axes. Finally, (10) can be given in a compact vector 
form  

 

𝑑 =
𝐹⃗𝑎𝑒𝑟𝑜×𝑀⃗⃗⃗𝑎𝑒𝑟𝑜

𝐹2
,                                    (11) 

 
with which it is possible (based on data from 

numerical simulations) to determine the vector 𝑑 
components and its magnitude (distance cp* from 
cm). The term (11) is simple and does not require 
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solving a new equation system, as would be the case 
if the optimization was done by the Lagrange 
multipliers method. 

The actual center of pressure is in the same 
direction as cp*, but it cannot be obtained directly 
from the moment equations, but an additional 
condition should be set. 

It is important to note that, if the orthogonality 
condition is precisely satisfied, the intensity 

magnitude of the vector 𝑑 could be obtained by 
simply dividing the magnitude of the moment vector 

𝑀⃗⃗⃗𝑎𝑒𝑟𝑜 by the force vector 𝐹⃗𝑎𝑒𝑟𝑜 magnitude, but in this 
case the position of the vector (components dx, dy 

and dz) in the space is unknown. The vector 𝑑 is an 
important parameter because it represents the 
measure of the aerodynamic moment and shows the 
position of the total aerodynamic force. 

2.2. Condition of stability for irregularly shaped 
bodies 

The question is how the body will orient itself 
during the flight after the kinetic energy of the 
rotation is completely dissipated through the work 
of aerodynamic moment (Kljuno and Catovic, 2017). 
The underlying precondition for such a body 
orientation is that there are cases when: 

 

|𝑑| = 0.                    (12) 

 
Condition (12) is necessary, but not sufficient. To 

understand this better, let us use an analogy with a 
pendulum, as in Fig. 5. In the case of a) and b) vector 

𝑑 magnitude is zero (d = 0), but in the first case, the 
pendulum is in an unstable orientation, whereas in 
the second case (Fig. 5b) it is in a stable orientation. 
Therefore, it is necessary to introduce an additional 
(sufficient) condition of stability of orientation. 

The basic idea is to use work of moment 𝑀⃗⃗⃗𝑎𝑒𝑟𝑜  to 
define this additional stability condition. Before we 
begin the analysis of the irregularly shaped body, let 
us consider again the case of the stability of the 
pendulum, now in Fig. 6. If we perform pivoting 
(rotation) of the pendulum from the upper vertical 
position for the small angle φ in the direction 
indicated in Fig. 6a, then the work of the moment 
due to the force 𝑚𝑔⃗  is positive (W> 0). Conversely, 
the work of the moment due to the force 𝑚𝑔⃗ over a 
rotation for a small angle φ around the lower 
(stable) vertical position is negative (W <0). 

Based on this simplified analysis, the conditions 
of body stability can be set as follows: 

 

|𝑑| = 0                      (13) 

𝑊 < 0                                   (14) 
 

in every neighborhood of equilibrium position.  
The condition (14), in the case of an irregularly 

shaped body flight, refers to the arbitrary rotation 
axis which passes through the center of mass. 

In the case of a pendulum, the rotation was 
around an axis perpendicular to the direction of the 

force. However, in the case of an irregularly shaped 
body, there are an infinite number of rotation axes or 
the ways in which the body can be pushed away 
from equilibrium orientation, so it is necessary to 
present the condition (14) in a more appropriate 
form. 

 

 
Fig. 5: Schematic diagram of pendulum stability 

 

 
Fig. 6: Introduction of instability to pendulum 

 
For easier understanding, we can again use an 

analogy.  
Let's imagine that the pendulum joint is spherical 

as shown in Fig. 7. Then it is possible to pivot the 
pendulum away from its the equilibrium orientation 
by rotating it around any axis perpendicular to the 
direction of the force 𝑚𝑔⃗. 

In Fig. 7a the pendulum is shown in the 
equilibrium orientation, while in Fig. 7b the 
pendulum is rotated for angle φ in relation to the 
equilibrium position around an arbitrary axis, 
whereby 𝑛⃗⃗ ⊥ 𝑚𝑔⃗ (the force 𝑚𝑔⃗ is moved to the joint 
and the moment is added). 
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Fig. 7: Schematic diagram of equilibrium orientation (a) 

and rotation of pendulum around arbitrary axis (b) 

 

The work of a moment 𝑀⃗⃗⃗𝑚𝑔⃗⃗ for a small angle of 
rotation 𝜑 (for pendulum) can be determined as: 

 
𝑊𝑚𝑔 = ∫ (𝑀⃗⃗⃗𝑚𝑔⃗⃗ ⋅ 𝑛⃗⃗)𝑑𝜑

𝜑

0
= 𝑓(𝜑),                 (15) 

 
where the work done by the gravity force, expressed 
via the work of the moment about the joint, has to be 
negative in the neighborhood of the angle 𝜑 = 0, for 
which the moment is zero, i.e.  

 
𝑊𝑚𝑔(𝜑) < 0,                    (16) 

 

for a small angle in the neighborhood of 𝜑 = 0.  
 
The condition (16) can be generalized in the case 

of an irregularly shaped body, as in Figs. 8 and 9. Fig. 
8 is an illustration of a body stable orientation, 

wherein the vectors 𝐹⃗𝑎𝑒𝑟𝑜 and 𝑣⃗𝑟𝑒𝑙  are in general not 
parallel, while in Fig. 9 the body was taken away 
from stable orientation by rotating it with angle 𝜑 

about arbitrary axis, where 𝑛⃗⃗ ⊥ 𝐹⃗𝑎𝑒𝑟𝑜.  
 

 
Fig. 8: Schematic diagram of stable (equilibrium) 

orientation 
 

The work of a moment 𝑀⃗⃗⃗𝑎𝑒𝑟𝑜 for rotation with an 
angle φ is 

 
𝑊 = ∫ (𝑀⃗⃗⃗𝑎𝑒𝑟𝑜 ⋅ 𝑛⃗⃗)𝑑𝜑

𝜑

0
= 𝑓(𝜑).                 (17) 

Unit vector 𝑛⃗⃗  can be expressed as 
 

𝑛⃗⃗ = cos 𝛼  𝑖 + cos 𝛽  𝑗 + cos 𝛾  𝑘⃗⃗.                 (18) 

 
Here α, β and γ are angles of arbitrary axis of 

rotation, where following applies: 
 

cos2 𝛼 + cos2 𝛽 + cos2 𝛾 = 1.                 (19) 

 

The work of a moment 𝑀⃗⃗⃗𝑎𝑒𝑟𝑜 (17) for angle φ 
can be approximately determined with the equation: 

 
𝑊 ≈ (𝑀𝑎𝑒𝑟𝑜−𝑥 cos 𝛼 + 𝑀𝑎𝑒𝑟𝑜−𝑦 cos 𝛽 + 𝑀𝑎𝑒𝑟𝑜−𝑧 cos 𝛾) △ 𝜑.

                                                                                        (20) 

 
 

 
Fig. 9: The body rotated for a small angle about the stable 

orientation to examine the sign of the work of 𝑀⃗⃗⃗𝑎𝑒𝑟𝑜 
 

Axis Ω – Ω is set perpendicular to 𝐹⃗𝑎𝑒𝑟𝑜  as there is 
no work done over a rotation about an axis in the 

direction parallel to 𝐹⃗⃗⃗⃗𝑎𝑒𝑟𝑜. If we go back to the 
pendulum analogy, this axis would be the analogous 
to axis of the pendulum, in the direction of force 𝑚𝑔⃗, 
and then the moment for point A remains zero (Fig. 
7), so there is no work on that rotation. 

The condition of orthogonality for the rotation 

axis Ω – Ω and 𝐹⃗𝑎𝑒𝑟𝑜 is 
 

𝑛⃗⃗ ⋅ 𝐹⃗𝑎𝑒𝑟𝑜 = 𝐹𝑎𝑒𝑟𝑜−𝑥 cos 𝛼 + 𝐹𝑎𝑒𝑟𝑜−𝑦 cos 𝛽 + 𝐹𝑎𝑒𝑟𝑜−𝑧 cos 𝛾 =

0.                                     (21) 
 

Only one of three angles of rotation axis Ω – Ω is 
arbitrary, while the other two are determined from 
(19) and (21). Based on (16) and (17) the condition 
can be set for the general case 

 

𝑊(𝜑) < 0                    (22) 
 

in the neighborhood of the equilibrium position. 
 

If the function W(φ) was developed into Taylor 
series in the neighborhood of equilibrium position, 
then 

 

𝑊(𝜑) = 𝑊(0) +
𝑑𝑊

𝑑𝜑
|

𝜑=0
𝜑 +

1

2
(𝑑2𝑊)

𝑑𝜑2
|

𝜑=0

𝜑2 + ⋯,             (23) 

where 
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𝑊(0) = 0;                   (24a) 
𝑑𝑊

𝑑𝜑
|

𝜑=0
= (𝑀⃗⃗⃗𝑎𝑒𝑟𝑜 ⋅ 𝑛⃗⃗)|

𝜑=0
.                (24b) 

 
The work function (23) is zero at 𝜑 = 0, hence 

the condition (24a) and the (de)stabilization 

moment 𝑀⃗⃗⃗𝑎𝑒𝑟𝑜 is zero at the equilibrium orientation 

due to 𝑑 = 0. So, given that 𝑀⃗⃗⃗𝑎𝑒𝑟𝑜 for 𝜑 = 0, the 
sufficient condition of stability is finally 

 

𝑊(𝜑) ≈
1

2

𝑑2𝑊

𝑑𝜑2
|

𝜑=0
𝜑2 < 0 .                  (25) 

3. Method of numerical simulation 

Numerical simulations of high-speed external 
aerodynamic flow over irregularly shaped body were 
performed in Ansys Fluent. 

 Body with irregular shape was scanned and 
digitized in AutoCAD software, based on its real 
geometry and imported in Ansys Workbench. 
Unstructured mesh around the body (700 000 
cells) and boundary conditions (wall and pressure 
farfield) were used in the numerical model (Fig. 10 
and Fig. 11). The flow velocity vector was directed in 
the positive direction of axis X of the coordinate 
system set in the body center of mass (Fig. 11).  

Air is modeled as homogeneous, isotropic, ideal 
gas with pressure-temperature dependent density , 
specific heat Cp, thermal conductivity k and dynamic 
viscosity . Simulations were carried out for a flow 
velocity of 3 Mach (assumed initial velocity of 
fragments from detonating high explosive 
projectiles), and body orientations for one full 
rotation (from 0 to 360), with angle increment of 
15 (Fig. 12).  

These orientations were used in simulation with 
the static body to estimate aerodynamic forces and 
moments that are generated during the flight. A 
density-based solver was used in the simulations, 
where mass, flow and energy equations were 
determined as the Navier-Stokes equation system.  

 

 
Fig. 10: Mesh around body 

 

 
Fig. 11: Boundary conditions in numerical model 

 
Spalart-Allmaras turbulence model was used in 

the simulations since it has proven to be effective for 
the boundary layers with high pressure gradients, 
and is particularly effective for transonic flows 
around the aero profiles, including flows with 
significant separation of the boundary layer (Pope, 
2000). Residual tolerance was set to 10-5. 

 

 

 
Fig. 12: Schematic representation of body orientation during simulations 
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Aerodynamic forces and moments, required for 
determination of the center of pressure and body 
stability, were determined using user-defined 
function (UDF) program, written in C programming 
language. Based on total pressure on the body 
(tangential stresses were ignored due to the 
dominant pressure forces) and area of every cell, 
forces were calculated for every cell of the body and 
then summed up to obtain total aerodynamic forces 
and their components. The aerodynamic moment is 
determined for each cell of the model as the cross 
product of the cells vector radiuses and the 
aerodynamic force acting on that cell, and these 
moments were also summed to obtain the total 
aerodynamic moment, as well as its components by 
axes. Model was validated using available 
experimental data for drag coefficient CD of the cube. 
This coefficient is determined using expression 
(Anderson, 1991): 

 

𝐶𝐷 =
𝐹𝐷

𝑞𝑆
,                    (26) 

 

where: FD is the drag force, S is reference area and 
𝑞 = 0,5𝜌𝑣2 is dynamic pressure. 

The experimental data (Schamberger, 1971; 
Hoerner, 1965) of CD for cube flat-on flow (flow 
perpendicular to the cube side) were compared with 
values of CD obtained using numerical simulations. 

In the process of validation of results, the 
discretization of space and time, solver and initial 
and boundary conditions in the case of simulation of 
the airflow around 3D cube models were the same as 
in the numerical model of flow around the 3D model 
of the irregularly shaped body. 

Fig. 13 gives a comparison of numerical 
simulation results with experimental data 
(Schamberger, 1971; Hoerner, 1965) for flat-on 
orientation of cubes. The difference between values 

of the CD from simulations and experiments were 
less than 10%. 

 

 
Fig. 13: Comparison of drag coefficients from simulations 
and experiments (Schamberger, 1971; Hoerner, 1965) for 

a cube 

4. Analysis of results  

In this paper center of pressure was determined 
for different orientation of an irregularly shaped 
body. Also, the stability for irregularly shaped body 
was assessed using numerical simulation results and 
physical model given. 

4.1. Determination of center of pressure 

Using a physical model developed in the research, 
using the eq. (11) and (12) for different body 
orientations (Fig. 12) of an irregularly shaped body, 

vector 𝑑 component values (dx, dy i dz) and its 
magnitude (practically distance of the center of mass 
from the center of pressure) were determined. In 
Table 1 the values of moment components, obtained 
by numerical simulations are also given. 

 

Table 1: Values of vector 𝑑 components, its magnitude and values of moment components 

Orientation Ma number 
vector 𝑑 components (mm) vector 𝑑 magnitude (mm) 

Maero-x(Nm) Maero-y (Nm) Maero-z (Nm) 
dx dy dz |𝑑| 

0 (360) 3 -0,299 0,283 0,922 1,010 0,235 0,617 -0,113 

15 3 -0,477 1,079 0,912 1,491 0,127 0,642 -0,692 

30 3 -0,623 1,072 0,757 1,453 -0,026 0,480 -0,701 

45 3 -0,608 0,858 0,620 1,221 -0,043 0,318 -0,482 

60 3 -1,713 2,598 0,944 3,252 0,026 0,346 -0,906 

75 3 -3,839 6,512 2,132 7,855 0,014 0,393 -1,175 

90 3 -2,888 8,716 4,518 10,233 -0,023 0,391 -0,768 

105 3 1,431 4,050 2,554 4,998 -0,091 0,339 -0,487 

120 3 1,395 2,116 0,736 2,639 -0,167 0,341 -0,666 

135 3 0,420 0,610 0,300 0,799 -0,159 0,254 -0,295 

150 3 -0,223 -0,474 0,323 0,615 -0,026 0,188 0,257 

165 3 -0,173 -0,769 0,418 0,892 0,098 0,197 0,403 

180 3 -0,016 -0,532 0,393 0,661 0,203 0,206 0,271 

195 3 0,053 -0,153 0,491 0,517 0,258 0,318 0,071 

210 3 -0,022 0,105 0,481 0,493 0,274 0,382 -0,073 

225 3 0,283 -0,424 0,548 0,749 0,287 0,434 0,187 

240 3 0,878 -1,628 0,913 2,062 0,230 0,411 0,511 

255 3 0,451 -1,944 1,826 2,705 0,096 0,299 0,295 

270 3 -0,183 -2,883 2,777 4,007 0,005 0,318 0,327 

285 3 -0,896 -3,066 1,709 3,623 -0,021 0,271 0,475 

300 3 -0,431 -0,608 0,716 1,034 0,019 0,216 0,194 

315 3 -0,592 -0,839 0,631 1,206 0,041 0,301 0,438 

330 3 -0,703 -1,120 0,783 1,537 0,076 0,461 0,727 

345 3 -0,474 -0,778 0,885 1,271 0,142 0,565 0,573 
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Table 1 shows that the magnitude of the vector 

𝑑 is not equal to zero for any orientation considered 
in simulations. Also, based on the vector 

𝑑 ⃗⃗⃗⃗ component values, it is shown that the vector 𝑑 is 
positioned arbitrarily in space, i.e., it is not bound to 
a single axis, such as for axi-symmetric bodies. 

Generally speaking, the largest magnitude of the 

vector 𝑑 were recorded in the case of a body 
orientation of 75° -105° and the minimum for 
orientations in the range of 135° to 225°. 

4.2. Assessment of stability for irregularly 
shaped body 

The physical model, developed in the research, 
has shown that stability conditions can be given in 
the form  

 

|𝑑| = 0  

 

and 
 
𝑊(𝜑) < 0. 

 
It was necessary to find the orientation of the 

irregularly shaped body whereby these conditions 
were most satisfying for given velocity of the body 
(or relative air flow). The body used in the 
simulations represents a realistic fragment 
generated by the detonation of high explosive 
projectiles (initial velocity of these fragments is in 
the order of 3-6 Mach). Therefore, the air flow 
velocity of 3 Ma was of the greatest interest in 
numerical simulations. 

Based on the results (shown in Table 1), the 
estimation of the stability zone for two orientations 
of the irregularly shaped body was conducted, where 
the sign of moment Maero-z (rotation is conducted 
around axis Z, Fig. 12) changes, and also where 

magnitude of vector 𝑑 was lowest and moment 
intensity relatively low. For this body these 
orientations were: 150 i 195. 

It was necessary to find the values and the sign of 
the work of a moment W (φ) around these 

equilibrium orientations (𝑀⃗⃗⃗𝑎𝑒𝑟𝑜 ≈ 0), using the eq. 
(20), for the angle of increment of 15, where for 
one side (relative to the equilibrium orientation) this 
angle increment is -15° (i.e. angle 135° relative to the 
equilibrium orientation of 150°), and on the other 
side this increment is 15 ° (i.e. angle 165° relative to 
the equilibrium orientation of 150°). Numerical 
simulations provided the values of the aerodynamic 
moment components (for given Mach number), 
which are needed to determine the work of a 
moment from the Eq. 20. 

In the simulations, air flow velocity vector was 
oriented in positive X axis (Fig. 12), meaning that the 
angles of the rotation axis from the expression (20) 
were α = 90, β = 90 and γ = 0. In this way, rotation 
axis coincides with the rotation of the body in 
numerical simulations (rotation around Z axis, Fig. 
12). 

Table 2 shows the results of the work of 
aerodynamic moment W (φ) in the equilibrium 
orientations of 150° and 195°, at the velocity of 3 
Mach, obtained from the expression (20) and the 
numerical simulation data. 

 
Table 2: Moment components and work of moment data for two equilibrium orientations (3 Mach) 

Orientations of the body Maero-x (Nm) Maero-y (Nm) Maero-z (Nm) W (J) 

first equilibrium orientation - 150 (𝑀⃗⃗⃗𝑎𝑒𝑟𝑜 ≈ 0) 

135° -0,1588 0,2545 -0,2955 0,0774 

150° -0,0265 0,1875 0,2569  0 
165° 0,0977 0,1967 0,4027 0,1054 

second equilibrium orientation - 195 (𝑀⃗⃗⃗𝑎𝑒𝑟𝑜 ≈ 0) 

180° 0,2029 0,2059 0,2708 -0,0709 
195° 0,2581 0,3179 0,0712  0 
210° 0,2744 0,3824 -0,0706 -0,0185 

 

As can be seen from Table 2, for the first 
equilibrium orientation (150) the body is in the 
unstable zone because the work of moment around 
these orientations (for angle increments of 15) is 
positive. On the other hand, in the orientation of 
195, the body is in a stable zone because the work 
on this incremental rotation (15) with respect to 
the equilibrium orientation (1950) is negative 
(inequality (25)). 

The fact that the work of moment for the 195° 
orientation is negative indicates that the oscillation 
of the body around the center of its mass will occur 
with respect to the selected axis of the body rotation, 
but that does not mean that the body would not 
rotates around some another axis. However, the 
oscillation will occur within the stability zone in the 
neighborhood of the stable equilibrium orientation 
which the body takes during the motion through the 
resistive medium. 

This stability zone refers to only one axis, the one 
around which the body was rotated in numerical 
simulations. In order to test this zone of stability 
more closely, it would be necessary to make an 
estimate of the work of moments for an axis 
perpendicular to the first axis (used in simulations). 
For each step around Z axis one should do 24 more 
steps around Y axis rigidly fixed to the body, which 
would require 242 (or 576) numerical simulations. 
But even then, this rotation does not have to give an 
exact solution of the stability zone. Instead, 24 
numerical simulations based on rotation only around 
Z axis were made, and based on this; an estimate of 
where a stable orientation of the body is located was 
assessed. But, in general, this stability zone for body 
with an irregular shape should be iteratively 
examined in relation to rotations of mutually 
perpendicular axes, which is a long-term work. 
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It should be noted that these stability estimates 
apply only to the body of this particular shape. For 
the other body, it is necessary to make new 
simulations, but the developed method for 
prediction of center of pressure and stability is, of 
course, general, and based on it as a tool, it is 
possible to evaluate the stability of any body. 

Finally, the stability zone is actually a spatial 
angle. This can be a conical surface, and it is 
necessary to estimate the boundary of this conical 
surface at rotation about one axis and then do the 
same for the second axis. Within this conical surface, 
the body will oscillate around the center of mas and 
will not overturn or tumble. If there is no initial 
angular velocity, the body will be in a stable 
orientation during the motion and will oscillate 
within this cone surface. 

5. Conclusion 

Physical models for estimating the center of 
pressure for irregularly shaped bodies and for 
assessing the stability of such bodies are given. Using 
the developed physical models and the results of 
numerical simulations (3D steady simulations, 
density based solver and Spalart-Allmaras 
turbulence model) for an irregularly shaped body, a 
center of pressure and stability analysis was 
performed for one specific body shape.  

A method of determining equilibrium stable 
orientation based on the work of aerodynamic 
moment in the neighborhood of the equilibrium 
orientation is demonstrated in the general case of 
irregularly shaped body movement. An example of a 
practical estimation of stable orientation is given 

using simulations for a series of orientations, with 
the body rotating in increments of 15 around one of 
the central axis. 

It has been shown that the body in specific 
orientations may be in the zone of stability, but this 
stability should be further examined iteratively with 
respect to rotations of mutually perpendicular axes. 

6. Future work 

Planed future work will be focused onto an 
estimation of the fragment trajectory using 
aerodynamic coefficients for real fragments. It is a 
challenging task since the general fragment motion 
has 6 DOF and relatively long trajectories due to high 
velocities. Particularly challenging task is solving for 
the body rotation due to the aerodynamic moment 
which is difficult to predict for an arbitrary 
orientation of the fragment during the flight.  
However, the plan is to introduce appropriate 
approximations and model the rotational degrees of 
freedom. 
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