
 International Journal of Advanced and Applied Sciences, 3(10) 2016, Pages: 64-71

Contents lists available at Science-Gate

International Journal of Advanced and Applied Sciences
Journal homepage: http://www.science-gate.com/IJAAS.html

64

A scenario-based distributed testing model for software applications

Mirza Aamir Mehmood 1, 3, Azhar Mahmood 1,*, Muhammad Naeem Ahmed Khan 1, Shaheen Khatoon 2

1Department of Computer Science, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, SZABIST, Islamabad,
Pakistan
2College of Computer Science, King Faisal University, Al Hassa, Saudi Arabia
3Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan

A R T I C L E I N F O A B S T R A C T

Article history:
Received 10 June 2016
Received in revised form
16 October 2016
Accepted 19 October 2016

Modern software applications are getting more complex in order to provide
better service and quality. This complexity has given birth too many
challenges for software testing such as functional discontinuation and
detection of system level defects. Existing testing techniques which are based
on test cases are time consuming and unable to offer higher confidence on
quality of products for these complex applications. Distributed testing
frameworks could be used to test complex software but these frameworks do
not provide a global picture of testing activities and application status. This
poor visibility results in poor control over testing activities. In this study we
have proposed a distributed testing model (DisTest) using scenario-based
testing technique. DisTest could be used with any COTS test automation tool
and could be employed at any testing level. Result shows DisTest provides
better visibility and control on testing activities and view of application
status.

Keywords:
Distributed testing
Software testing
VandV
Distributed application testing

© 2016 The Authors. Published by IASE. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

*Software testing is a defect detection technique
and integrated phase of Software Development Life
Cycle (SDLC). It is employed with other defect
prevention techniques such as static analysis. Fig. 1
shows different testing levels and strategies based
on their characteristics.

In order to select type of testing project managers
need to consider cost and quality to deliver high
quality software within budget. Testing is a costly
task and it is estimated that mature organization
spent 20-50% efforts on software testing (Desikan,
2006). To cope with these challenges there is a
growing body of research based upon nature of
application among them.

Distributed software testing is much more
difficult than testing a conventional desktop
application since distributed testing environment
present many challenges for software testing e.g.
dynamically evolving system architecture, stochastic
behavior, complex component interactions,

* Corresponding Author.
Email Address: azharmahmood8@hotmail.com (A. Mahmood)
https://doi.org/10.21833/ijaas.2016.10.011
2313-626X/© 2016 The Authors. Published by IASE.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

functional discontinuations, failure under load and
stress condition (Mogul, 2006), effects of correlated
failures (Haeberlen et al., 2005), bottlenecks arising
from complex network topologies, availability,
scalability etc. All of these issues make distributed
software testing very challenging and difficult to
accomplish (Gupta et al., 2011).

Fig. 1: Quality attributes, levels and strategies of software

testing (Tómasson, 2011)

Existing distributed testing frameworks cannot
deal with testing challenges outlined above. In this
study a model is proposed for automated distributed
software testing. DisTest is intended for test
engineers thus black box methodology is employed.

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:azharmahmood8@hotmail.com
https://doi.org/10.21833/ijaas.2016.10.011
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2016.10.011&domain=pdf&date_stamp=2016-10-19

Mehmood et al/ International Journal of Advanced and Applied Sciences, 3(10) 2016, Pages: 64-71

65

It can handle testing challenges such as stochastic
behavior and functional discontinuation. This model
can be used with any commercial off-the-shelf
(COTS) test automation tool and could be deployed
in any environment where Java is supported.
Proposed model can be applied at any level of
software testing, such as integration testing, where
not all the components are fully developed and at the
system level, where it can uncover system level
defects which existing techniques may fail to reveal.

Proposed distributed testing framework is
developed by using concept of scenario based
testing. It is a software testing technique employed
when black box testing strategies are used. A typical
scenario is shown in Fig. 2 where user is login to
system and performing different task by considering
system as black box.

Fig. 2: A test scenario

Scenario-based testing technique has many
advantages over other techniques. A scenario is a
hypothetical story, used to help a person think
through a complex problem or system. A scenario
test is based on a motivating story about how the
program is used, including information about the
motivations of the people involved. Stakeholders
believe that scenario not only could happen in the
real world; stakeholders also believe that something
like it probably will happen (Kaner, 2003). Scenarios
are based on stakeholders prospective and their
priorities of functionalities. Test scenarios are used
to establish or enhance level of confidence on quality
of software to verify complete operational flow of a
system. Scenarios give better test coverage by
testing all part of functionalities of the system under
test with a measureable objective and goal. This way
we can uncover defects in the existing design which
left uncovered using any other techniques. There
could be infinite number of test scenarios but
scenario prioritization and selection is easy as it is
based on user’s priorities.

2. Literature review

Software testing itself bears a lot of challenges
and distributed testing adds another layer of
complexity in the testing process. This complexity
also effects construction of test oracle and makes it
difficult. Hierons (2012) has identified two
important challenges of distributed testing have
been identified i.e. controllability and observability.
In distributed testing, test cases are executed on
remote nodes and outcome of these test cases are

local to the remote node. Testing in this fashion does
not provide global picture, making observability
difficult and also results in poor control over testing
activities. With the help of mathematical model it is
established that Oracle problem is NP-hard for the
strong conformance while for weak conformance
Oracle problem can be solved in polynomial time.

Dhavachelvan et al. (2006) observed that existing
testing techniques in which test cases are developed
against use cases is time consuming and inefficient
when testing large and complex applications thus
suggested using agent bases testing framework.
Study aimed to address two important challenges of
testing i.e. time reduction and effectiveness
improvement. After experimentation it is observed
that by using this framework time and cost is
reduced. Paydar and Kahani (2011) has also
suggested using agent based system for testing web
applications. Another solution for reducing cost and
time is using test automation tools. Developing
automated test scripts requires test engineers to
learn scripting language which is time consuming. To
address this issue Gupta and Bajpai (2014) proposed
keyword driven testing in which a key value pair
based dictionary is developed for writing test cases.
Thus learning cure is reduced and test case
development time gets reduced.

Alvaro et al. (2012) employed white box testing
strategy. Test cases are developed in Bloom language
therefore developers don’t have to learn another
language. It has a built in test execution mechanism
and is capable to generate test date. The main
drawback of this framework is that it can test only
those applications which are developed using Bloom
language and only Bloom programmers can use it.

Bassil (2012) proposed testing architecture for
services oriented architecture based applications
(SOA). SOA Applications could be distributed
applications running in heterogeneous environment
thus testing under different deployment
configurations must be conducted. Proposed testing
architecture supports testing of multiple web
services. This parallel execution of test cases
increases throughput and reduces time. Chan et al.
(2007) proposed framework for testing SOA
applications. This study is extension of Chan et al.
(2005). Proposed framework uses metamorphic
testing approach. Metamorphic testing employs
mathematical relations called metamorphic relations
to conduct testing. It is observed that using proposed
approach with 16% less efforts 13% more defects
were identified.

Snelick et al. (2009) proposed framework for
testing distributed healthcare applications. In
healthcare industry application are acquired from
many vendors thus conformance and interpretability
testing is required and this study is aimed to address
these two issues. Hanawa et al. (2010) proposed
cloud based software testing environment for
parallel and distributed applications. Study is aimed
to address defect reproducibility and fault tolerance.
Wu et al. (2011) is cloud based performance and
compatibility testing framework for web

Mehmood et al/ International Journal of Advanced and Applied Sciences, 3(10) 2016, Pages: 64-71

66

applications. Hengliang et al. (2013) proposed cloud
based testing platform for increasing testing
efficiency. Tómasson and Neukirchen (2013) have
proposed TTCN and Jata based framework for
testing cloud applications. During experimentation
instead of deploying PTC on worker nodes, stubs
were used to return results to MTC because delaying
actual PTC on worker nodes is proved very difficult.
Stepien et al. (2008) proposed TTCN based
framework for testing web applications. Key testing
challenges identified are features rich web interface,
client side scripting and reusable component based
server side application. The framework uses
specification-based approach and test agents. Test
specification approach provides many advantages
over other techniques such as test cases reusability
at different level of abstractions and testing. But to
obtain executable test cases an adoption layer must
be implemented. TTCN-3 demands higher levels of
skills from test engineers thus become major
drawback of this framework.

Mišic et al. (1998) proposed a framework for
testing distributed multimedia software systems.
Study identified stringent timing and
synchronization requirements for testing and
categories errors and test SUT for three categories
i.e. timing errors, synchronization errors and
functional errors.

Lübke et al. (2014) is large scale distributed
testing platform composed of Test Systems (TS) to
emulate the behavior of SUT. TS run Test Nodes
Modules to initiate and control SUT. To enable TNM
to control SUT, NESSEE must be integrated into
development process and incorporate IPC
mechanism. Test cases are executed by script engine
built in NESSEE server and TNM. This framework
also includes a network emulator called Degrader to
test environment and provides a generic
architecture for scalability tests of client/server-
based systems.

Testing distributed systems is difficult due to
challenges such as locks, time outs, controllability,
observability, and synchronization problems. Testing
process of distributed system must check if the
output events have been observed along with the
time when event occurred. Azzouzi et al. (2015)
proposed a multi-agent based distributed testing
architecture. This study illustrates how to overcome
these problems by using a distributed testing
method including timing constraints. This study
focus on temporal properties of distributed systems,
which specify the time required to exchange
messages among different components of the
distributed test application. An algorithm has been
developed to overcome problems of observation,
coordination and synchronization which generate
Timing Local Test Sequences for each tester.

Mirshokraie et al. (2015) proposed mutation
testing technique for JavaScript based web
applications. Mutation testing technique has a higher
computational cost involved to execute test suite
against a large set of generated mutants. In this
study a metric named FunctionRank is proposed

along with an algorithm to select variables and
branches for mutation. A static and dynamic analysis
technique is developed to guide the mutation
generation process towards parts of the code that
are more likely to influence the program’s output.

Hierons (2015) worked on developing complete
test suites for distributed testing. This study
proposes development of cm-complete test suites.
This study is based on hypothesis that SUT has no
more than m states and a cm-complete test suite
achieves as much as is possible given that testing
should be controllable.

Distributed system lacks determinism thus
reliability in the network may cause applications
defects. These defects are hard to identify and
reproduce therefore hence making it difficult to
remove these defects. MapReduce service is one such
example of distributed systems. MapReduce enable
processing and storage of large amount of data,
Marynowski et al. (2015) developed an technique to
test fault tolerance of MapReduce. In this study a
method is developed to generate set of fault cases
using Petri Nets and framework for automated
execution of these fault cases in a distributed system.

Critical and distributed component-based
systems are gaining increasingly population. Such
system cannot be stopped for maintenance and up
gradation. Therefore, runtime evolution / dynamic
adaptation are more and more required. It is used
frequently. This is done by dynamically modifying
the software architecture or by modifying its
behavior which increases risk of introducing defects.
Lahami et al. (2016) proposed standard-based and
resource aware runtime testing framework for
adaptable and distributed systems to overcome
above mentioned problem. Proposed framework
carry out distributed testing at runtime, preventing
interference between test processes and business
processes.

3. DisTest: A distributed testing model

Proposed model DisTest is capable to work in any
environment which supports Java. DisTest uses
commercial-off-the-shelf test automation and defect
tracking tools. DisTest is independent of vender,
specific tools, hardware or operating system. This
enables DisTest to reduce upfront cost of acquiring
any specific test automation or defect tracking tool.
By executing an end to end flow of functionalities,
DisTest test scenarios provide a bigger picture of
application status to test engineer. Test engineer can
observer stable and unstable functionalities hence
increases confidence on quality of product. By
identifying unstable functionalities, proposed model
enables test engineer to put more effort testing
unstable functionalities. DisTest executes part
scenarios in parallel therefore testing time could be
reduced. This parallel execution of part scenarios
also results in better control over testing activities
and application status since test engineer can
executes desired test cases in parallel at different
nodes and can uncover system level defects. DisTest

Mehmood et al/ International Journal of Advanced and Applied Sciences, 3(10) 2016, Pages: 64-71

67

Model consist of three layers. These three layers are
Test Oracle, Testing Technique, and Test Execution
Engine.

4. Test oracle

Test Oracle in conventional terms is used to
verify the result of test cases and for that purpose it
could use a heuristic or a uses case(Hierons, 2012).
But in this study we have extended its definition that
it also act as a repository which holds all testing
related artifacts (Lübke et al., 2014). These artifacts
include tractability matrices, test scenarios, test
cases, test scripts, and defect logs.

5. Scenario based testing technique

DisTest uses scenario-based testing technique. In
proposed model test engineer could control and
monitor state of application on different nodes thus
can identify system level defects. DisTest is flexible
and can be employed at any testing level e.g.
component, integration and system level. In case
where some components or modules of SUT are in
development phase DisTest can be used with
necessary stubs and drivers to fill in the missing
parameters (Meszaros, 2007).

6. DistTest test execution engine

Test Execution Engine is responsible to execute
test scenarios in a distributed test environment.
DisTest model is depicted in Fig. 3. It consists of
DisTest Server, DisTest Client and Communication
Service and. DisTest Server execute on server
machine and controls the test execution. DisTest
Server consist of three components i.e. Synch
Manager, Scenario Explorer and Result Analyzer.

Fig. 3: Proposed model – DisTest

DisTest Remote Client is a lightweight component
which executes on a client machine. It has four
components which are Synch Client, Test Execution
Engine, Result Cliper and COTS Test Automation
Tool. Test Execution Engine controls the execution of
part test scenario while test case execution is
responsibility of configure test automation tool.
Result clipper collects result of every executed test
case. On completion of part scenario it compiles a
part test report and synch client component sends
this report to DisTest Server. DisTest Remote client
is developed in an extendable manner and new
commands can be added easily. DisTest Remote
Client can be configured with any COATS test
automation tool or proprietary test automation tool.

Communication Service provides three main
functionalities: Security, Service Discovery, and Load
Balancing. Security means establishing secure and
encrypted data transfer channel among all
components of the system. When a node request part
scenario, its request may be encrypted before
appearing on communication channel. Transfer of
Test Script, Part Scenario, and Part Scenario Result
could also be encrypted and decrypted. This is done
by the communication service.

In distributed application, components are
deployed at different nodes which can be configured
in such a way that more than one component are
replicated on few nodes. Service Discovery i.e.
identifying which component of system under test is
deployed at what node, is responsibility of this
component. There could be a situation where need
for load balancing is felt e.g. a remote client
executing a part test scenario unexpectedly gets
disconnected from network. In such case part
scenario need to be moved to some other node of the
system. Part scenario can only be moved to a node
where required components are already deployed.
This information will be obtained from service
discovery component. At present Communication
Service and Network Topologies related to proposed
solution which caters for Security, Service Discover
and Load balancing is assumed to be in place and
hence is out of scope of this study.

7. Proposed model validation

Model validation is a critical task. Two key points
sufficient accuracy, and built for a specific purpose
have been identified for model validation. No model
can be 100% accurate therefore model validation
aims to access that a model is sufficiently accurate to
achieve the purpose for which it is built (Robinson,
1997, 2014). Researchers have developed many
methods for simulation model validation such as
conceptual model validation, Black-box validation,
Experimentation validation, white-box validation,
and Solution validation.

To validate proposed model, we have used case
study based black box validation strategy. This
technique is used to check accuracy of, overall or
macro operation of the model. In this technique
primary concern is to validate whether a model

Mehmood et al/ International Journal of Advanced and Applied Sciences, 3(10) 2016, Pages: 64-71

68

provides a sufficiently accurate representation of the
real world system to meet the objectives of the
simulation study. For designed case study test cases,
automated test scripts and test scenarios are
developed and simulated proposed model on case
study. Furthermore results are collected and
compared our work with other similar studies e.g.
NESSE (Lübke et al., 2014).

8. Case study

This experimentation is not intended to perform
real life testing and uncover defects in application
under test. Scope of the case study is limited to
demonstrate operational accuracy of proposed
model. Modern applications are complex and may be
composed of various user roles and components.
Access to functionalities or components is subjected

to roles based privileges. In this case study we have
evaluated proposed model to access its ability when
employed to test complex modern applications. We
have used Alfresco Enterprise Collaboration and
Content Management System as system under test.
This case study evaluates the accuracy of model by
executing a scenario which is based on test cases
having different users/roles found in modern
enterprise applications. Test scenario is based on
three user roles i.e. Alfresco Administrator, Alfresco
Site Administrator and Alfresco End User. Depending
on security privilege / permissions, each role has
access to different set of functionalities and for that
we have developed several test cases for each user
role. These test cases are listed in Table 1 and test
scenarios designed for Alfresco ECM is shown in
Table 2.

Table 1: Test cases for alfresco enterprise collaboration and content management system

Test Case ID Test Case Description Module
AD_01 Verify that Alfresco admin can create a user. Alfresco Admin
AD_02 Verify that Alfresco admin can disable a user. Alfresco Admin
AD_03 Verify that Alfresco admin can delete a user. Alfresco Admin
SA_01 Verify that Alfresco admin create a collaboration sharing site. Alfresco Site Admin
SA_02 Verify that Alfresco admin can delete a collaboration sharing site. Alfresco Site Admin

AEU_01 Verify that Alfresco end user can join a public site. Alfresco End User
AEU_02 Verify that Alfresco end user can leave a public site. Alfresco End User

Table 2: Test Scenarios for Alfresco ECM

S ID TC TC ID Result Description

01 07
AD_01,AD_02,AD_03,

SA_01,SA_02,AEU_01,AEU_02
Pass Validate the core functionality of all roles of Alfresco ECM.

The above mentioned test scenario is executed
with DisTest Test Execution Engine and result is
shown in Fig. 4. Result analyzer generated dual axis
graph for each node. On x-axis name of test cases are
provided. On left Y-axis number of iterations each
test case executed is listed. On right y-axis a line is
draw to depict fail thresholds of test cases are
provided. Bars in red color depict iteration with
status Pass and blue bars depict number of times a
test case Failed.

NESSEE described in study Lübke et al. (2014)
has used video conferencing application while we
have used Alfresco Enterprise Collaboration and
Content Management, but we can compare our
model with NESSEE. The biggest advantage of
NESSEE is that it has a component named Network
Degrader to emulate large networks. While biggest
demerit of NESSEE is that, to enable it to control
SUT, application developers must integrate NESSEE
into development process and incorporate inter
process communication mechanism in application.
This also means that NESSEE cannot be used with
components acquired from third party vendors.

9. Analysis

Fig. 5 shows overall picture of ongoing testing
activities. This is a dual axis graph. On x-axis time
and on y-axis scenarios are depicted. Scenarios with
status pass are depicted with 1 and failed scenarios

are depicted with 0. While a line graph is showing
start time of each scenario.

Fig. 4: Alfresco ECM Test Scenario Result

Mehmood et al/ International Journal of Advanced and Applied Sciences, 3(10) 2016, Pages: 64-71

69

With the help of this graph test engineer can
monitor the execution of test scenarios with respect
to time as well as test engineer can observer the
overall stability of application.

Fig. 6 shows scenario level testing activities. This
is also a dual axis graph. On x-axis client id is
provided while on y-axis part scenario id is given.
Graph in blue line is depicting part scenario
distribution to the client nodes.

Fig. 5: Visibility graph of testing activities

On analyzing the graph test engineer can observe
that part scenario 1, 2, and 3 are assigned to client id
1, 2, and 3, respectively. Client ID 3 has executed
assigned part scenario. On completing of part
scenario in 3 it submitted the result and quires
server for part scenario waiting for execution. Server
has assigned client id 3 part scenario id 4 for
execution.

Fig. 6: Part scenario execution

This is to achieve batter resource utilization.
After executing a part scenario client node submit
result to server and if on server a part scenario exist
and waiting for execution it is assigned to that node.
Client id and part scenario along with execution time
i.e. start time and completion time of part scenarios
are shown in Fig. 6.

In Fig. 7 it shows control on over all application
status. Part scenarios are executing in controlled
manner thus initiation of functionality, number of

testing nodes and application status is in control of
test engineer.

Fig. 7: Control of testing activities

If scenario fails, location, time and reason for
failure can easily be identified. This also makes
defect reproduction easy as test engineer know
overall picture of testing activities.

10. Conclusion

DisTest uses scenario-based testing technique in
distributed fashion and increases stakeholder’s
participation in system development and many
design level defects can be uncovered at initial stage
of software development. Test prioritization is a
complex task and requires time and efforts. Test
scenarios are based on user’s priorities and
expectation’s from systems functionalities and
significantly reduces efforts and time required for
test prioritization and selection. Experimental
results shows DisTest provide better control and
visibility during testing at any specific stage which
provides a complete view of software application
regarding its maturity and stability. DisTest support
interoperability with any COTS test automation tools
and defect tracking tools. It also reduces upfront cost
of acquiring any specific test automation or defect
tracking tool. DisTest also supports portability since
it is developed in Java and can be deployed in any
supports Java environment. Results are easy to
understand and status of scenario is updated in Test
Oracle thus no specific tool is required for recording
results of test scenarios.

References

Alvaro P, Hutchinson A, Conway N, Marczak WR and
Hellerstein JM (2012). BloomUnit: Declarative
testing for distributed programs. In the
Proceedings of the Fifth International Workshop
on Testing Database Systems (DBTest '12).
Scottsdale, Arizona. https://doi.org/10.1145/
2304510.2304512

Azzouzi S, Benattou M and Charaf MEH (2015). A
temporal agent based approach for testing open
distributed systems. Computer Standards and
Interfaces, 40: 23-33.

Mehmood et al/ International Journal of Advanced and Applied Sciences, 3(10) 2016, Pages: 64-71

70

Bassil Y (2012). Distributed, cross-platform, and
regression testing architecture for service-
oriented architecture. Advances in Computer
Science and its Applications, 1(1): 9-15.

Chan WK, Cheung SC and Leung KR (2005). Towards
a metamorphic testing methodology for service-
oriented software applications. In the IEEE Fifth
International Conference on Quality Software
(QSIC'05): 470-476. https://doi.org/
10.1109/QSIC.2005.67

Chan WK, Cheung SC and Leung KR (2007). A
metamorphic testing approach for online testing
of service-oriented software applications.
International Journal of Web Services Research,
4(2): 61-81.

Desikan S (2006). Software testing: principles and
practice. Pearson Education India.

Dhavachelvan P, Uma GV and Venkatachalapathy
VSK (2006). A new approach in development of
distributed framework for automated software
testing using agents. Knowledge-Based Systems,
19(4): 235-247.

Gupta D, Vishwanath KV, McNett M, Vahdat A, Yocum
K, Snoeren A and Voelker GM (2011). DieCast:
Testing distributed systems with an accurate
scale model. ACM Transactions on Computer
Systems (TOCS), 29(2): 1-15.

Gupta R and Bajpai N (2014). A keyword-driven tool
for testing web applications (KeyDriver). IEEE
Potentials, 33(5): 35-42.

Haeberlen A, Mislove A and Druschel P (2005).
Glacier: Highly durable, decentralized storage
despite massive correlated failures. In the
Proceedings of the 2nd conference on Symposium
on Networked Systems Design and
Implementation. USENIX Association, 2:143-158.

Hanawa T, Banzai T, Koizumi H, Kanbayashi R, Imada
T and Sato M (2010). Large-scale software testing
environment using cloud computing technology
for dependable parallel and distributed systems.
In the IEEE Third International Conference on
Software Testing, Verification, and Validation
Workshops (ICSTW): 428-433. https://doi.org/
10.1109/ICSTW.2010.59

Hengliang S, Changwei Z, Tao H and Yongsheng D
(2013). Research on distributed software testing
platform based on cloud resource. International
Journal of Computer Science and Engineering
Survey, 4(2): 17-25.

Hierons RM (2012). Oracles for distributed testing.
IEEE Transactions on Software Engineering,
38(3): 629-641.

Hierons RM (2015). Generating complete
controllable test suites for distributed testing.
IEEE Transactions on Software Engineering,
41(3): 279-293.

Kaner C (2003). The power of "What If" and nine
ways to fuel your imagination: Cem Kaner on
scenario testing. Software Testing and Quality
Engineering, 5: 16-22.

Lahami M, Krichen M and Jmaiel M (2016). Safe and
efficient runtime testing framework applied in
dynamic and distributed systems. Science of
Computer Programming, 122: 1-28.

Lübke R, Schuster D and Schill A (2014). NESSEE: An
in-house test platform for large scale tests of
multimedia applications including network
behavior. In the Springer International
Conference on Testbeds and Research
Infrastructures: 229-238. https:/doi.org/
10.1007/978-3-319-13326-3_22

Marynowski JE, Santin AO and Pimentel AR (2015).
Method for testing the fault tolerance of
MapReduce frameworks. Computer Networks,
86: 1-13.

Meszaros G (2007). xUnit test patterns: Refactoring
test code. Pearson Education. New Jersey, USA.

Mirshokraie S, Mesbah A and Pattabiraman K (2015).
Guided mutation testing for javascript web
applications. IEEE Transactions on Software
Engineering, 41(5): 429-444.

Mišic VB, Chanson ST and Cheung SC (1998).
Towards a framework for testing distributed
multimedia software systems. In the IEEE
Computer Society Proceedings of the
International Symposium on Software
Engineering for Parallel and Distributed Systems.

Mogul JC (2006). Emergent (mis) behavior vs.
complex software systems. In ACM SIGOPS
Operating Systems Review, ACM, 40(4): 293-304.

Paydar S and Kahani M (2011). An agent-based
framework for automated testing of web-based
systems. Journal of Software Engineering and
Applications, 4(02): 86-94.

Robinson S (1997). Simulation model verification
and validation: increasing the users' confidence.
In the IEEE Computer Society Proceedings of the
29th Conference on Winter Simulation: 53-59.

Robinson S (2014). Simulation: the practice of model
development and use. Palgrave Macmillan,
Basingstoke, UK.

Snelick R, Gebase L and O'Brien G (2009). A
framework for testing distributed healthcare
applications. In the International Conference on
Software Engineering Research and Practice
(SERP'09), Las Vegas, USA.

Stepien B, Peyton L and Xiong P (2008). Framework
testing of web applications using TTCN-3.
International Journal on Software Tools for
Technology Transfer, 10(4): 371-381.

Tómasson H (2011). Distributed Testing of Cloud
Applications Using the Jata Test Framework. In

Mehmood et al/ International Journal of Advanced and Applied Sciences, 3(10) 2016, Pages: 64-71

71

the Proceedings of the Second Nordic Symposium
on Cloud Computing & Internet Technologies
(NordiCloud '13). https://doi.org/10.1145/
2513534.2513540

Tómasson H and Neukirchen H (2013). Distributed
testing of cloud computing applications using the
TTCN-3-based Jata test framework. In the
Proceedings of the Second Nordic Symposium on

Cloud Computing & Internet Technologies
(NordiCloud '13), Oslo, Norway.
https://doi.org/10.1145/2513534.2513540

Wu J, Wang C, Liu Y and Zhang L (2011). Agaric—A
hybrid cloud based testing platform. In the IEEE
International Conference on Cloud and Service
Computing (CSC): 87-94. https://doi.org/
10.1109/CSC.2011.6138558.

