International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 10, Issue 6 (June 2023), Pages: 150-157

----------------------------------------------

 Original Research Paper

Valorization and reuse of construction and demolition waste for its transformation into ecological bricks

 Author(s): 

 Miriam Ñañez-Silva *, Luis Sánchez-Cárdenas, Enrique Yactayo-Carrión

 Affiliation(s):

 Facultad de Ciencias Empresariales, Universidad Nacional de Cañete, Lima, Peru

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0001-8929-2916

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2023.06.018

 Abstract:

This research assesses the viability of utilizing construction and demolition waste (CDW) for the production of environmentally-friendly bricks. The methodology employed in this study consists of three main components: An analytical and evaluative investigation of CDW, the selection of appropriate waste materials, and the determination of suitable proportions. The experimental groups were prepared using a volumetric approach, namely Type A (1:6), Type B (1:7), and Type C (1:8), by incorporating CDW, cement, coarse sand, fine sand, crushed stone, confitillo, and polystyrene for the relevant tests. The findings indicate that the optimal composition is achieved with a ratio of 1:5:2 of cement to coarse sand (with 1 part of recycled expanded polystyrene aggregate) and fine sand (with 2 parts of fine sand aggregate) while maintaining a water-to-cement ratio of 1:1. This composition complies with the standards outlined in NTP 399.602:2017, NTP 399.604:2002, and NTP 400.037:2018. In conclusion, the utilization of CDW presents a promising alternative for the construction industry, and effective management practices will facilitate the promotion of a sustainable culture within the sector.

 © 2023 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Construction and demolition waste, Environmentally-friendly bricks, Analytical and evaluative investigation, Suitable proportions, Sustainable culture

 Article History: Received 24 August 2022, Received in revised form 1 April 2023, Accepted 24 April 2023

 Acknowledgment 

No Acknowledgment.

 Funding 

This project is one of the winners of the Contest of Minor Experimental Research Projects and is funded by the National University of Cañete.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Ñañez-Silva M, Sánchez-Cárdenas L, and Yactayo-Carrión E (2023). Valorization and reuse of construction and demolition waste for its transformation into ecological bricks. International Journal of Advanced and Applied Sciences, 10(6): 150-157

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 

 Tables

 Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 

----------------------------------------------   

 References (41)

  1. Abera SA (2022). Analytical study on properties of concrete materials incorporating recycled aggregates from construction and demolition waste. Materials Today: Proceedings, 52: 2172-2183. https://doi.org/10.1016/j.matpr.2022.01.191   [Google Scholar]
  2. Abid R, Kamoun N, Jamoussi F, and El Feki H (2022). Fabrication and properties of compressed earth brick from local Tunisian raw materials. Boletín de la Sociedad Española de Cerámica Y Vidrio, 61(5): 397-407. https://doi.org/10.1016/j.bsecv.2021.02.001   [Google Scholar]
  3. Abina A, Puc U, and Zidanšek A (2022). Challenges and opportunities of terahertz technology in construction and demolition waste management. Journal of Environmental Management, 315: 115118. https://doi.org/10.1016/j.jenvman.2022.115118   [Google Scholar] PMid:35472828
  4. Ahmad S, Iqbal Y, and Muhammad R (2017). Effects of coal and wheat husk additives on the physical, thermal and mechanical properties of clay bricks. Boletín de la Sociedad Española de Cerámica y Vidrio, 56(3): 131-138. https://doi.org/10.1016/j.bsecv.2017.02.001   [Google Scholar]
  5. Amarilla RSD, Ribeiro RS, de Avelar Gomes MH, Sousa RP, Sant'Ana LH, and Catai RE (2021). Acoustic barrier simulation of construction and demolition waste: A sustainable approach to the control of environmental noise. Applied Acoustics, 182: 108201. https://doi.org/10.1016/j.apacoust.2021.108201   [Google Scholar]
  6. Aslam MS, Huang B, and Cui L (2020). Review of construction and demolition waste management in China and USA. Journal of Environmental Management, 264: 110445. https://doi.org/10.1016/j.jenvman.2020.110445   [Google Scholar] PMid:32217323
  7. Ceballos-Medina S, González-Rincón DC, and Sánchez JD (2021). Reciclaje de residuos de construcción y demolición (RC&D) generados en la Universidad del Valle Sede Meléndez para la fabricación de adoquines. Revista Ion, 34(1): 27-35. https://doi.org/10.18273/revion.v34n1-2021003   [Google Scholar]
  8. Christensen TB (2022). Closing the material loops for construction and demolition waste: The circular economy on the island Bornholm, Denmark. Resources, Conservation and Recycling Advances, 15: 200104. https://doi.org/10.1016/j.rcradv.2022.200104   [Google Scholar]
  9. Devaki H and Shanmugapriya S (2022). LCA on construction and demolition waste management approaches: A review. Materials Today: Proceedings, 65(2): 764-770. https://doi.org/10.1016/j.matpr.2022.03.286   [Google Scholar]
  10. Furrer M, Mostofi H, and Spinler S (2022). A study on the impact of extreme weather events on the ceramic manufacturing in Egypt. Resources, Environment and Sustainability, 7: 100049. https://doi.org/10.1016/j.resenv.2022.100049   [Google Scholar]
  11. Gaggino R (2019). Diseño experimental de elementos constructivos utilizando materiales reciclados, para viviendas de interés social. Síntesis de Tesis Doctoral. PENSUM, 5(5): 43–68. https://doi.org/10.59047/2469.0724.v5.n5.26301   [Google Scholar]
  12. Galvis SP and Montealegre FGC (2019). Manejo de residuos de construcción y demolición en el municipio Guamo, Tolima. Lámpsakos, 21: 64-74. https://doi.org/10.21501/21454086.2930   [Google Scholar]
  13. Garzón E, Martínez-Martínez S, Pérez-Villarrejo L, and Sánchez-Soto PJ (2022). Assessment of construction and demolition wastes (CDWs) as raw materials for the manufacture of low-strength concrete and bases and sub-bases of roads. Materials Letters, 320: 132343. https://doi.org/10.1016/j.matlet.2022.132343   [Google Scholar]
  14. Guo F, Wang J, and Song Y (2022). How to promote sustainable development of construction and demolition waste recycling systems: Production subsidies or consumption subsidies? Sustainable Production and Consumption, 32: 407-423. https://doi.org/10.1016/j.spc.2022.05.002   [Google Scholar]
  15. Guzmán MFS, Ruiz DDP, Gómez LMT, and Hernández ND (2017). Residuos inertes para la preparación de ladrillos con material reciclable: Una práctica para protección del ambiente. Industrial Data, 20(1): 131-138. https://doi.org/10.15381/idata.v20i1.13507   [Google Scholar]
  16. Hernandez V, Botero Botero LF, and Carvajal Arango D (2015). Fabricación de bloques de tierra comprimida con adición de residuos de construcción y demolición como reemplazo del agregado pétreo convencional. Ingeniería y Ciencia, 11(21): 197-220. https://doi.org/10.17230/ingciencia.11.21.10   [Google Scholar]
  17. Herrera-Quispe MR (2022). Residuos de la construcción y demolición en el litoral marino de Lima Metropolitana (Perú): Recomendaciones para su adecuada gestión. South Sustainability, 3(1): e046. https://doi.org/10.21142/SS-0301-2022-e046   [Google Scholar]
  18. Kabirifar K, Mojtahedi M, Wang CC, and Tam VW (2021). Effective construction and demolition waste management assessment through waste management hierarchy; A case of Australian large construction companies. Journal of Cleaner Production, 312: 127790. https://doi.org/10.1016/j.jclepro.2021.127790   [Google Scholar]
  19. Kumar G, Shrivastava S, and Gupta RC (2020). Paver blocks manufactured from construction and demolition waste. Materials Today: Proceedings, 27(1): 311-317. https://doi.org/10.1016/j.matpr.2019.11.039   [Google Scholar]
  20. Li L, Liu Q, Huang T, and Peng W (2022). Mineralization and utilization of CO2 in construction and demolition wastes recycling for building materials: A systematic review of recycled concrete aggregate and recycled hardened cement powder. Separation and Purification Technology, 298: 121512. https://doi.org/10.1016/j.seppur.2022.121512   [Google Scholar]
  21. Luciano A, Cutaia L, Altamura P, and Penalvo E (2022). Critical issues hindering a widespread construction and demolition waste (CDW) recycling practice in EU countries and actions to undertake: The stakeholder's perspective. Sustainable Chemistry and Pharmacy, 29: 100745. https://doi.org/10.1016/j.scp.2022.100745   [Google Scholar]
  22. Meng Y, Ling TC, and Mo KH (2018). Recycling of wastes for value-added applications in concrete blocks: An overview. Resources, Conservation and Recycling, 138: 298-312. https://doi.org/10.1016/j.resconrec.2018.07.029   [Google Scholar]
  23. Mymrin V, Waltrick CE, Alekseev K, Avanci MA, Rolim PH, Carvalho KQ, and Catal RE (2021). Endless extension of life cycle of construction and demolition wastes as the most efficient environmental technology. Environmental Technology and Innovation, 24: 101824. https://doi.org/10.1016/j.eti.2021.101824   [Google Scholar]
  24. Oluleye BI, Chan DW, Saka AB, and Olawumi TO (2022). Circular economy research on building construction and demolition waste: A review of current trends and future research directions. Journal of Cleaner Production, 357: 131927. https://doi.org/10.1016/j.jclepro.2022.131927   [Google Scholar]
  25. Pacheco Bustos CA, Fuentes Pumarejo LG, Sánchez Cotte ÉH, and Rondón Quintana HA (2017). Construction demolition waste (CDW), a perspective of achievement for the city of Barranquilla since its management model. Ingeniería y Desarrollo, 35(2): 533-555. https://doi.org/10.14482/inde.35.2.10174   [Google Scholar]
  26. Restrepo-Zapata G and Cadavid-Restrepo C (2019). Mejora del desempeño ambiental y energético de la vivienda de interés prioritario en Medellín con el uso de ladrillos cerámicos modificados. Revista Ingenierías Universidad de Medellín, 18(35): 33-49. https://doi.org/10.22395/rium.v18n35a3   [Google Scholar]
  27. Ruiz LAL, Ramón XR, and Domingo SG (2020). The circular economy in the construction and demolition waste sector–A review and an integrative model approach. Journal of Cleaner Production, 248: 119238. https://doi.org/10.1016/j.jclepro.2019.119238   [Google Scholar]
  28. Sáez PV, del Río Merino M, Porras-Amores C, and González ASA (2014). Assessing the accumulation of construction waste generation during residential building construction works. Resources, Conservation and Recycling, 93: 67-74. https://doi.org/10.1016/j.resconrec.2014.10.004   [Google Scholar]
  29. Shi Y and Xu J (2021). BIM-based information system for econo-enviro-friendly end-of-life disposal of construction and demolition waste. Automation in Construction, 125: 103611. https://doi.org/10.1016/j.autcon.2021.103611   [Google Scholar]
  30. Shooshtarian S, Maqsood T, Caldera S, and Ryley T (2022). Transformation towards a circular economy in the Australian construction and demolition waste management system. Sustainable Production and Consumption, 30: 89-106. https://doi.org/10.1016/j.spc.2021.11.032   [Google Scholar]
  31. Silva-Urrego Y and Delvasto-Arjona S (2021). Uso de residuos de construcción y demolición como material cementicio suplementario y agregado grueso reciclado en concretos autocompactantes. Informador Técnico, 85(1): 20-33. https://doi.org/10.23850/22565035.2502   [Google Scholar]
  32. Suchithra S, Oviya S, Rethinam SR, and Monisha P (2022). Production of paver block using construction demolition waste and plastic waste–A critical review. Materials Today: Proceedings, 65(2): 1133-1137. https://doi.org/10.1016/j.matpr.2022.04.164   [Google Scholar]
  33. Tan J, Cai J, and Li J (2022). Recycling of unseparated construction and demolition waste (UCDW) through geopolymer technology. Construction and Building Materials, 341: 127771. https://doi.org/10.1016/j.conbuildmat.2022.127771   [Google Scholar]
  34. Ulloa-Mayorga VA, Uribe-Garcés MA, Paz-Gómez DP, Alvarado YA, Torres B, and Gasch I (2018). Performance of pervious concrete containing combined recycled aggregates. Ingeniería e Investigación, 38(2): 34-41. https://doi.org/10.15446/ing.investig.v38n2.67491   [Google Scholar]
  35. Umar UA, Shafiq N, and Ahmad FA (2021). A case study on the effective implementation of the reuse and recycling of construction and demolition waste management practices in Malaysia. Ain Shams Engineering Journal, 12(1): 283-291. https://doi.org/10.1016/j.asej.2020.07.005   [Google Scholar]
  36. Waskow RP, Dos Santos VL, Ambrós WM, Sampaio CH, Passuello A, and Tubino RM (2020). Optimization and dust emissions analysis of the air jigging technology applied to the recycling of construction and demolition waste. Journal of Environmental Management, 266: 110614. https://doi.org/10.1016/j.jenvman.2020.110614   [Google Scholar] PMid:32310113
  37. Wu W, Xie L, and Hao JL (2022). An integrated trading platform for construction and demolition waste recovery in a circular economy. Sustainable Chemistry and Pharmacy, 25: 100597. https://doi.org/10.1016/j.scp.2022.100597   [Google Scholar]
  38. Yu B, Wang J, Wu H, Wong AB, Liao Y, and Zuo J (2021). Self-fulfillment degree of construction and demolition waste management capability based on the Triple-balance theory: A case study of Guangdong-Hong Kong-Macao Greater Bay Area. Waste Management, 133: 99-109. https://doi.org/10.1016/j.wasman.2021.07.038   [Google Scholar] PMid:34390962
  39. Yu S, Awasthi AK, Ma W, Wen M, Di Sarno L, Wen C, and Hao JL (2022). In support of circular economy to evaluate the effects of policies of construction and demolition waste management in three key cities in Yangtze River Delta. Sustainable Chemistry and Pharmacy, 26: 100625. https://doi.org/10.1016/j.scp.2022.100625   [Google Scholar]
  40. Yuan H (2017). Barriers and countermeasures for managing construction and demolition waste: A case of Shenzhen in China. Journal of Cleaner Production, 157: 84-93. https://doi.org/10.1016/j.jclepro.2017.04.137   [Google Scholar]
  41. Zhang C, Hu M, Di Maio F, Sprecher B, Yang X, and Tukker A (2022). An overview of the waste hierarchy framework for analyzing the circularity in construction and demolition waste management in Europe. Science of the Total Environment, 803: 149892. https://doi.org/10.1016/j.scitotenv.2021.149892   [Google Scholar] PMid:34500281