International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 10, Issue 5 (May 2023), Pages: 72-85

----------------------------------------------

 Review Paper

Minimal residual disease in acute leukemia based on the insight of molecular genetics monitoring

 Author(s): 

 Najiah M. Alyamani *

 Affiliation(s):

 Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-5457-227X

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2023.05.009

 Abstract:

Patients with acute leukemia port 10 malignant cells at presentation. Following chemotherapy or stem cell transplant, patients in complete remission by conventional analyses may still harbor 106/108 malignant cells below the detection limit of standard clinical assessment. Minimal residual disease (MRD) monitoring is one of the most powerful predictors of disease-free and overall survival, particularly for children with acute lymphoblastic leukemia (cALL), the percent annual of cALL increase in the incidence of cALL in Saudi Arabia. Breakpoint fusion regions of chromosomal aberrations can be used as tumor-specific targets for MRD detection by polymerase chain reaction. Levels of MRD, measured at critical time points, significantly correlate with clinical outcomes. Previous works investigated the prognostic significance of leukemia-associated immunophenotypes (LAIPs) as an assessment of the index of MRD in 125 adult B-ALL patients by eight-colour flow cytometry. More advanced molecular and genetics studies are so necessary to identify the mechanisms and cellular structure of the minimal-level disease. Selecting molecular methods for minimal residual disease detection have a much higher sensitivity and precision (100-fold or more) than others. This review highlights the minimal residual disease molecular detection to demonstrate the characterization of the lymphoblastic leukemia gene. Precise MRD monitoring predicts disease relapse after chemotherapy or SCT, provides early intervention, and may result in the rescue of many patients and improvement in the probability of long-term disease-free survival.

 © 2023 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Minimal residual disease, Acute lymphoblastic leukemia, Acute myeloid leukemia, Polymerase chain reaction, Bone marrow

 Article History: Received 16 November 2022, Received in revised form 10 March 2023, Accepted 14 March 2023

 Acknowledgment 

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Alyamani NM (2023). Minimal residual disease in acute leukemia based on the insight of molecular genetics monitoring. International Journal of Advanced and Applied Sciences, 10(5): 72-85

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3

 Tables

 Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10

----------------------------------------------    

 References (79)

  1. Al-Mawali A, Gillis D, and Lewis I (2009). The role of multiparameter flow cytometry for detection of minimal residual disease in acute myeloid leukemia. American Journal of Clinical Pathology, 131(1): 16-26. https://doi.org/10.1309/AJCP5TSD3DZXFLCX   [Google Scholar] PMid:19095561
  2. Anderson K, Lutz C, Van Delft FW, Bateman CM, Guo Y, Colman SM, and Greaves M (2011). Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature, 469(7330): 356-361. https://doi.org/10.1038/nature09650   [Google Scholar] PMid:21160474
  3. Appelbaum FR (2013). Measurement of minimal residual disease before and after myeloablative hematopoietic cell transplantation for acute leukemia. Best Practice and Research Clinical Haematology, 26(3): 279-284. https://doi.org/10.1016/j.beha.2013.10.008   [Google Scholar] PMid:24309531
  4. Assumpção JG, Paula FDF, Xavier SG, Murao M, Aguirre Neto JCD, Dutra ÁP, and Viana MB (2013). Gene rearrangement study for minimal residual disease monitoring in children with acute lymphocytic leukemia. Revista Brasileira de Hematologia e Hemoterapia, 35(5): 337-342. https://doi.org/10.5581/1516-8484.20130115   [Google Scholar] PMid:24255617 PMCid:PMC3832314
  5. Barragan E, Bolufer P, Moreno I, Martin G, Nomdedeu J, Brunet S, and Sanz MA (2001). Quantitative detection of AML1-ETO rearrangement by real-time RT-PCR using fluorescently labeled probes. Leukemia and Lymphoma, 42(4): 747-756. https://doi.org/10.3109/10428190109099337   [Google Scholar] PMid:11697505
  6. Beishuizen A, Verhoeven MA, Mol EJ, Breit TM, Wolvers-Tettero ILM, and van Dongen JJM (1993). Detection of immunoglobulin heavy-chain gene rearrangements by Southern blot analysis: Recommendations for optimal results. Leukemia, 7: 2045-2053.   [Google Scholar] PMid:7902888
  7. Board PPTE (2021). Childhood acute lymphoblastic leukemia treatment (PDQ®). In PDQ Cancer Information Summaries, National Cancer Institute (US), Rockville, USA.   [Google Scholar]
  8. Boeckx N, Willemse MJ, Szczepanski T, van der Velden VH, Langerak AW, Vandekerckhove P, and van Dongen JJ (2002). Fusion gene transcripts and Ig/TCR gene rearrangements are complementary but infrequent targets for PCR-based detection of minimal residual disease in acute myeloid leukemia. Leukemia, 16(3): 368-375. https://doi.org/10.1038/sj.leu.2402387   [Google Scholar] PMid:11896540
  9. Boldeanu F, Ordodi VL, Gruia A, Cristea M, Gai E, and Serban M (2011). Minimal residual disease-generalities and perspectives. Timisoara Medical Journal, 61: 3-4.   [Google Scholar]
  10. Buonamici S, Ottaviani E, Testoni N, Montefusco V, Visani G, Bonifazi F, and Martinelli G (2002). Real-time quantitation of minimal residual disease in inv (16)-positive acute myeloid leukemia may indicate risk for clinical relapse and may identify patients in a curable state. Blood, The Journal of the American Society of Hematology, 99(2): 443-449. https://doi.org/10.1182/blood.V99.2.443   [Google Scholar] PMid:11781223
  11. Campana D (2004). Minimal residual disease studies in acute leukemia. Pathology Patterns Reviews, 122(suppl_1): S47-S57. https://doi.org/10.1309/YJP8CEQ1E7RYP3MF   [Google Scholar] PMid:15690642
  12. Campana D (2010). Minimal residual disease in acute lymphoblastic leukemia. Hematology 2010, the American Society of Hematology Education Program, 2010(1): 7-12. https://doi.org/10.1182/asheducation-2010.1.7   [Google Scholar] PMid:21239764
  13. Campana D and Pui CH (2008). Childhood leukemia. In: Abeloff MD, Armitage JO, Niederhuber JE, Kastan MB, and McKenna WG (Eds.), Abeloff’s clinical oncology. 4th Edition, Elsevier; Philadelphia, USA.   [Google Scholar]
  14. Chen JS, Coustan-Smith E, Suzuki T, Neale GA, Mihara K, Pui CH, and Campana D (2001). Identification of novel markers for monitoring minimal residual disease in acute lymphoblastic leukemia. Blood: The Journal of the American Society of Hematology, 97(7): 2115-2120. https://doi.org/10.1182/blood.V97.7.2115   [Google Scholar] PMid:11264179
  15. Cheng SH, Lau KM, Li CK, Chan NP, Ip RK, Cheng CK, and Ng MH (2013). Minimal residual disease-based risk stratification in Chinese childhood acute lymphoblastic leukemia by flow cytometry and plasma DNA quantitative polymerase chain reaction. PLOS ONE, 8(7): e69467.  https://doi.org/10.1371/journal.pone.0069467   [Google Scholar] PMid:23936021 PMCid:PMC3723913
  16. Cirmena G, Ferrando L, Ravera F, Garuti A, Dameri M, Gallo M, and Zoppoli G (2022). Plasma cell-free DNA integrity assessed by automated electrophoresis predicts the achievement of pathologic complete response to Neoadjuvant chemotherapy in patients with breast cancer. JCO Precision Oncology, 6: e2100198. https://doi.org/10.1200/PO.21.00198   [Google Scholar] PMid:35201850 PMCid:PMC8974578
  17. Coustan-Smith E, Behm FG, Sanchez J, Boyett JM, Hancock ML, Raimondi SC, and Campana D (1998). Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia. The Lancet, 351(9102): 550-554. https://doi.org/10.1016/S0140-6736(97)10295-1   [Google Scholar] PMid:9492773
  18. Coustan-Smith E, Song G, Clark C, Key L, Liu P, Mehrpooya M, and Campana D (2011). New markers for minimal residual disease detection in acute lymphoblastic leukemia. Blood: The Journal of the American Society of Hematology, 117(23): 6267-6276. https://doi.org/10.1182/blood-2010-12-324004   [Google Scholar] PMid:21487112 PMCid:PMC3122946
  19. Czyz A and Nagler A (2019). The role of measurable residual disease (MRD) in hematopoietic stem cell transplantation for hematological malignancies focusing on acute leukemia. International Journal of Molecular Sciences, 20(21): 5362. https://doi.org/10.3390/ijms20215362   [Google Scholar] PMid:31661875 PMCid:PMC6862140
  20. De Bie J, Demeyer S, Alberti-Servera L, Geerdens E, Segers H, Broux M, and Cools J (2018). Single-cell sequencing reveals the origin and the order of mutation acquisition in T-cell acute lymphoblastic leukemia. Leukemia, 32(6): 1358-1369. https://doi.org/10.1038/s41375-018-0127-8   [Google Scholar] PMid:29740158 PMCid:PMC5990522
  21. Della Starza I, Chiaretti S, De Propris MS, Elia L, Cavalli M, De Novi LA, and Foà R (2019). Minimal residual disease in acute lymphoblastic leukemia: Technical and clinical advances. Frontiers in Oncology, 9: 726. https://doi.org/10.3389/fonc.2019.00726   [Google Scholar] PMid:31448230 PMCid:PMC6692455
  22. Dobson SM, García-Prat L, Vanner RJ, Wintersinger J, Waanders E, Gu Z, and Dick JE (2020). Relapse-fated latent diagnosis subclones in acute B lineage leukemia are drug tolerant and possess distinct metabolic programscharacterization of relapse-fated clones in diagnosis B-ALL. Cancer Discovery, 10(4): 568-587. https://doi.org/10.1158/2159-8290.CD-19-1059   [Google Scholar] PMid:32086311 PMCid:PMC7122013
  23. Feller N, Van Der Velden VHJ, Brooimans RA, Boeckx N, Preijers F, Kelder A, and Schuurhuis GJ (2013). Defining consensus leukemia-associated immunophenotypes for detection of minimal residual disease in acute myeloid leukemia in a multicenter setting. Blood Cancer Journal, 3: e129. https://doi.org/10.1038/bcj.2013.27   [Google Scholar] PMid:23912609 PMCid:PMC3763381
  24. Foroni L, Gameiro PM, and Hoffbrand V (2005). Minimal residual disease in acute leukemia. In: Hoffbrand AV, Catovsky D, and Tuddenham EGD (Eds.), Postgraduate haematology. 5th Edition, Blackwell Publishing, Hoboken, USA.   [Google Scholar]
  25. Gabert J, Beillard E, Van der Velden VHJ, Bi W, Grimwade D, Pallisgaard N, and Van Dongen JJM (2003). Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia–A Europe against cancer program. Leukemia, 17(12): 2318-2357. https://doi.org/10.1038/sj.leu.2403135   [Google Scholar] PMid:14562125
  26. Gao YJ, He YJ, Yang ZL, Shao HY, Zuo Y, Bai Y, and Zhang L (2010). Increased integrity of circulating cell-free DNA in plasma of patients with acute leukemia. Clinical Chemistry and Laboratory Medicine, 48(11): 1651-1656. https://doi.org/10.1515/CCLM.2010.311   [Google Scholar] PMid:20831457
  27. Gotham D, McKenna L, Deborggraeve S, Madoori S, and Branigan D (2021). Public investments in the development of GeneXpert molecular diagnostic technology. PLOS ONE, 16(8): e0256883. https://doi.org/10.1371/journal.pone.0256883   [Google Scholar] PMid:34464413 PMCid:PMC8407584
  28. Guerrasio A, Pilatrino C, De Micheli D, Cilloni D, Serra A, Gottardi E, and Saglio G (2002). Assessment of minimal residual disease (MRD) in CBFbeta/MYH11-positive acute myeloid leukemias by qualitative and quantitative RT-PCR amplification of fusion transcripts. Leukemia, 16(6): 1176-1181. https://doi.org/10.1038/sj.leu.2402478   [Google Scholar] PMid:12040450
  29. Hackl H, Astanina K, and Wieser R (2017). Molecular and genetic alterations associated with therapy resistance and relapse of acute myeloid leukemia. Journal of Hematology and Oncology, 10: 51. https://doi.org/10.1186/s13045-017-0416-0   [Google Scholar] PMid:28219393 PMCid:PMC5322789
  30. Hoelzer D and Gökbuget N (2000a). Adult acute lymphoblastic leukemia. In: Hoffbrand AV, Catovsky D, and Tuddenham EGD (Eds.), Postgraduate haematology. 5th Edition, Blackwell Publishing, Hoboken, USA.   [Google Scholar]
  31. Hoelzer D and Gökbuget N (2000b). Recent approaches in acute lymphoblastic leukemia in adults. Critical Reviews in Oncology/Hematology, 36(1): 49-58. https://doi.org/10.1016/S1040-8428(00)00097-4   [Google Scholar] PMid:10996522
  32. Hoyos M, Nomdedeu JF, Esteve J, Duarte R, Ribera JM, Llorente A, and Sierra J (2013). Core binding factor acute myeloid leukemia: The impact of age, leukocyte count, molecular findings, and minimal residual disease. European Journal of Haematology, 91(3): 209-218. https://doi.org/10.1111/ejh.12130   [Google Scholar] PMid:23646898
  33. Iacobucci I and Mullighan CG (2017). Genetic basis of acute lymphoblastic leukemia. Journal of Clinical Oncology, 35(9): 975-983. https://doi.org/10.1200/JCO.2016.70.7836   [Google Scholar] PMid:28297628 PMCid:PMC5455679
  34. Inaba H and Mullighan CG (2020). Pediatric acute lymphoblastic leukemia. Haematologica, 105(11): 2524-2539. https://doi.org/10.3324/haematol.2020.247031   [Google Scholar] PMid:33054110 PMCid:PMC7604619
  35. Iñigo SDLI, Casares MTG, Jorge CEL, Brito JL, and Cabrera PM (2011). New molecular markers in acute myeloid leukemia. In: Koschmieder S and Krug U (Eds.), Myeloid leukemia-basic mechanisms of leukemogenesis: 312-338. IntechOpen, London, UK.   [Google Scholar]
  36. Jourdan E, Boissel N, Chevret S, Delabesse E, Renneville A, Cornillet P, and Dombret H (2013). Prospective evaluation of gene mutations and minimal residual disease in patients with core binding factor acute myeloid leukemia. Blood: The Journal of the American Society of Hematology, 121(12): 2213-2223. https://doi.org/10.1182/blood-2012-10-462879   [Google Scholar] PMid:23321257
  37. Juárez-Avendaño G, Méndez-Ramírez N, Luna-Silva NC, Gómez-Almaguer D, Pelayo R, and Balandrán JC (2021). Molecular and cellular markers for measurable residual disease in acute lymphoblastic leukemia. Boletín médico del Hospital Infantil de México, 78(3): 159-170. https://doi.org/10.24875/BMHIM.20000155   [Google Scholar] PMid:34167145
  38. Kim IS (2020). Minimal residual disease in acute lymphoblastic leukemia: Technical aspects and implications for clinical interpretation. Blood Research, 55(S1): S19-S26. https://doi.org/10.5045/br.2020.S004   [Google Scholar] PMid:32719172 PMCid:PMC7386891
  39. Kruse A, Abdel-Azim N, Kim HN, Ruan Y, Phan V, Ogana H, and Kim YM (2020). Minimal residual disease detection in acute lymphoblastic leukemia. International Journal of Molecular Sciences, 21(3): 1054. https://doi.org/10.3390/ijms21031054   [Google Scholar] PMid:32033444 PMCid:PMC7037356
  40. Li B, Brady SW, Ma X, Shen S, Zhang Y, Li Y, and Zhang J et al. (2020). Therapy-induced mutations drive the genomic landscape of relapsed acute lymphoblastic leukemia. Blood, 135(1): 41-55. https://doi.org/10.1182/blood.2019002220   [Google Scholar] PMid:31697823 PMCid:PMC6940198
  41. Li B, Li H, Bai Y, Kirschner-Schwabe R, Yang JJ, Chen Y, and Zhou BBS (2015). Negative feedback–defective PRPS1 mutants drive thiopurine resistance in relapsed childhood ALL. Nature Medicine, 21(6): 563-571. https://doi.org/10.1038/nm.3840   [Google Scholar] PMid:25962120 PMCid:PMC4670083
  42. Liang D and Pui C (2000). Childhood acute lymphoblastic leukemia. In: Hoffbrand AV, Catovsky D, and Tuddenham EGD (Eds.), Postgraduate haematology. 5th Edition, Blackwell Publishing, Hoboken, USA.   [Google Scholar]
  43. Ma X, Edmonson M, Yergeau D, Muzny DM, Hampton OA, Rusch M, and Zhang J (2015). Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia. Nature Communications, 6: 6604. https://doi.org/10.1038/ncomms7604   [Google Scholar] PMid:25790293 PMCid:PMC4377644
  44. Meyer JA, Wang J, Hogan LE, Yang JJ, Dandekar S, Patel JP, and Carroll WL (2013). Relapse-specific mutations in NT5C2 in childhood acute lymphoblastic leukemia. Nature Genetics, 45(3): 290-294. https://doi.org/10.1038/ng.2558   [Google Scholar] PMid:23377183 PMCid:PMC3681285
  45. Möricke A, Zimmermann M, Reiter A, Henze G, Schrauder A, Gadner H, and Schrappe M (2010). Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia, 24(2): 265-284. https://doi.org/10.1038/leu.2009.257   [Google Scholar] PMid:20010625
  46. Mukda E, Pintaraks K, Komvilaisak P, and Wiangnon S (2011). Cytochemistry and multi-color flow cytometric immunophenotype for diagnosis of childhood acute leukemia. Journal of Hematology and Transfusion Medicine, 21(1): 23-32.   [Google Scholar]
  47. Paietta E (2012). Minimal residual disease in acute myeloid leukemia: Coming of age. Hematology 2010, the American Society of Hematology Education Program, 2012(1): 35-42. https://doi.org/10.1182/asheducation.V2012.1.35.3797926   [Google Scholar] PMid:23233558
  48. Peters JM and Ansari MQ (2011). Multiparameter flow cytometry in the diagnosis and management of acute leukemia. Archives of Pathology and Laboratory Medicine, 135(1): 44-54. https://doi.org/10.5858/2010-0387-RAR.1   [Google Scholar] PMid:21204710
  49. Pongers-Willemse MJ, Seriu T, Stolz F, d’Aniello E, Gameiro P, Pisa P, and Van Dongen JJM (1999). Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets Report of the BIOMED-1 CONCERTED ACTION: Investigation of minimal residual disease in acute leukemia. Leukemia, 13(1): 110-118. https://doi.org/10.1038/sj.leu.2401245   [Google Scholar] PMid:10049045
  50. Pott C, Brüggemann M, Ritgen M, van der Velden VH, van Dongen JJ, and Kneba M (2019). MRD detection in B-cell non-Hodgkin lymphomas using Ig gene rearrangements and chromosomal translocations as targets for real-time quantitative PCR. Lymphoma: Methods and Protocols, 1956: 199-228. https://doi.org/10.1007/978-1-4939-9151-8_9   [Google Scholar] PMid:30779036
  51. Raanani P and Ben-Bassat I (2004). Detection of minimal residual disease in acute myelogenous leukemia. Acta Haematologica, 112(1-2): 40-54. https://doi.org/10.1159/000077559   [Google Scholar] PMid:15179004
  52. Reiter A, Schrappe M, Ludwig WD, Hiddemann W, Sauter S, Henze G, and Riehm H (1994). Chemotherapy in 998 unselected childhood acute lymphoblastic leukemia patients: Results and conclusions of the multicenter trial ALL-BFM 86. Blood, 84(9): 3122-3133. https://doi.org/10.1182/blood.V84.9.3122.bloodjournal8493122   [Google Scholar] PMid:7949185
  53. Roloff GW, Lai C, Hourigan CS, and Dillon LW (2017). Technical advances in the measurement of residual disease in acute myeloid leukemia. Journal of Clinical Medicine, 6(9): 87. https://doi.org/10.3390/jcm6090087   [Google Scholar] PMid:28925935 PMCid:PMC5615280
  54. Rosenberg AS, Brunson A, Paulus JK, Tuscano J, Wun T, Keegan THM, and Jonas BA (2017). Secondary acute lymphoblastic leukemia is a distinct clinical entity with prognostic significance. Blood Cancer Journal, 7: e605. https://doi.org/10.1038/bcj.2017.81   [Google Scholar] PMid:28885611 PMCid:PMC5709750
  55. Samra MA, Mahmoud HK, Abdelhamid TM, El Sharkawy NM, Elnahass YH, Elgammal M, and Kamel AM (2013). The prognostic significance of minimal residual disease in adult Egyptian patients with precursor acute lymphoblastic leukemia. Journal of the Egyptian National Cancer Institute, 25(3): 135-142. https://doi.org/10.1016/j.jnci.2013.05.004   [Google Scholar] PMid:23932750
  56. Schrappe M (2012). Minimal residual disease: Optimal methods, timing, and clinical relevance for an individual patient. Hematology 2010, the American Society of Hematology Education Program, 2012(1): 137-142. https://doi.org/10.1182/asheducation.V2012.1.137.3798216   [Google Scholar] PMid:23233572
  57. Schuurhuis GJ, Cloos J, and Ossenkoppele GJ (2013). How to assess minimal residual disease in pediatric and adult acute myeloid leukemia? Translational Pediatrics, 2(2): 80-83.   [Google Scholar]
  58. Shayegi N, Kramer M, Bornhäuser M, Schaich M, Schetelig J, Platzbecker U, and Thiede C (2013). The level of residual disease based on mutant NPM1 is an independent prognostic factor for relapse and survival in AML. Blood: The Journal of the American Society of Hematology, 122(1): 83-92. https://doi.org/10.1182/blood-2012-10-461749   [Google Scholar] PMid:23656730
  59. Shook D, Coustan-Smith E, Ribeiro RC, Rubnitz JE, and Campana D (2009). Minimal residual disease quantitation in acute myeloid leukemia. Clinical Lymphoma and Myeloma, 9(Supplement 3): S281-S285. https://doi.org/10.3816/CLM.2009.s.024   [Google Scholar] PMid:19778853 PMCid:PMC2785493
  60. Short NJ and Jabbour E (2017). Minimal residual disease in acute lymphoblastic leukemia: How to recognize and treat it. Current Oncology Reports, 19: 6. https://doi.org/10.1007/s11912-017-0565-x   [Google Scholar] PMid:28205134
  61. Sievers EL, Lange BJ, Alonzo TA, Gerbing RB, Bernstein ID, Smith FO, and Loken MR (2003). Immunophenotypic evidence of leukemia after induction therapy predicts relapse: Results from a prospective Children's Cancer Group study of 252 patients with acute myeloid leukemia. Blood: The Journal of the American Society of Hematology, 101(9): 3398-3406. https://doi.org/10.1182/blood-2002-10-3064   [Google Scholar] PMid:12506020
  62. Sommer U, Eck S, Marszalek L, Stewart JJ, Bradford J, McCloskey TW, and Litwin V (2021). High‐sensitivity flow cytometric assays: Considerations for design control and analytical validation for identification of rare events. Cytometry Part B: Clinical Cytometry, 100(1): 42-51. https://doi.org/10.1002/cyto.b.21949   [Google Scholar] PMid:32940947
  63. Sun NN, Gan SL, Sun H, Zhang QT, Liu YF, and Xie XS (2013). Dynamically monitoring minimal residual disease in acute leukemia after complete remission by multiparameter flow cytometry and its relation with prognosis. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 21(2): 339-342. https://doi.org/10.7534/j.issn.1009-2137.2013.02.016   [Google Scholar] PMid:23628028
  64. Szczepański T (2007). Why and how to quantify minimal residual disease in acute lymphoblastic leukemia? Leukemia, 21(4): 622-626. https://doi.org/10.1038/sj.leu.2404603   [Google Scholar] PMid:17301806
  65. Szczepański T, Willemse MJ, Kamps WA, van Wering ER, Langerak AW, and van Dongen JJ (2001a). Molecular discrimination between relapsed and secondary acute lymphoblastic leukemia: Proposal for an easy strategy. Medical and Pediatric Oncology: The Official Journal of SIOP-International Society of Pediatric Oncology (Societé Internationale d'Oncologie Pédiatrique, 36(3): 352-358. https://doi.org/10.1002/mpo.1085   [Google Scholar] PMid:11241436
  66. Szczepański T, Willemse MJ, Van Wering ER, Van Weerden JF, Kamps WA, and Van Dongen JJM (2001b). Precursor-B-ALL with DH–JH gene rearrangements have an immature immunogenotype with a high frequency of oligoclonality and hyperdiploidy of chromosome 14. Leukemia, 15(9): 1415-1423. https://doi.org/10.1038/sj.leu.2402206   [Google Scholar] PMid:11516102
  67. Terwijn M, van Putten WL, Kelder A, van der Velden VH, Brooimans RA, Pabst T, and Schuurhuis GJ (2013). High prognostic impact of flow cytometric minimal residual disease detection in acute myeloid leukemia: Data from the HOVON/SAKK AML 42A study. Journal of Clinical Oncology, 31(31): 3889-3897. https://doi.org/10.1200/JCO.2012.45.9628   [Google Scholar] PMid:24062400
  68. van der Burg M, Barendregt BH, Szczepanski T, Van Wering ER, Langerak AW, and Van Dongen JJM (2002). Immunoglobulin light chain gene rearrangements display hierarchy in absence of selection for functionality in precursor-B-ALL. Leukemia, 16(8): 1448-1453. https://doi.org/10.1038/sj.leu.2402548   [Google Scholar] PMid:12145684
  69. van der Reijden BA, Simons A, Luiten E, Van Der Poel SC, Hogenbirk PE, Tönnissen E, and Jansen JH (2002). Minimal residual disease quantification in patients with acute myeloid leukaemia and inv (16)/CBFB‐MYH11 gene fusion. British Journal of Haematology, 118(2): 411-418. https://doi.org/10.1046/j.1365-2141.2002.03738.x   [Google Scholar] PMid:12139724
  70. van der Velden VHJ, Hochhaus A, Cazzaniga G, Szczepanski T, Gabert J, and Van Dongen JJM (2003). Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: Principles, approaches, and laboratory aspects. Leukemia, 17(6): 1013-1034. https://doi.org/10.1038/sj.leu.2402922   [Google Scholar] PMid:12764363
  71. Vellichirammal NN, Chaturvedi NK, Joshi SS, Coulter DW, and Guda C (2021). Fusion genes as biomarkers in pediatric cancers: A review of the current state and applicability in diagnostics and personalized therapy. Cancer Letters, 499: 24-38. https://doi.org/10.1016/j.canlet.2020.11.015   [Google Scholar] PMid:33248210 PMCid:PMC9275405
  72. Waanders E, Gu Z, Dobson SM, Antić Ž, Crawford JC, and Ma X, Edmonson MN, Payne-Turner D, and van de Vorst M et al. (2020). Mutational landscape and patterns of clonal evolution in relapsed pediatric acute lymphoblastic leukemia. Blood Cancer Discovery, 1(1): 96-111. https://doi.org/10.1158/0008-5472.BCD-19-0041   [Google Scholar] PMid:32793890 PMCid:PMC7418874
  73. Weber A, Taube S, Zur Stadt U, Horstmann M, Krohn K, Bradtke J, and Christiansen H (2012). Quantification of minimal residual disease (MRD) in acute lymphoblastic leukemia (ALL) using amplicon-fusion-site polymerase chain reaction (AFS-PCR). Experimental Hematology and Oncology, 1: 33. https://doi.org/10.1186/2162-3619-1-33   [Google Scholar] PMid:23210797 PMCid:PMC3518178
  74. Weng XQ, Shen Y, Sheng Y, Chen B, Wang JH, Li JM, and Chen SJ (2013). Prognostic significance of monitoring leukemia-associated immunophenotypes by eight-color flow cytometry in adult B-acute lymphoblastic leukemia. Blood Cancer Journal, 3: e133. https://doi.org/10.1038/bcj.2013.31   [Google Scholar] PMid:23955588 PMCid:PMC3763385
  75. Willemse MJ, Seriu T, Hettinger K, d'Aniello E, Hop WC, Panzer-Grümayer ER, and van Dongen JJ (2002). Detection of minimal residual disease identifies differences in treatment response between T-ALL and precursor B-ALL. Blood: The Journal of the American Society of Hematology, 99(12): 4386-4393. https://doi.org/10.1182/blood.V99.12.4386   [Google Scholar] PMid:12036866
  76. Wu D, Sherwood A, Fromm JR, Winter SS, Dunsmore KP, Loh ML, and Robins H (2012). High-throughput sequencing detects minimal residual disease in acute T lymphoblastic leukemia. Science Translational Medicine, 4(134): 134ra63. https://doi.org/10.1126/scitranslmed.3003656   [Google Scholar]
  77. Yin JAL, O'Brien MA, Hills RK, Daly SB, Wheatley K, and Burnett AK (2012). Minimal residual disease monitoring by quantitative RT-PCR in core binding factor AML allows risk stratification and predicts relapse: Results of the United Kingdom MRC AML-15 trial. Blood: The Journal of the American Society of Hematology, 120(14): 2826-2835. https://doi.org/10.1182/blood-2012-06-435669   [Google Scholar] PMid:22875911
  78. Zhang L, Li Q, Li W, Liu B, Wang Y, Lin D, and Mi Y (2013a). Monitoring of minimal residual disease in acute myeloid leukemia with t (8; 21)(q22; q22). International Journal of Hematology, 97: 786-792. https://doi.org/10.1007/s12185-013-1344-6   [Google Scholar] PMid:23613269
  79. Zhang R, Liao J, Li G, Sun HQ, Shi YJ, and Yang JY (2013b). Real-time quantitative detection of E2A-PBX1 fusion gene in children with acute lymphoblastic leukemia and its clinical application in minimal residual disease monitoring. Zhongguo Dang Dai Er Ke Za Zhi [Chinese Journal of Contemporary Pediatrics], 15(6): 440-443.   [Google Scholar] PMid:23791058