International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 10, Issue 5 (May 2023), Pages: 33-42

----------------------------------------------

 Original Research Paper

Physicochemical properties, total plate count, and sensory acceptability of gummy guyabano (Annona muricata) candy enriched with kappa-carrageenan

 Author(s): 

 Joram T. Minguito *

 Affiliation(s):

 College of Fisheries and Allied Sciences, Northern Iloilo State University, Concepcion, Iloilo, Philippines

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0003-2749-8382

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2023.05.005

 Abstract:

Gummy candy is usually made of gelatin- sourced from animals. This study incorporated (κ) kappa-carrageenan-A polysaccharide extract from seaweeds into the gummy guyabano (Annona muricata Linnaeus) candy’s formulation. κ-carrageenan was incorporated into the gummy guyabano candy at 0%, 1%, 3%, and 5% concentration for CO, T1, T2, and T3, respectively. The effect of incorporating kappa-carrageenan into gummy guyabano candy in terms of physicochemical properties, total plate count, and sensory acceptability was investigated. Results showed that an increase in the addition of κ-car resulted in an increment in most of the physicochemical properties, e.g., carbohydrate content (42.66 ± .98 - 44.93 ± .74) and crude fiber with values 00.19 ± .07 to 00.40 ± .11. Further, a decreasing value for crude protein (16.07 ± .74 - 15.48 ± .24), and fat content (00.32 ± .14 - 00.02 ± .03) was noted. However, no significant difference was found in crude protein. Gel strength was affected by the increasing addition of κ-car. Values recorded were 1029.67 ± 62.74, 735.00 ± 31.19, 1369.33 ± 54.00, and 1278.00 ± 93.54 for CO, T1, T2, and T3, respectively. Total plate count rose as the percentage of κ-car increased, from <250 EAPC/g to 4.66 x 104 cfu/g, but results were within the range of the recommended TPC values by FDA for confectionery products. Moreover, results of sensory acceptability revealed that all formulations were generally accepted, with "Like Moderately" as the lowest rating and the highest rating as "Like Very Much." Thus, kappa-carrageenan has enriched the physicochemical properties of gummy guyabano candy.

 © 2023 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Gummy candy, Kappa-carrageenan, Physicochemical, Total plate count, Sensory attributes

 Article History: Received 30 September 2022, Received in revised form 16 January 2023, Accepted 18 February 2023

 Acknowledgment 

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Minguito JT (2023). Physicochemical properties, total plate count, and sensory acceptability of gummy guyabano (Annona muricata) candy enriched with kappa-carrageenan. International Journal of Advanced and Applied Sciences, 10(5): 33-42

 Permanent Link to this page

 Figures

 Fig. 1 

 Tables

 Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 

----------------------------------------------    

 References (62)

  1. Achumi LV, Peter ERS, and Das A (2018). Studies on preparation of gummy candy using pineapple juice and carrot juice. International Journal of Chemical Studies, 6(5): 1015-1018.   [Google Scholar]
  2. Al-Baarri AN, Legowo AM, Rizqiati H, Septianingrum A, Sabrina HN, Arganis LM, and Mochtar RC (2018). Application of iota and kappa carrageenans to traditional several food using modified cassava flour. In IOP Conference Series: Earth and Environmental Science, IOP Publishing, 102(1): 012056. https://doi.org/10.1088/1755-1315/102/1/012056   [Google Scholar]
  3. Ansari S, Maftoon-Azad N, Farahnaky A, Hosseini E, and Badii F (2014). Effect of moisture content on textural attributes of dried figs. International Agrophysics, 28(4): 403-412. https://doi.org/10.2478/intag-2014-0031   [Google Scholar]
  4. AOAC (2016). Official methods of analysis of AOAC international. 20th Edition, Association of Official Analytical Chemists International, Gaithersburg, USA.   [Google Scholar]
  5. Bixler HJ and Porse H (2011). A decade of change in the seaweed hydrocolloids industry. Journal of Applied Phycology, 23(3): 321-335. https://doi.org/10.1007/s10811-010-9529-3   [Google Scholar]
  6. Bui TNTV (2019). Structure, rheological properties and connectivity of gels formed by carrageenan extracted from different red algae species. Ph.D. Dissertation Université du Maine, Le Mans, France.   [Google Scholar]
  7. Burey P, Bhandari BR, Rutgers RPG, and Halley PJ (2008). Hydrocolloid gel particles: Formation, characterization, and application. Critical Reviews in Food Science and Nutrition, 48(5): 361-377. https://doi.org/10.1080/10408390701347801   [Google Scholar] PMid:18464027
  8. Campo VL, Kawano DF, da Silva Jr. DB, and Carvalho I (2009). Carrageenans: Biological properties, chemical modifications and structural analysis– A review. Carbohydrate Polymers, 77(2): 167-180. https://doi.org/10.1016/j.carbpol.2009.01.020   [Google Scholar]
  9. Cash MJ (2000). New iota carrageenan allows gelatin replacement, simplified manufacturing, and new textures for confectionary applications. In the Proceedings of the Abstract of IFT Annual Meeting, Dallas, USA: 10-14.   [Google Scholar]
  10. Chan SW, Mirhosseini H, Taip FS, Ling TC, and Tan CP (2013). Comparative study on the physicochemical properties of κ-carrageenan extracted from Kappaphycus alvarezii (doty) doty ex Silva in Tawau, Sabah, Malaysia and commercial κ-carrageenans. Food Hydrocolloids, 30(2): 581-588. https://doi.org/10.1016/j.foodhyd.2012.07.010   [Google Scholar]
  11. Claros RE (2015). Guyabano (Annona muricata) fruit pulp, leaves decoction and citric acid in making guyabano drink. Journal of Educational and Human Resource Development, 3: 55-64.   [Google Scholar]
  12. Csima G, Biczo V, Kaszab T, and Fekete A (2010). Methods for the assessment of candy gum elasticity. In the XVIIth World Congress of the International Commission of Agricultural and Biosystems Engineering (CIGR),Québec City, Canada: 1-10.   [Google Scholar]
  13. Dalee AD, Sali K, Hayeeyusoh N, Hayeewango Z, and Thadah A (2017). Microbiological quality of cooked foods and drinks sold in higher educational institutions around Yala, Pattani, and Narathiwat Provinces, Southern Thailand. In the AIP Conference Proceedings, AIP Publishing LLC, 1868: 090014. https://doi.org/10.1063/1.4995206   [Google Scholar]
  14. de Lima CMA and Alves RE (2011). Soursop (Annona muricata L.). In: Yahia EM (Ed.), Postharvest biology and technology of tropical and subtropical fruits: 363-392. Woodhead Publishing Limited, Sawston, UK. https://doi.org/10.1533/9780857092618.363   [Google Scholar]
  15. Degnon RG, Adjou ES, Noudogbessi J, Metome G, Boko F, Dahouenon-ahoussi E, Soumanou M, and Dominique CK (2013). Investigation on nutritional potential of soursop (Annona muricata L.) from Benin for its use as food supplement against protein-energy deficiency. International Journal of Biosciences, 3(6): 1-10. https://doi.org/10.12692/ijb/3.6.135-144   [Google Scholar]
  16. Delgado P and Bañón S (2015). Determining the minimum drying time of gummy confections based on their mechanical properties. CyTA-Journal of Food, 13(3): 329-335. https://doi.org/10.1080/19476337.2014.974676   [Google Scholar]
  17. Dhingra D, Michael M, Rajput H, and Patil RT (2012). Dietary fibre in foods: A review. Journal of Food Science and Technology. 49(3): 255-266. https://doi.org/10.1007/s13197-011-0365-5   [Google Scholar] PMid:23729846 PMCid:PMC3614039
  18. Diharmi A, Rusnawati, and Irasari N (2019). Characteristic of carrageenan Eucheuma cottonii collected from the coast of Tanjung Medang Village and Jaga Island, Riau. In the IOP Conference Series: Earth and Environmental Science, IOP Publishing, 404: 012049. https://doi.org/10.1088/1755-1315/404/1/012049   [Google Scholar]
  19. Ellefson WC (2017). Fat analysis. In: Nielsen SS (Ed.), Food analysis laboratory manual: 299-314. Springer International Publishing, Cham, Switzerland. https://doi.org/10.1007/978-3-319-45776-5_17   [Google Scholar]
  20. Endress HU and Mattes F (2003). Rheological characterization of gum and jelly products. In: Voragen F, Schols H, and Visser RG (Eds.), Advances in pectin and pectinase research: 449-465. Springer Dordrecht, Berlin, Germany. https://doi.org/10.1007/978-94-017-0331-4_33   [Google Scholar]
  21. Estevez JM, Ciancia M, and Cerezo AS (2004). The system of galactans of the red seaweed, Kappaphycus alvarezii, with emphasis on its minor constituents. Carbohydrate Research, 339(15): 2575-2592. https://doi.org/10.1016/j.carres.2004.08.010   [Google Scholar] PMid:15476719
  22. FDA (2013). FDA Circular No. 2013-010: Revised guidelines for the assessment of microbial quality of processed foods. FDA Philippines, Muntinlupa, Philippines.   [Google Scholar]
  23. Gajalakshami S, Vijayalakshmi S, and Devi Rajeswari V (2012). Phytochemical and pharmacological properties of Annona muricata: A review. International Journal of Pharmacy and Pharmaceutical Sciences, 4(2): 3-6.   [Google Scholar]
  24. Gates KW (2012). Marine polysaccharides-Food applications. Vazhiyil Venugopal. Journal of Aquatic Food Product Technology, 21(2): 181-186. https://doi.org/10.1080/10498850.2012.651703   [Google Scholar]
  25. Grazela AJ and Morrison N (2002). Gelatin-free gummy confection using gellan gum and carrageenan. Patent and Trademark Office, Washington, D.C., USA.   [Google Scholar]
  26. Harris GK and Marshall MR (2017). Ash analysis. In: Nielsen SS (Ed.), Food analysis. Food Science Text Series. Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-319-45776-5_16   [Google Scholar] PMCid:PMC5928698
  27. Hartel RW, von Elbe JH, Hofberger R, Hartel RW, von Elbe JH, and Hofberger R (2018). Jellies, gummies and licorices. In: Hartel RW, von Elbe JH, and Hofberger R (Eds.), Confectionery science and technology: 329-359. Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-319-61742-8_12   [Google Scholar]
  28. Hassan RA, Heng LY, and Tan LL (2019). Novel DNA biosensor for direct determination of carrageenan. Scientific Reports, 9(1): 1-9. https://doi.org/10.1038/s41598-019-42757-y   [Google Scholar] PMid:31015498 PMCid:PMC6478878
  29. Hayness W (2013). Tukey’s test. In: Dubitzky W, Wolkenhauer O, Cho KH, and Yokota H (Eds.), Encyclopedia of systems biology. Springer Science+Business Media LLC, New York, USA.   [Google Scholar]
  30. Hotchkiss RS, Moldawer LL, Opal SM, Reinhart K, Turnbull IR, and Vincent JL (2016). Sepsis and septic shock. Nature Reviews Disease Primers, 2(1): 1-21. https://doi.org/10.1038/nrdp.2016.45   [Google Scholar] PMid:28117397 PMCid:PMC5538252
  31. Imeson AP (2000). Carrageenan. In: Phillips GO and Williams PA (Eds.), Handbook of hydrocolloids: 87-102. CRC Press, Boca Raton, USA.   [Google Scholar]
  32. Ismail BP (2017). Ash content determination. In: Heldman DR (Ed.), Food science text series: 117-119. Springer International Publishing,Cham, Germany. https://doi.org/10.1007/978-3-319-44127-6_11   [Google Scholar]
  33. JECFA (2006). Compendium of food additive specifications. Joint FAO/WHO Expert Committee on Food Additives, Food and Agriculture Organization of the United Nations, Rome, Italy.   [Google Scholar]
  34. Karim AA and Bhat R (2008). Gelatin alternatives for the food industry: Recent developments, challenges and prospects. Trends in Food Science and Technology, 19(12): 644-656.   [Google Scholar]
  35. Kim C, Wilkins K, Bowers M, Wynn C, and Ndegwa E (2018). Influence of pH and temperature on growth characteristics of leading foodborne pathogens in a laboratory medium and select food beverages. Austin Food Sciences, 3(1): 1031-1031. https://doi.org/10.1016/j.tifs.2008.08.001   [Google Scholar]
  36. Lawless HT and Heymann H (2010). Introduction. In: Lawless HT and Heymann H (Eds.), Sensory evaluation of food: Principles and practices. Springer Science and Business Media, New York, USA. https://doi.org/10.1007/978-1-4419-6488-5   [Google Scholar]
  37. Manuhara GJ, Praseptiangga D, and Riyanto RA (2016). Extraction and characterization of refined K-carrageenan of red algae [Kappaphycus Alvarezii (Doty ex PC Silva, 1996)] originated from Karimun Jawa Islands. Aquatic Procedia, 7: 106-111. https://doi.org/10.1016/j.aqpro.2016.07.014   [Google Scholar]
  38. Maturin L, and Peeler JT (2001). Aerobic plate count. In: FDA (Ed.), Bacteriological analytical manual: Revision A. Food and Drug Administration, Silver Spring, USA.   [Google Scholar]
  39. McHugh DJ (2003). A guide to the seaweed industry. FAO Fisheries Technical Paper 441, Food and Agriculture Organization of the United Nations, Rome, Italy.   [Google Scholar]
  40. Mitchell ME and Guiry MD (1983). Carrageenan: A local habitation or a name? Journal of Ethnopharmocology, 9(2-3): 347-351. https://doi.org/10.1016/0378-8741(83)90043-0   [Google Scholar] PMid:6677826
  41. Mouritsen OG and Styrbæk K (2017). Playing around with Mouthfeel. In: Mouritsen O and Styrbæk K (Eds.), Mouthfeel: How texture makes taste: 113-196. Columbia University Press, New York, USA. https://doi.org/10.7312/mour18076   [Google Scholar]
  42. Necas J and Bartosikova L (2013). Carrageenan: A review. Veterinarni Medicina, 58(4): 187-205. https://doi.org/10.17221/6758-VETMED   [Google Scholar]
  43. Nguyen BT, Nicolai T, Benyahia L, and Chassenieux C (2014). Synergistic effects of mixed salt on the gelation of κ-carrageenan. Carbohydrate Polymers, 112: 10-15. https://doi.org/10.1016/j.carbpol.2014.05.048   [Google Scholar] PMid:25129710
  44. Nielsen SS (2006). Proximate assays in food analysis. In: Meyers RA (Ed.), Encyclopedia of analytical chemistry: Applications, theory and instrumentation. Wiley, Hoboken, USA. https://doi.org/10.1002/9780470027318.a1024   [Google Scholar]
  45. Nussinovitch A (1997). Hydrocolloid applications: Gum technology in the food and other industries. Blackie Academic and Professional, London, UK.   [Google Scholar]
  46. Onilude AA, Igbinadolor RO, and Wakil SM (2010). Effect of time and relative humidity on the microbial load and physical quality of cashew nuts (Anacardium occidentale L) under storage. African Journal of Microbiology Research, 4(19): 1939-1944.   [Google Scholar]
  47. Pareek S, Yahia EM, Pareek OP, and Kaushik RA (2011). Postharvest physiology and technology of Annona fruits. Food Research International, 44(7): 1741-1751. https://doi.org/10.1016/j.foodres.2011.02.016   [Google Scholar]
  48. Peñalver R, Lorenzo JM, Ros G, Amarowicz R, Pateiro M, and Nieto G (2020). Seaweeds as a functional ingredient for a healthy diet. Marine Drugs, 18(6): 301. https://doi.org/10.3390/md18060301   [Google Scholar] PMid:32517092 PMCid:PMC7345263
  49. PHE (2020). Determination of water activity in food: National infection service food water and environmental microbiology standard method. National Infection Service Food, Water and Environmental Microbiology Standard Method FNES67, Public Health England, London, UK. 
  50. Pobar RA (2015). Promoting gummy guyabano (Anona muricata Linn.) candy. International Journal of Environmental and Rural Development, 6(2): 147-152.   [Google Scholar]
  51. Renuka N, Sood A, Ratha SK, Prasanna R, and Ahluwalia AS (2013). Evaluation of microalgal consortia for treatment of primary treated sewage effluent and biomass production. Journal of Applied Phycology, 25(5): 1529-1537. https://doi.org/10.1007/s10811-013-9982-x   [Google Scholar]
  52. Sharif MK, Nasir M, Butt MS, and Sharif HR (2017). Sensory evaluation and consumer acceptability. In: Sharif MK, Butt MS, Sharif HR, Nasir M, Zahoor T, and Butt M (Eds.), Handbook of food science and technology: 362-386. CRC Press, Boca Raton, USA.   [Google Scholar]
  53. Shemishere UB, Taiwo JE, Erhunse N, and Omoregie ES (2018). Comparative study on the proximate analysis and nutritional composition of Musanga cercropioides and Maesobotyra barteri leaves. Journal of Applied Sciences and Environmental Management, 22(2): 287-291. https://doi.org/10.4314/jasem.v22i2.22   [Google Scholar]
  54. Sirangelo TM (2019). Sensory descriptive evaluation of food products: A review. Journal of Food Science and Nutrition Research, 2(4): 354-363.   [Google Scholar]
  55. Submaranian P (2007). Determining shelf life of confectionery products. The Manufacturing Confectioner, 86(7): 85-91.   [Google Scholar]
  56. Sultana S, Iqbal MMI, and Akhtar M (2013). A visualization of Fisher's least significant difference test. Pakistan Journal of Commerce and Social Sciences (PJCSS), 7(1): 100-106.   [Google Scholar]
  57. Suryani I, Sari DIP, Astutik DM, and Abdillah A (2019). Kappa and iota carrageenan combination of Kappaphycus alvarezii and Eucheuma spinosum as a gelatin substitute in ice cream raw material product. In IOP Conference Series: Earth and Environmental Science, IOP Publishing, 236(1): 012114. https://doi.org/10.1088/1755-1315/236/1/012114   [Google Scholar]
  58. Sych J (2003). Intermediate-moisture foods. In: Robinson RK (Ed.), Encyclopedia of food microbiology. 2nd Edition, Academic Press, Cambridge, USA. https://doi.org/10.1016/B0-12-227055-X/00644-1   [Google Scholar]
  59. Utomo BSB, Darmawan M, Hakim AR, and Ardi DT (2014). Physicochemical properties and sensory evaluation of jelly candy made from different ratio of Kappa-carrageenan and Konjac. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 9(1): 25-34. https://doi.org/10.15578/squalen.v9i1.93   [Google Scholar]
  60. Valderrama-Bravo C, López-Ramírez Y, Jiménez-Ambriz S, Oaxaca-Luna A, Domínguez-Pacheco A, Hernández-Aguilar C, and Moreno-Martínez E (2014). Changes in chemical, viscoelastic, and textural properties of nixtamalized dough with nejayote. LWT-Food Science and Technology, 61(2): 496-502. https://doi.org/10.1016/j.lwt.2014.12.038   [Google Scholar]
  61. Vijayakumar PP and Adedeji A (2017). Measuring the pH of food products. University of Kentucky, Lexington, USA.   [Google Scholar]
  62. Webber V, de Carvalho SM, Ogliari PJ, Hayashi L, and Barreto PLM (2012). Optimization of the extraction of carrageenan from Kappaphycus alvarezii using response surface methodology. Ciencia e Tecnologia de Alimentos, 32(4): 812-818. https://doi.org/10.1590/S0101-20612012005000111   [Google Scholar]