International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 10, Issue 2 (February 2023), Pages: 210-218

----------------------------------------------

 Original Research Paper

 Amelioration in cross-matching policy with subtypes of A for priority-based demand

 Author(s): 

 R. Chithraponnu, S. Umamaheswari *

 Affiliation(s):

 Division of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Chennai, Tamil Nadu, India

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0003-0317-8368

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2023.02.025

 Abstract:

Blood transfusion is a medical procedure that requires prolonged intervention. In clinical treatment, red blood cells (RBCs) play a vital role and most demanded product in blood transfusion. The ABO/RhD system was considered in several research projects in the absence of subtypes of blood inventory management (BIM). In the issuing process, without considering the age of the blood, it becomes a risk factor for the recipient after transfusion. To overcome this problem and provide effective treatment, BIM should enhance its stock of specific subtypes and classify the blood's age (shelf-life). In past, no studies on issuing policies have examined š“1š“2šµš‘‚ substitution in inventory management with a new š“1š“2šµš‘‚ compatible and š“2š‘‚ priority table. For this reason, in this paper blood units of different ages are examined from two perspectives: (1) the current age of each unit and its substitution possibilities, and (2) providing effective medical services. Furthermore, the proposed system can determine the optimal order up to level quantities. Medical procedures and inventory management can both be managed effectively with this model. Hence, the goal of this research proposal is to minimize wastage and shortages along with service level substitution with age-dependent demand. By providing a numerical example, the model can validate the fact that compatibility substitution reduces wastage and blood shortages. Using a cross-matching policy, the enhanced model significantly improves the objective of this model compared to ABO substitution.

 © 2022 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Age-dependent, Blood subtypes, Cross-matching, RBC, Substitution, Transfusion

 Article History: Received 11 August 2022, Received in revised form 15 November 2022, Accepted 18 November 2022

 Acknowledgment 

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Chithraponnu R and Umamaheswari S (2023). Amelioration in cross-matching policy with subtypes of A for priority-based demand. International Journal of Advanced and Applied Sciences, 10(2): 210-218

 Permanent Link to this page

 Figures

 Fig. 1 

 Tables

 Table 1 Table 2 Table 3 

----------------------------------------------    

 References (24)

  1. Abbaspour A, Jahan A, and Rezaiee M (2021). A simple empirical model for blood platelet production and inventory management under uncertainty. Journal of Ambient Intelligence and Humanized Computing, 12(2): 1783-1799. https://doi.org/10.1007/s12652-020-02254-x   [Google Scholar]
  2. Attari MYN and Abdoli N (2020). Reducing wastages and shortages of blood products at hospitals with considering ABO/Rh (D) compatibility. Journal of Industrial Engineering and Decision Making, 1(1): 24-48. https://doi.org/10.31181/jiedm200101024a   [Google Scholar]
  3. Dalalah D and Alkhaledi KA (2021). Optimization of red blood cell inventory: A bloodā€type compatibilityā€preference and emergency model. International Transactions in Operational Research, 30(1): 239-272. https://doi.org/10.1111/itor.12932   [Google Scholar]
  4. Dean L (2005). The Kell blood group. In: Dean L and Dean L (Eds.), Blood groups and red cell antigens. National Center for Biotechnology Information, Bethesda, USA.   [Google Scholar]
  5. Elston RC and Pickrel JC (1963). A statistical approach to ordering and usage policies for a hospital blood bank. Transfusion, 3(1): 41-47. https://doi.org/10.1111/j.1537-2995.1963.tb04602.x   [Google Scholar]
  6. Goel R and Frank SM (2017). Response to assuring hospital supply of fresh red blood cells for critically ill patients. Transfusion, 57(5): 1321-1322. https://doi.org/10.1111/trf.14104   [Google Scholar] PMid:28425608
  7. Gunpinar S and Centeno G (2015). Stochastic integer programming models for reducing wastages and shortages of blood products at hospitals. Computers and Operations Research, 54: 129-141. https://doi.org/10.1016/j.cor.2014.08.017   [Google Scholar]
  8. Hussain R, Fareed M, Shah A, and Afzal M (2013). Prevalence and gene frequencies of A1A2BO and Rh (D) blood group alleles among some Muslim populations of North India. Egyptian Journal of Medical Human Genetics, 14(1): 69-76. https://doi.org/10.1016/j.ejmhg.2012.06.001   [Google Scholar]
  9. Jagannathan R and Sen T (1991). Storing crossmatched blood: A perishable inventory model with prior allocation. Management Science, 37(3): 251-266. https://doi.org/10.1287/mnsc.37.3.251   [Google Scholar]
  10. Kamau LW and Kagiri AW (2015). Influence of inventory management practices on organizational competitiveness: A case of Safaricom Kenya Ltd. International Academic Journal of Procurement and Supply Chain Management, 1(5): 72-98.   [Google Scholar]
  11. Lacroix J, Hébert PC, Fergusson DA, Tinmouth A, Cook DJ, Marshall JC, and Vo D (2015). Age of transfused blood in critically ill adults. New England Journal of Medicine, 372(15): 1410-1418. https://doi.org/10.1056/NEJMoa1500704   [Google Scholar] PMid:25853745
  12. Lang JC (2009). Production and inventory management with substitutions. Springer Science and Business Media, Heidelberg, Germany.   [Google Scholar]
  13. Lefrère JJ and Berche P (2009). Karl Landsteiner discovers the blood groups. Transfusion Clinique et Biologique: Journal de la Societe Francaise de Transfusion Sanguine, 17(1): 1-8. https://doi.org/10.1016/j.tracli.2009.11.001   [Google Scholar] PMid:20044293
  14. Lowalekar H and Ravichandran N (2014). Blood bank inventory management in India. Opsearch, 51(3): 376-399. https://doi.org/10.1007/s12597-013-0148-z   [Google Scholar]
  15. Meneses M, Marques I, and Barbosaā€Póvoa A (2021). Blood inventory management: Ordering policies for hospital blood banks under uncertainty. International Transactions in Operational Research, 30(1): 273-301. https://doi.org/10.1111/itor.12981   [Google Scholar]
  16. Najafi M, Ahmadi A, and Zolfagharinia H (2017). Blood inventory management in hospitals: Considering supply and demand uncertainty and blood transshipment possibility. Operations Research for Health Care, 15: 43-56. https://doi.org/10.1016/j.orhc.2017.08.006   [Google Scholar]
  17. Padmasri R, Bhatara U, and Iyengar RS (2014). A rare case of A2+ve blood group in an obstetric emergency. Journal of Clinical and Diagnostic Research, 8(2): 181-182.   [Google Scholar]
  18. Rajendran S and Ravindran AR (2017). Platelet ordering policies at hospitals using stochastic integer programming model and heuristic approaches to reduce wastage. Computers and Industrial Engineering, 110: 151-164. https://doi.org/10.1016/j.cie.2017.05.021   [Google Scholar]
  19. Rutam VV (2022). Meet the Jabalpur man with the rarest of blood groups-‘Ael’. Available online at: https://www.thehindubusinessline.com/news/science/meet-the-jabalpur-man-with-the-rarest-of-blood-groups-ael/article65297038.ece
  20. Shah RJ, Senjaliya SB, Harimoorthy V, Burgos A, Vege S, Lomas-Francis C, and Joshi SR (2021). Anti-Emm, a rare specificity to the high-incidence antigen Emm in an Indian patient defining the new blood group system EMM (ISBT042). Asian Journal of Transfusion Science, 15(2): 223-225. https://doi.org/10.4103/ajts.ajts_59_21   [Google Scholar] PMid:34908758 PMCid:PMC8628250
  21. Syed AH, Khan T, Alromema NA, Barik L, AlRababah AAQ, and Aljiffry MM (2022). COVID-19 vaccine dosages and government factors role on the global variation in COVID-19 mortality: A statistical and regression analysis. International Journal of Advanced and Applied Sciences, 9(5): 18-31. https://doi.org/10.21833/ijaas.2022.05.003   [Google Scholar]
  22. Tierney J and Shaffer D (2015). Transplantation of ABO A2 kidneys into O recipients: Do IgM antiā€A1 titers matter? Clinical Transplantation, 29(4): 379-382. https://doi.org/10.1111/ctr.12527   [Google Scholar] PMid:25659826
  23. UCSFHealth (2022). Transplant screening tests. University of California San Francisco, San Francisco, USA. Available online at: https://www.ucsfhealth.org/education/transplant-screening-tests
  24. Zallen G, Offner PJ, Moore EE, Blackwell J, Ciesla DJ, Gabriel J, and Silliman CC (1999). Age of transfused blood is an independent risk factor for postinjury multiple organ failure. The American Journal of Surgery, 178(6): 570-572. https://doi.org/10.1016/S0002-9610(99)00239-1   [Google Scholar] PMid:10670874