International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 10, Issue 2 (February 2023), Pages: 57-66

----------------------------------------------

 Original Research Paper

 Analyzing technical efficiency in Vietnamese seafood processing firms: A semi-parametric stochastic frontier approach

 Author(s): 

 Thuan Duc Tran 1, Khanh Ngoc Nguyen 2, Thu Kim Pham 3, Van Nguyen 4, *

 Affiliation(s):

 1Thuan Phat Technology-Service and Trading-Production-Export-Import Co. Ltd, Ho Chi Minh City, Vietnam
 2Faculty of Economics and Business Management, Hanoi University of Mining and Geology, Hanoi, Vietnam
 3Faculty of Business Management, Huu Nghi University of Technology and Management, Hanoi, Vietnam
 4Faculty of Fundamental Science, Vietnam Maritime University, Haiphong, Vietnam

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-9754-7648

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2023.02.008

 Abstract:

This research aims to estimate and analyze the technical efficiency of Vietnamese seafood processing firms by applying the semi-parametric stochastic frontier model and Tobit regression. The data used in this study is a panel sample of 170 Vietnamese seafood processing firms in the period from 2013 to 2018. It is collected from enterprise census data of the General Statistics Office of Vietnam and provincial competitiveness index data of the Vietnam Chamber of Commerce and Industry. The estimated results show that: The scores of technical efficiency of firms averaged 0.712 and there was a decline during the study period. There is still plenty of room for technical efficiency in firms; The gap in technical efficiency in firms is still large and there is a strong difference in efficiency between firm’s ownerships and firm sizes; Firms with export activities, large scale, foreign direct investment capital, and low equity restrictions will have a positive impact on technical efficiency; However, there is no evidence to show the impact of the firm’s age and firm located in industrial zones factors on the efficiency of firms. In addition, the institutional quality and business environment also have an impact on the performance of firms.

 © 2022 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Technical efficiency, Semi-parametric stochastic frontier, Tobit regression, Vietnamese seafood processing industry

 Article History: Received 21 July 2022, Received in revised form 8 October 2022, Accepted 21 October 2022

 Acknowledgment 

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Tran TD, Nguyen KN, Pham TK, and Nguyen V (2023). Analyzing technical efficiency in Vietnamese seafood processing firms: A semi-parametric stochastic frontier approach. International Journal of Advanced and Applied Sciences, 10(2): 57-66

 Permanent Link to this page

 Figures

 Fig. 1

 Tables

 Table 1 Table 2 Table 3 Table 4 Table 5 Table 6

----------------------------------------------    

 References (65)

  1. Acemoglu D and Johnson S (2005). Unbundling institutions. Journal of Political Economy, 113(5): 949-995. https://doi.org/10.1086/432166   [Google Scholar]
  2. Adams RM and Sickles RC (2007). Semiparametric efficient distribution free estimation of panel models. Communications in Statistics-Theory and Methods, 36(13): 2425-2442. https://doi.org/10.1080/03610920701215563   [Google Scholar]
  3. Admassie A and Matambalya FA (2002). Technical efficiency of small-and medium-scale enterprises: Evidence from a survey of enterprises in Tanzania. Eastern Africa Social Science Research Review, 18(2): 1-29. https://doi.org/10.1353/eas.2002.0007   [Google Scholar]
  4. Ahn SC, Lee YH, and Schmidt P (2007). Stochastic frontier models with multiple time-varying individual effects. Journal of Productivity Analysis, 27(1): 1–12. https://doi.org/10.1007/s11123-006-0020-8   [Google Scholar]
  5. Ahn SC, Lee YH, and Schmidt P (2013). Panel data models with multiple time-varying individual effects. Journal of Econometrics, 174(1): 1-14. https://doi.org/10.1016/j.jeconom.2012.12.002   [Google Scholar]
  6. Aigner D, Lovell CK, and Schmidt P (1977). Formulation and estimation of stochastic frontier production function models. Journal of Econometrics, 6(1): 21-37. https://doi.org/10.1016/0304-4076(77)90052-5   [Google Scholar]
  7. Aron J (2000). Growth and institutions: A review of the evidence. The World Bank Research Observer, 15(1): 99-135. https://doi.org/10.1093/wbro/15.1.99   [Google Scholar]
  8. Banker RD and Maindiratta A (1992). Maximum likelihood estimation of monotone and concave production frontiers. Journal of Productivity Analysis, 3(4): 401-415. https://doi.org/10.1007/BF00163435   [Google Scholar]
  9. Battese GE and Coelli TJ (1992). Frontier production functions, technical efficiency and panel data: With application to paddy farmers in India. Journal of Productivity Analysis, 3(1): 153-169. https://doi.org/10.1007/BF00158774   [Google Scholar]
  10. Belotti F and Ilardi G (2018). Consistent inference in fixed-effects stochastic frontier models. Journal of Econometrics, 202(2): 161-177. https://doi.org/10.1016/j.jeconom.2017.09.005   [Google Scholar]
  11. Bernard AB and Jensen JB (1999). Exceptional exporter performance: Cause, effect, or both? Journal of International Economics, 47(1): 1-25. https://doi.org/10.1016/S0022-1996(98)00027-0   [Google Scholar]
  12. Biener C, Eling M, and Wirfs JH (2016). The determinants of efficiency and productivity in the Swiss insurance industry. European Journal of Operational Research, 248(2): 703-714. https://doi.org/10.1016/j.ejor.2015.07.055   [Google Scholar]
  13. Bowen HP and De Clercq D (2008). Institutional context and the allocation of entrepreneurial effort. Journal of International Business Studies, 39(4): 747-767. https://doi.org/10.1057/palgrave.jibs.8400343   [Google Scholar]
  14. Cameron AC and Trivedi PK (2009). Microeconometrics using stata. A Stata Press Publication, StataCorp LP, College Station, USA.   [Google Scholar]
  15. Carayannis E and Grigoroudis E (2014). Linking innovation, productivity, and competitiveness: Implications for policy and practice. The Journal of Technology Transfer, 39(2): 199-218. https://doi.org/10.1007/s10961-012-9295-2   [Google Scholar]
  16. Cattaneo MD and Jansson M (2018). Kernel‐based semiparametric estimators: Small bandwidth asymptotics and bootstrap consistency. Econometrica, 86(3): 955-995. https://doi.org/10.3982/ECTA12701   [Google Scholar]
  17. Chen YY, Schmidt P, and Wang HJ (2014). Consistent estimation of the fixed effects stochastic frontier model. Journal of Econometrics, 181(2): 65-76. https://doi.org/10.1016/j.jeconom.2013.05.009   [Google Scholar]
  18. Chu SN and Kalirajan K (2011). Impact of trade liberalisation on technical efficiency of Vietnamese manufacturing firms. Science, Technology and Society, 16(3): 265-284. https://doi.org/10.1177/097172181101600302   [Google Scholar]
  19. Colombi R, Kumbhakar SC, Martini G, and Vittadini G (2014). Closed-skew normality in stochastic frontiers with individual effects and long/short-run efficiency. Journal of Productivity Analysis, 42(2): 123-136. https://doi.org/10.1007/s11123-014-0386-y   [Google Scholar]
  20. Cornwell C, Schmidt P, and Sickles RC (1990). Production frontiers with cross-sectional and time-series variation in efficiency levels. Journal of Econometrics, 46(1-2): 185-200. https://doi.org/10.1016/0304-4076(90)90054-W   [Google Scholar]
  21. Debaere P, Lee J, and Paik M (2010). Agglomeration, backward and forward linkages: Evidence from South Korean investment in China. Canadian Journal of Economics/Revue canadienne d'économique, 43(2): 520-546. https://doi.org/10.1111/j.1540-5982.2010.01582.x   [Google Scholar]
  22. Dollar D and Kraay A (2003). Institutions, trade, and growth. Journal of Monetary Economics, 50(1): 133-162. https://doi.org/10.1016/S0304-3932(02)00206-4   [Google Scholar]
  23. Fan Y, Li Q, and Weersink A (1996). Semiparametric estimation of stochastic production frontier models. Journal of Business and Economic Statistics, 14(4): 460-468. https://doi.org/10.1080/07350015.1996.10524675   [Google Scholar]
  24. Farrell MJ (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society: Series A (General), 120(3): 253-281. https://doi.org/10.2307/2343100   [Google Scholar]
  25. Fredriksson PG and Svensson J (2003). Political instability, corruption and policy formation: The case of environmental policy. Journal of Public Economics, 87(7-8): 1383-1405. https://doi.org/10.1016/S0047-2727(02)00036-1   [Google Scholar]
  26. Greene W (2005). Fixed and random effects in stochastic frontier models. Journal of Productivity Analysis, 23(1): 7-32. https://doi.org/10.1007/s11123-004-8545-1   [Google Scholar]
  27. Hanousek J, Kočenda E, and Mašika M (2012). Firm efficiency: Domestic owners, coalitions, and FDI. Economic Systems, 36(4): 471-486. https://doi.org/10.1016/j.ecosys.2012.04.004   [Google Scholar]
  28. Helpman E, Melitz MJ, and Yeaple SR (2004). Export versus FDI with heterogeneous firms. American Economic Review, 94(1): 300-316. https://doi.org/10.1257/000282804322970814   [Google Scholar]
  29. Ho BD (2012). Total factor productivity in Vietnamese agriculture and its determinants. Ph.D. Dissertation, University of Canberra, Canberra, Australia.   [Google Scholar]
  30. Huang CJ, Huang TH, and Liu NH (2014). A new approach to estimating the metafrontier production function based on a stochastic frontier framework. Journal of Productivity Analysis, 42(3): 241-254. https://doi.org/10.1007/s11123-014-0402-2   [Google Scholar]
  31. Kneip A and Sickles RC (2011). Panel data, factor models, and the Solow residual. In: Van Keilegom I and Wilson P (Eds.), Exploring research frontiers in contemporary statistics and econometrics: 83-114. Physica, Heidelberg, Germany. https://doi.org/10.1007/978-3-7908-2349-3_5   [Google Scholar]
  32. Kneip A and Simar L (1996). A general framework for frontier estimation with panel data. Journal of Productivity Analysis, 7(2): 187-212. https://doi.org/10.1007/BF00157041   [Google Scholar]
  33. Kneip A, Simar L, and Van Keilegom I (2015). Frontier estimation in the presence of measurement error with unknown variance. Journal of Econometrics, 184(2): 379-393. https://doi.org/10.1016/j.jeconom.2014.09.012   [Google Scholar]
  34. Kumbhakar SC, Lien G, and Hardaker JB (2014). Technical efficiency in competing panel data models: A study of Norwegian grain farming. Journal of Productivity Analysis, 41(2): 321-337. https://doi.org/10.1007/s11123-012-0303-1   [Google Scholar]
  35. Kumbhakar SC, Park BU, Simar L, and Tsionas EG (2007). Nonparametric stochastic frontiers: A local maximum likelihood approach. Journal of Econometrics, 137(1): 1-27. https://doi.org/10.1016/j.jeconom.2006.03.006   [Google Scholar]
  36. Le V, Vu XBB, and Nghiem S (2018). Technical efficiency of small and medium manufacturing firms in Vietnam: A stochastic meta-frontier analysis. Economic Analysis and Policy, 59: 84-91. https://doi.org/10.1016/j.eap.2018.03.001   [Google Scholar]
  37. Lee YH and Schmidt P (1993). A production frontier model with flexible temporal variation in technical efficiency. In: Fried HO, Schmidt SS, and Lovell CK (Eds.), The measurement of productive efficiency: Techniques and applications: 237-255. Oxford University Press, Oxford, UK.   [Google Scholar]
  38. Leibenstein H (1966). Allocative efficiency vs. "X-efficiency". The American Economic Review, 56(3): 392-415.   [Google Scholar]
  39. Ling YH, Kokkiang T, Gharleghi B, and Fah BCY (2018). Productivity and efficiency modeling amongst ASEAN-5 airline industries. International Journal of Advanced and Applied Sciences, 5(8): 47-57. https://doi.org/10.21833/ijaas.2018.08.007   [Google Scholar]
  40. Mathur I, Singh M, and Gleason KC (2004). Multinational diversification and corporate performance: Evidence from European firms. European Financial Management, 10(3): 439-464. https://doi.org/10.1111/j.1354-7798.2004.00258.x   [Google Scholar]
  41. Meeusen W and van Den Broeck J (1977). Efficiency estimation from Cobb-Douglas production functions with composed error. International Economic Review, 18(2): 435-444. https://doi.org/10.2307/2525757   [Google Scholar]
  42. Melitz M (2003). The impact of trade on aggregate industry productivity and intra-industry reallocations. Econometrica, 71(6): 1695-1725. https://doi.org/10.1111/1468-0262.00467   [Google Scholar]
  43. Minh NK, Long GT, and Thang BN (2007). Technical efficiency of small and medium manufacturing firms in Vietnam: Parametric and non-parametric approaches. Korean Economic Review, 23(1): 187-221.   [Google Scholar]
  44. Nguyen TM (2022). Factors affecting use of cost information: Empirical evidence from seafood processing enterprises in Vietnam. The Journal of Asian Finance, Economics and Business, 9(4): 93-98.   [Google Scholar]
  45. Nguyen TM, Le Q, Tran T, and Nguyen M (2019). Ownership, technology gap and technical efficiency of small and medium manufacturing firms in Vietnam: A stochastic meta frontier approach. Decision Science Letters, 8(3): 225-232. https://doi.org/10.5267/j.dsl.2019.3.002   [Google Scholar]
  46. O’Donnell CJ, Rao DS, and Battese GE (2008). Metafrontier frameworks for the study of firm-level efficiencies and technology ratios. Empirical Economics, 34(2): 231-255. https://doi.org/10.1007/s00181-007-0119-4   [Google Scholar]
  47. Park BU, Sickles RC, and Simar L (1998). Stochastic panel frontiers: A semiparametric approach. Journal of Econometrics, 84(2): 273-301. https://doi.org/10.1016/S0304-4076(97)00087-0   [Google Scholar]
  48. Park BU, Sickles RC, and Simar L (2003). Semiparametric-efficient estimation of AR (1) panel data models. Journal of Econometrics, 117(2): 279-309. https://doi.org/10.1016/S0304-4076(03)00149-0   [Google Scholar]
  49. Park BU, Sickles RC, and Simar L (2007). Semiparametric efficient estimation of dynamic panel data models. Journal of Econometrics, 136(1): 281-301. https://doi.org/10.1016/j.jeconom.2006.03.004   [Google Scholar]
  50. Park BU, Simar L, and Zelenyuk V (2015). Categorical data in local maximum likelihood: theory and applications to productivity analysis. Journal of Productivity Analysis, 43(2): 199-214. https://doi.org/10.1007/s11123-014-0394-y   [Google Scholar]
  51. Phan HM and Hien PTT (2021). Formality and investments: Evidence of Vietnamese SMEs. International Journal of Advanced and Applied Sciences, 8(3): 63-70. https://doi.org/10.21833/ijaas.2021.03.009   [Google Scholar]
  52. Phillips SAM and Yeung HWC (2003). A place for R&D? The Singapore science park. Urban Studies, 40(4): 707-732. https://doi.org/10.1080/0042098032000065263   [Google Scholar]
  53. Pitt MM and Lee LF (1981). The measurement and sources of technical inefficiency in the Indonesian weaving industry. Journal of Development Economics, 9(1): 43-64. https://doi.org/10.1016/0304-3878(81)90004-3   [Google Scholar]
  54. Ramadani V, Hisrich RD, Abazi-Alili H, Dana LP, Panthi L, and Abazi-Bexheti L (2019). Product innovation and firm performance in transition economies: A multi-stage estimation approach. Technological Forecasting and Social Change, 140: 271-280. https://doi.org/10.1016/j.techfore.2018.12.010   [Google Scholar]
  55. Rios AR and Shively GE (2005). Farm size and nonparametric efficiency measurements for coffee farms in Vietnam. In the American Agricultural Economics Association Annual Meeting, Providence, USA.   [Google Scholar]
  56. Schmalz MC (2018). Common-ownership concentration and corporate conduct. Annual Review of Financial Economics, 10(1): 413-448. https://doi.org/10.1146/annurev-financial-110217-022747   [Google Scholar]
  57. Schmidt P and Sickles RC (1984). Production frontiers and panel data. Journal of Business and Economic Statistics, 2(4): 367-374. https://doi.org/10.1080/07350015.1984.10509410   [Google Scholar]
  58. Sickles RC and Zelenyuk V (2019). Measurement of productivity and efficiency. Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/9781139565981   [Google Scholar]
  59. Simar L, Van Keilegom I, and Zelenyuk V (2017). Nonparametric least squares methods for stochastic frontier models. Journal of Productivity Analysis, 47(3): 189-204. https://doi.org/10.1007/s11123-016-0474-2   [Google Scholar]
  60. Temouri Y, Driffield NL, and Añón Higón D (2008). Analysis of productivity differences among foreign and domestic firms: Evidence from Germany. Review of World Economics, 144(1): 32-54. https://doi.org/10.1007/s10290-008-0136-1   [Google Scholar]
  61. Timmer CP (1971). Using a probabilistic frontier production function to measure technical efficiency. Journal of Political Economy, 79(4): 776-794. https://doi.org/10.1086/259787   [Google Scholar]
  62. Wagner J (2007). Exports and productivity: A survey of the evidence from firm‐level data. World Economy, 30(1): 60-82. https://doi.org/10.1111/j.1467-9701.2007.00872.x   [Google Scholar]
  63. Wang CN, Nguyen TL, Dang TT, and Bui TH (2021). Performance evaluation of fishery enterprises using data envelopment analysis: A Malmquist model. Mathematics, 9(5): 469. https://doi.org/10.3390/math9050469   [Google Scholar]
  64. Wysokińska Z (2003). Competitiveness and its relationships with productivity and sustainable development. Fibres and Textiles in Eastern Europe, 11(3): 11-14.   [Google Scholar]
  65. Yeaple SR (2005). A simple model of firm heterogeneity, international trade, and wages. Journal of International Economics, 65(1): 1-20. https://doi.org/10.1016/j.jinteco.2004.01.001   [Google Scholar]