International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 10, Issue 12 (December 2023), Pages: 203-210

----------------------------------------------

 Original Research Paper

Deep transfer learning CNN based for classification quality of organic vegetables

 Author(s): 

 Suksun Promboonruang, Thummarat Boonrod *

 Affiliation(s):

 Digital Technology Department, Faculty of Administrative Science, Kalasin University, Nuea, Thailand

 Full text

  Full Text - PDF

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0009-0006-6014-2803

 Digital Object Identifier (DOI)

 https://doi.org/10.21833/ijaas.2023.12.022

 Abstract

This study introduces a system based on a Convolutional Neural Network (CNN) with deep transfer learning for classifying organic vegetables. It aims to evaluate their quality through artificial intelligence. The approach involves three key steps: collecting data, preparing data, and creating data models. Initially, the data collection phase involves gathering images of organic vegetables from packing facilities, organizing these images into training, testing, and validation datasets. In the preparation phase, image processing techniques are applied to adjust the images for training and testing, resizing each to 224 x 224 pixels. The modeling phase involves using these prepared datasets, which include 3,239 images of two types of organic vegetables, to train the model. The study tests the model's effectiveness using three CNN architectures: Inception V3, VGG16, and ResNet50. It finds that the Inception V3 model achieves the highest accuracy at 85%, VGG16 follows with 82% accuracy, and ResNet50 has the lowest accuracy at 50%. The results suggest that Inception V3 is the most effective at accurately classifying organic vegetables, while VGG16 shows some limitations in certain categories, and ResNet50 is the least effective.

 © 2023 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 Deep learning, Transfer learning, Classification, Organic vegetables

 Article history

 Received 17 July 2023, Received in revised form 25 November 2023, Accepted 9 December 2023

 Acknowledgment 

This research project was allocated subsidies from the science supported by "Fundamental Fund: FF2023" and Kalasin University.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Promboonruang S and Boonrod T (2023). Deep transfer learning CNN based for classification quality of organic vegetables. International Journal of Advanced and Applied Sciences, 10(12): 203-210

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5

 Tables

 Table 1 Table 2 

----------------------------------------------   

 References (38)

  1. Abisha A and Bharathi N (2023). A hybrid feature extraction and classification using Xception-RF for multiclass disease classification in plant leaves. Artificial Intelligence, 37(1): 2176614. https://doi.org/10.1080/08839514.2023.2176614   [Google Scholar]
  2. Abou Baker N, Zengeler N, and Handmann U (2022). A transfer learning evaluation of deep neural networks for image classification. Machine Learning and Knowledge Extraction, 4(1): 22-41. https://doi.org/10.3390/make4010002   [Google Scholar]
  3. Africa ADM, Tabalan ARV, and Tan MAA (2020). Ripe fruit detection and classification using machine learning. International Journal of Emerging Trends in Engineering Research, 8(5): 1845-1849. https://doi.org/10.30534/ijeter/2020/60852020   [Google Scholar]
  4. Aherwadi N, Mittal U, Singla J, Jhanjhi NZ, Yassine A, and Hossain MS (2022). Prediction of fruit maturity, quality, and its life using deep learning algorithms. Electronics, 11(24): 4100. https://doi.org/10.3390/electronics11244100   [Google Scholar]
  5. Ali MM, Hashim N, Abd Aziz S, and Lasekan O (2021). Quality inspection of food and agricultural products using artificial intelligence. Advances in Agricultural and Food Research Journal, 2(2): a0000237.   [Google Scholar]
  6. Alsirhani A, Siddiqi MH, Mostafa AM, Ezz M, and Mahmoud AA (2023). A novel classification model of date fruit dataset using deep transfer learning. Electronics, 12(3): 665. https://doi.org/10.3390/electronics12030665   [Google Scholar]
  7. Aranuwa F and Fawehinmi O (2022). Classification model for multi-classes iris image using deep learning neural networks. International Journal of Darshan Institute on Engineering Research and Emerging Technology, 11(2): 26–33. https://doi.org/10.32692/IJDI-ERET/11.2.2022.2204   [Google Scholar]
  8. Ashari S, Yanris GJ, and Purnama I (2022). Oil palm fruit ripeness detection using deep learning. Sinkron: Jurnal dan Penelitian Teknik Informatika, 7(2): 649-656. https://doi.org/10.33395/sinkron.v7i2.11420   [Google Scholar]
  9. Baid Y and Dhole A (2021). Food image classification using deep learning techniques. International Journal of Computer Sciences and Engineering, 9: 11-15. https://doi.org/10.26438/ijcse/v9i7.1115   [Google Scholar]
  10. Chen MC, Cheng YT, and Liu CY (2022). Implementation of a fruit quality classification application using an artificial intelligence algorithm. Sensors and Materials, 34(1): 151–162. https://doi.org/10.18494/SAM3553   [Google Scholar]
  11. Ezat WA, Dessouky MM, and Ismail NA (2020). Multi-class image classification using deep learning algorithm. Journal of Physics: Conference Series, 1447: 012021. https://doi.org/10.1088/1742-6596/1447/1/012021   [Google Scholar]
  12. Gill HS, Khalaf OI, Alotaibi Y, Alghamdi S, and Alassery F (2022). Fruit image classification using deep learning. Computers, Materials and Continua, 71(3): 5135-5150. https://doi.org/10.32604/cmc.2022.022809   [Google Scholar]
  13. Gill HS, Murugesan G, Mehbodniya A, Sajja GS, Gupta G, and Bhatt A (2023). Fruit type classification using deep learning and feature fusion. Computers and Electronics in Agriculture, 211: 107990. https://doi.org/10.1016/j.compag.2023.107990   [Google Scholar]
  14. Golchubian A, Marques O, and Nojoumian M (2021). Photo quality classification using deep learning. Multimedia Tools and Applications, 80: 22193-22208. https://doi.org/10.1007/s11042-021-10766-7   [Google Scholar]
  15. Gulzar Y (2023). Fruit image classification model based on MobileNetV2 with deep transfer learning technique. Sustainability, 15(3): 1906. https://doi.org/10.3390/su15031906   [Google Scholar]
  16. Gundala RR and Singh A (2021). What motivates consumers to buy organic foods? Results of an empirical study in the United States. PLOS ONE, 16(9): e0257288. https://doi.org/10.1371/journal.pone.0257288   [Google Scholar] PMid:34506582 PMCid:PMC8432837
  17. Guo H, Tao X, and Li X (2023). Water quality image classification for aquaculture using deep transfer learning. Neural Network World, 1: 1-18. https://doi.org/10.14311/NNW.2023.33.001   [Google Scholar]
  18. Gupta N, Sharma S, Tripathi S, Borde J, and Vhatkar K (2023). Classification of fruit leaf disease using deep learning and image preprocessing techniques. International Journal of Computer Applications, 185: 12. https://doi.org/10.5120/ijca2023922775   [Google Scholar]
  19. Hidayat T, Saputri DUE, and Aziz F (2022). Meat image classification using deep learning with resnet152v2 architecture. Jurnal Techno Nusa Mandiri, 19(2): 131-140. https://doi.org/10.33480/techno.v19i2.3932   [Google Scholar]
  20. Khan SA and Afzal I (2022). The classification of flower features using artificial intelligence from Ganga Choti Bagh Azad Kashmir: Classification of flower features using artificial intelligence from Ganga Choti Bagh Azad Kashmir. Journal of Applied Artificial Intelligence, 3(1): 17-23. https://doi.org/10.48185/jaai.v3i1.431   [Google Scholar]
  21. Lee JM, Jung IH, and Hwang K (2022). Classification of beef by using artificial intelligence. Webology, 19(1): 4639-4647. https://doi.org/10.14704/WEB/V19I1/WEB19308   [Google Scholar]
  22. Liu Q, Fang M, Li Y, and Gao M (2022). Deep learning based research on quality classification of shiitake mushrooms. LWT, 168: 113902. https://doi.org/10.1016/j.lwt.2022.113902   [Google Scholar]
  23. Mai X, Zhu M, and Yuan Y (2023). CMCNet: Colorization-aware mix-uncertainty-adaptive consistency network for semi-supervised fruit counting. IEEE Transactions on Automation Science and Engineering. https://doi.org/10.1109/TASE.2023.3318008   [Google Scholar]
  24. Mamat N, Othman MF, Abdulghafor R, Alwan AA, and Gulzar Y (2023). Enhancing image annotation technique of fruit classification using a deep learning approach. Sustainability, 15(2): 901. https://doi.org/10.3390/su15020901   [Google Scholar]
  25. Mirra KB and Rajakumari R (2022). Classification of fruits using deep learning algorithms. https://doi.org/10.2139/ssrn.4068366   [Google Scholar]
  26. Mirwansyah D and Wibowo A (2022). Fruit image classification using deep learning algorithm: Systematic literature review (SLR). Multica Science and Technology (MST) Journal, 2(2): 120-123. https://doi.org/10.47002/mst.v2i2.356   [Google Scholar]
  27. Mohameth F, Bingcai C, and Sada KA (2020). Plant disease detection with deep learning and feature extraction using plant village. Journal of Computer and Communications, 8(6): 10-22. https://doi.org/10.4236/jcc.2020.86002   [Google Scholar]
  28. Morshed MS, Ahmed S, Ahmed T, Islam MU, and Rahman AA (2022). Fruit quality assessment with densely connected convolutional neural network. In the 12th International Conference on Electrical and Computer Engineering (ICECE). IEEE, Dhaka, Bangladesh: 1-4. https://doi.org/10.1109/ICECE57408.2022.10088873   [Google Scholar]
  29. Mukhiddinov M, Muminov A, and Cho J (2022). Improved classification approach for fruits and vegetables freshness based on deep learning. Sensors, 22(21): 8192. https://doi.org/10.3390/s22218192   [Google Scholar] PMid:36365888 PMCid:PMC9653939
  30. Orquia JJD and Bibangco EJ (2020). Automated fruit classification using deep convolutional neural network. Philippine Social Science Journal, 3(2): 177-178. https://doi.org/10.52006/main.v3i2.188   [Google Scholar]
  31. Reddy B, Khanum A, and Peter J (2023). Fruit quality classification using artificial intelligence. International Journal of Innovative Research in Engineering, 4(2): 616–619. https://doi.org/10.59256/ijire.2023040235   [Google Scholar]
  32. Rismiyati R and Luthfiarta A (2021). VGG16 transfer learning architecture for salak fruit quality classification. Telematika: Jurnal Informatika dan Teknologi Informasi, 18(1): 37-48. https://doi.org/10.31315/telematika.v18i1.4025   [Google Scholar]
  33. Saha R and Neware S (2020). Orange fruit disease classification using deep learning approach. International Journal of Advanced Trends in Computer Science and Engineering, 9(2): 2297–2301. https://doi.org/10.30534/ijatcse/2020/211922020   [Google Scholar]
  34. Saleh AY and Liansitim E (2020). Palm oil classification using deep learning. Science in Information Technology Letters, 1(1): 1-8. https://doi.org/10.31763/sitech.v1i1.1   [Google Scholar]
  35. Shelke S, Ingole M, Yadav P, and Dobale M (2022). Fruits classification on the basis of different diseases and quality using deep learning. International Journal of Innovations in Engineering and Science, 7(4): 98-104. https://doi.org/10.46335/IJIES.2022.7.4.20   [Google Scholar]
  36. Villaseñor-Aguilar MJ, Padilla-Medina JA, Botello-Álvarez JE, Bravo-Sánchez MG, Prado-Olivares J, Espinosa-Calderon A, and Barranco-Gutiérrez AI (2021). Current status of optical systems for measuring lycopene content in fruits. Applied Sciences, 11(19): 9332. https://doi.org/10.3390/app11199332   [Google Scholar]
  37. Xue G, Liu S, and Ma Y (2023). A hybrid deep learning-based fruit classification using attention model and convolution autoencoder. Complex and Intelligent Systems, 9: 2209-2219. https://doi.org/10.1007/s40747-020-00192-x   [Google Scholar]
  38. Yadav A, Rais I, Kumar M, Sharma A, and Kushwaha A (2022). Image classification using deep learning and tensorflow. International Journal for Research in Applied Science and Engineering Technology, 10(5): 4196–4200. https://doi.org/10.22214/ijraset.2022.43385   [Google Scholar]