International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 10, Issue 1 (January 2023), Pages: 92-104

----------------------------------------------

 Review Paper

 Exploring the performance measures of big data analytics systems

 Author(s): Ismail Mohamed Ali 1, Yusmadi Yah Jusoh 2, *, Rusli Abdullah 2, Yahye Abukar Ahmed 1

 Affiliation(s):

 1Faculty of Computing, SIMAD University, Mogadishu, Somalia
 2Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Seri Kembangan, Malaysia

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-7767-5001

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2023.01.013

 Abstract:

Performance measurement is the process of making an evidence-based improvement. It reveals the performance gains or gaps, depending on the entity to be measured, being an organization, people, equipment, processes, or systems. After development, big data analytics (BDA) systems massively fail in organizational settings. The reasons, however, are not fully understood. This paper investigates how organizations can quantify the performance of their BDA systems. To answer this question, we investigated performance measures and performance-contributing factors in the existing literature and surveyed users’ perceptions of our findings. The results show that metrics of efficiency and effectiveness can be used to measure the performance of the BDA system. The results also demonstrate that technology, competency, and working conditions are the key factors that contribute to the performance of the BDA system.

 © 2022 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Big data, Big data analytics, BDA process, Performance measures, Performance-contributing factors

 Article History: Received 9 May 2022, Received in revised form 21 August 2022, Accepted 27 September 2022

 Acknowledgment 

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Ali IM, Jusoh YY, Abdullah R, and Ahmed YA (2023). Exploring the performance measures of big data analytics systems. International Journal of Advanced and Applied Sciences, 10(1): 92-104

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3

 Tables

 Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 

----------------------------------------------    

 References (103)

  1. Adrian C, Abdullah R, Atan R, and Jusoh YY (2017). Factors influencing to the implementation success of big data analytics: A systematic literature review. In the International Conference on Research and Innovation in Information Systems, IEEE, Langkawi, Malaysia: 1-6. https://doi.org/10.1109/ICRIIS.2017.8002536   [Google Scholar]
  2. Akter S, Wamba SF, Gunasekaran A, Dubey R, and Childe SJ (2016). How to improve firm performance using big data analytics capability and business strategy alignment? International Journal of Production Economics, 182: 113-131. https://doi.org/10.1016/j.ijpe.2016.08.018   [Google Scholar]
  3. Alguliyev RM, Gasimova RT, and Abbasli RN (2017). The obstacles in big data process. International Journal of Modern Education and Computer Science, 9(3): 28-35. https://doi.org/10.5815/ijmecs.2017.03.04   [Google Scholar]
  4. Alter S (2013). Work system theory: Overview of core concepts, extensions, and challenges for the future. Journal of the Association for Information Systems, 14(2): 72-121. https://doi.org/10.17705/1jais.00323   [Google Scholar]
  5. Amaravadi CS and Lee I (2005). The dimensions of process knowledge. Knowledge and Process Management, 12(1): 65-76. https://doi.org/10.1002/kpm.218   [Google Scholar]
  6. Assunção MD, Calheiros RN, Bianchi S, Netto MA, and Buyya R (2015). Big data computing and clouds: Trends and future directions. Journal of Parallel and Distributed Computing, 79: 3-15. https://doi.org/10.1016/j.jpdc.2014.08.003   [Google Scholar]
  7. Bayrak EA and Kirci P (2019). Intelligent big data analytics in health. In: Paul S, Bhattacharya P, and Bit A (Eds.), Early detection of neurological disorders using machine learning systems: 252-291. IGI Global, Pennsylvania, USA. https://doi.org/10.4018/978-1-5225-8567-1.ch014   [Google Scholar]
  8. Biuk-Aghai RP, Kou WT, and Fong S (2016). Big data analytics for transportation: Problems and prospects for its application in China. In the IEEE Region 10 Symposium (TENSYMP), IEEE, Bali, Indonesia: 173-178. https://doi.org/10.1109/TENCONSpring.2016.7519399   [Google Scholar]
  9. Blasini J and Leist S (2013). Success factors in process performance management. Business Process Management Journal, 19(3): 477-495. https://doi.org/10.1108/14637151311319914   [Google Scholar]
  10. Bourne M, Neely A, Mills J, and Platts K (2003). Implementing performance measurement systems: A literature review. International Journal of Business Performance Management, 5(1): 1-24. https://doi.org/10.1504/IJBPM.2003.002097   [Google Scholar]
  11. Bravo ER, Santana M, and Rodon J (2015). Information systems and performance: The role of technology, the task and the individual. Behaviour and Information Technology, 34(3): 247-260. https://doi.org/10.1080/0144929X.2014.934287   [Google Scholar]
  12. Brunnert A, Vögele C, Danciu A, Pfaff M, Mayer M, and Krcmar H (2014). Performance management work. Wirtschaftsinformatik, 56(3): 197-199. https://doi.org/10.1007/s11576-014-0414-6   [Google Scholar]
  13. Chen HM, Kazman R, and Haziyev S (2016). Agile big data analytics development: An architecture-centric approach. In the 49th Hawaii International Conference on System Sciences, IEEE, Koloa, USA: 5378-5387. https://doi.org/10.1109/HICSS.2016.665   [Google Scholar]
  14. Chin WW (1998). The partial least squares approach to structural equation modeling. Modern Methods for Business Research, 295(2): 295-336.   [Google Scholar]
  15. Chua YP (2012). Mastering research methods. McGraw-Hill Education, New York, USA.   [Google Scholar]
  16. Cohen J (1992). A power primer. Psychological Bulletin, 112(1): 155-159. https://doi.org/10.1037/0033-2909.112.1.155   [Google Scholar] PMid:19565683
  17. Conboy K, Mikalef P, Dennehy D, and Krogstie J (2020). Using business analytics to enhance dynamic capabilities in operations research: A case analysis and research agenda. European Journal of Operational Research, 281(3): 656-672. https://doi.org/10.1016/j.ejor.2019.06.051   [Google Scholar]
  18. Côrte-Real N, Oliveira T, and Ruivo P (2017). Assessing business value of big data analytics in European firms. Journal of Business Research, 70: 379-390. https://doi.org/10.1016/j.jbusres.2016.08.011   [Google Scholar]
  19. Côrte-Real N, Ruivo P, and Oliveira T (2020). Leveraging internet of things and big data analytics initiatives in European and American firms: Is data quality a way to extract business value? Information and Management, 57(1): 103141. https://doi.org/10.1016/j.im.2019.01.003   [Google Scholar]
  20. Dalvi-Esfahani M, Alaedini Z, Nilashi M, Samad S, Asadi S, and Mohammadi M (2020). Students’ green information technology behavior: Beliefs and personality traits. Journal of Cleaner Production, 257: 120406. https://doi.org/10.1016/j.jclepro.2020.120406   [Google Scholar]
  21. Daniel B (2015). Big data and analytics in higher education: Opportunities and challenges. British Journal of Educational Technology, 46(5): 904-920. https://doi.org/10.1111/bjet.12230   [Google Scholar]
  22. Davamanirajan P, Kauffman RJ, Kriebel CH, and Mukhopadhyay T (2006). Systems design, process performance and economic outcomes. In the 39th Annual Hawaii International Conference on System Sciences, IEEE, Kauai, USA, 8: 168c-168c. https://doi.org/10.1109/HICSS.2006.448   [Google Scholar]
  23. Davenport TH, Barth P, and Bean R (2012). How big data is different. MIT Sloan Management Review, 54: 22-24.   [Google Scholar]
  24. Davis FD (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3): 319-340. https://doi.org/10.2307/249008   [Google Scholar]
  25. Debortoli S, Müller O, and vom Brocke J (2014). Comparing business intelligence and big data skills. Business and Information Systems Engineering, 6(5): 289-300. https://doi.org/10.1007/s12599-014-0344-2   [Google Scholar]
  26. DeLone WH and McLean ER (2004). Measuring e-commerce success: Applying the DeLone and McLean information systems success model. International Journal of Electronic Commerce, 9(1): 31-47. https://doi.org/10.1080/10864415.2004.11044317   [Google Scholar]
  27. DeLone WH and McLean ER (2016). Information systems success measurement. Foundations and Trends® in Information Systems, 2(1): 1-116. https://doi.org/10.1561/9781680831436   [Google Scholar]
  28. Demchenko Y, Gruengard E, and Klous S (2014). Instructional model for building effective big data curricula for online and campus education. In the 6th International Conference on Cloud Computing Technology and Science, IEEE, Singapore, Singapore: 935-941. https://doi.org/10.1109/CloudCom.2014.162   [Google Scholar]
  29. Diouf PS, Boly A, and Ndiaye S (2017). Performance of the ETL processes in terms of volume and velocity in the cloud: State of the art. In the 4th International Conference on Engineering Technologies and Applied Sciences, IEEE, Salmabad, Bahrain: 1-5. https://doi.org/10.1109/ICETAS.2017.8277875   [Google Scholar]
  30. Dissanayake S and Rupasinghe T (2021). An analytical design and optimization approach to enhance warehouse operations. In the Moratuwa Engineering Research Conference, IEEE, Moratuwa, Sri Lanka: 356-361. https://doi.org/10.1109/MERCon52712.2021.9525679   [Google Scholar]
  31. Dumas M, Van der Aalst WM, and Ter Hofstede AH (2005). Process-aware information systems: Bridging people and software through process technology. John Wiley and Sons, Hoboken, USA. https://doi.org/10.1002/0471741442   [Google Scholar]
  32. Elragal A and Klischewski R (2017). Theory-driven or process-driven prediction? Epistemological challenges of big data analytics. Journal of Big Data, 4(1): 1-20. https://doi.org/10.1186/s40537-017-0079-2   [Google Scholar]
  33. Fitzgerald L, Johnston R, Brignall T, Silvestro R, and Voss C (1991). Performance measurement in service businesses. Volume 69, Chartered Institute of Management Accountants, London, UK.   [Google Scholar]
  34. Gandomi A and Haider M (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2): 137-144. https://doi.org/10.1016/j.ijinfomgt.2014.10.007   [Google Scholar]
  35. Gatian AW (1994). Is user satisfaction a valid measure of system effectiveness? Information and Management, 26(3): 119-131. https://doi.org/10.1016/0378-7206(94)90036-1   [Google Scholar]
  36. Glavic B (2012). Big data provenance: Challenges and implications for benchmarking. In: Rabl T, Poess M, Baru C, and Jacobsen HA (Eds.), Specifying big data benchmarks: 72-80. Volume 8163. Springer, Berlin, Germany. https://doi.org/10.1007/978-3-642-53974-9_7   [Google Scholar]
  37. Goes PB (2014). Editor’s comments: Big data and IS research. MIS Quarterly, 38(3): 3-8. https://doi.org/10.15658/CESMAG14.05050109   [Google Scholar]
  38. Gorla N and Lin SC (2010). Determinants of software quality: A survey of information systems project managers. Information and Software Technology, 52(6): 602-610. https://doi.org/10.1016/j.infsof.2009.11.012   [Google Scholar]
  39. Górny A (2017). The use of working environment factors as criteria in assessing the capacity to carry out processes. In the MATEC Web of Conferences: The 4th International Conference on Computing and Solutions in Manufacturing Engineering, EDP Sciences, Seoul, South Korea: 94: 06011. https://doi.org/10.1051/matecconf/20179406011   [Google Scholar]
  40. Gotthardt M and Mezhuyev V (2022). Measuring the success of recommender systems: A PLS-SEM approach. IEEE Access, 10: 30610-30623. https://doi.org/10.1109/ACCESS.2022.3159652   [Google Scholar]
  41. Grover V, Jeong SR, and Segars AH (1996). Information systems effectiveness: The construct space and patters of application. Information and Management, 31(4): 177-191. https://doi.org/10.1016/S0378-7206(96)01079-8   [Google Scholar]
  42. Gupta M and George JF (2016). Toward the development of a big data analytics capability. Information and Management, 53(8): 1049-1064. https://doi.org/10.1016/j.im.2016.07.004   [Google Scholar]
  43. Hair JF, Hult GTM, Ringle CM, and Sarstedt M (2021). A primer on partial least squares structural equation modeling (PLS-SEM). Sage Publications, Thousand Oaks, USA. https://doi.org/10.1007/978-3-030-80519-7   [Google Scholar]
  44. Hamilton S and Chervany NL (1981). Evaluating information system effectiveness-Part I: Comparing evaluation approaches. MIS Quarterly, 5(3): 55-69. https://doi.org/10.2307/249291   [Google Scholar]
  45. Heine ML, Grover V, and Malhotra MK (2003). The relationship between technology and performance: A meta-analysis of technology models. Omega, 31(3): 189-204. https://doi.org/10.1016/S0305-0483(03)00026-4   [Google Scholar]
  46. Heo J and Haan I (2000). Measuring performance of information systems in evolving computing environments: An empirical investigation. In the 4th Pacific Asia Conference on Information Systems (PACIS 2000), Hong Kong, China: 316-332.   [Google Scholar]
  47. Hoffmann T (1999). The meanings of competency. Journal of European Industrial Training, 23(6): 275-85. https://doi.org/10.1108/03090599910284650   [Google Scholar]
  48. Hu H, Wen Y, Chua TS, and Li X (2014). Toward scalable systems for big data analytics: A technology tutorial. IEEE Access, 2: 652-687. https://doi.org/10.1109/ACCESS.2014.2332453   [Google Scholar]
  49. Hussain M, Al-Mourad MB, and Mathew SS (2016). Collect, scope, and verify big data: A framework for institution accreditation. In the 30th International Conference on Advanced Information Networking and Applications Workshops, IEEE, Crans-Montana, Switzerland: 187-192. https://doi.org/10.1109/WAINA.2016.45   [Google Scholar] PMid:26819166
  50. Jagadish HV, Gehrke J, Labrinidis A, Papakonstantinou Y, Patel JM, Ramakrishnan R, and Shahabi C (2014). Big data and its technical challenges. Communications of the, 57(7): 86-94. https://doi.org/10.1145/2611567   [Google Scholar]
  51. Jaklic J, Coelho PS, and Popovic A (2009). Information quality improvement as a measure of business intelligence system benefits. WSEAS Transactions on Business and Economics, 9(6): 502-512.   [Google Scholar]
  52. Janssen M, van der Voort H, and Wahyudi A (2017). Factors influencing big data decision-making quality. Journal of Business Research, 70: 338-345. https://doi.org/10.1016/j.jbusres.2016.08.007   [Google Scholar]
  53. Kaur A, Grover PS, and Dixit A (2019). Performance efficiency assessment for software systems. In: Hoda M, Chauhan N, Quadri S, and Srivastava P (Eds.), Software engineering: 83-92. Volume 731, Springer, Singapore, Singapore. https://doi.org/10.1007/978-981-10-8848-3_8   [Google Scholar]
  54. Klee S, Janson A, and Leimeister JM (2021). How data analytics competencies can foster business value: A systematic review and way forward. Information Systems Management, 38(3): 200-217. https://doi.org/10.1080/10580530.2021.1894515   [Google Scholar]
  55. Koronios A, Gao J, and Selle S (2014). Big Data project success: A meta-analysis. In the 18th Pacific Asia Conference on Information Systems, PACIS Proceedings, Chengdu, China: 376–390.   [Google Scholar]
  56. Kune R, Konugurthi PK, Agarwal A, Chillarige RR, and Buyya R (2016). The anatomy of big data computing. Software: Practice and Experience, 46(1): 79-105. https://doi.org/10.1002/spe.2374   [Google Scholar]
  57. Lai ST and Leu FY (2017). A critical quality measurement model for managing and controlling big data project risks. In the International Conference on Broadband and Wireless Computing, Communication and Applications, Springer, Barcelona, Spain: 777-787. https://doi.org/10.1007/978-3-319-69811-3_69   [Google Scholar]
  58. Larson D and Chang V (2016). A review and future direction of agile, business intelligence, analytics and data science. International Journal of Information Management, 36(5): 700-710. https://doi.org/10.1016/j.ijinfomgt.2016.04.013   [Google Scholar]
  59. Latham GP and Pinder CC (2005). Work motivation theory and research at the dawn of the twenty-first century. Annual Review of Psychology, 56(1): 485-516. https://doi.org/10.1146/annurev.psych.55.090902.142105   [Google Scholar] PMid:15709944
  60. Lazaroiu G (2015). Employee motivation and job performance. Linguistic and Philosophical Investigations, 14: 97-102.   [Google Scholar]
  61. Leyer M, Heckl D, and Moormann J (2015). Process performance measurement. In: vom Brocke J and Rosemann M (Eds), Handbook on business process management 2: 227-241. Springer, Berlin, Germany. https://doi.org/10.1007/978-3-642-45103-4_9   [Google Scholar]
  62. Liu Z (2014). Research of performance test technology for big data applications. In the IEEE International Conference on Information and Automation, IEEE, Hailar, China: 53-58. https://doi.org/10.1109/ICInfA.2014.6932625   [Google Scholar]
  63. Lněnička M (2015). AHP model for the big data analytics platform selection. Acta Informatica Pragensia, 4(2): 108-121. https://doi.org/10.18267/j.aip.64   [Google Scholar]
  64. Merino J, Caballero I, Rivas B, Serrano M, and Piattini M (2016). A data quality in use model for big data. Future Generation Computer Systems, 63: 123-130. https://doi.org/10.1016/j.future.2015.11.024   [Google Scholar]
  65. Mikalef P and Krogstie J (2019). Investigating the data science skill gap: An empirical analysis. In the IEEE Global Engineering Education Conference, IEEE, Dubai, UAE: 1275-1284. https://doi.org/10.1109/EDUCON.2019.8725066   [Google Scholar]
  66. Mikalef P and Krogstie J (2020). Examining the interplay between big data analytics and contextual factors in driving process innovation capabilities. European Journal of Information Systems, 29(3): 260-287. https://doi.org/10.1080/0960085X.2020.1740618   [Google Scholar]
  67. Mikalef P, Boura M, Lekakos G, and Krogstie J (2019a). Big data analytics and firm performance: Findings from a mixed-method approach. Journal of Business Research, 98: 261-276. https://doi.org/10.1016/j.jbusres.2019.01.044   [Google Scholar]
  68. Mikalef P, Boura M, Lekakos G, and Krogstie J (2019b). Big data analytics capabilities and innovation: The mediating role of dynamic capabilities and moderating effect of the environment. British Journal of Management, 30(2): 272-298. https://doi.org/10.1111/1467-8551.12343   [Google Scholar]
  69. Mikalef P, Framnes VA, Danielsen F, Krogstie J, and Olsen D (2017). Big data analytics capability: Antecedents and business value. In the Twenty First Pacific Asia Conference on Information Systems, Langkawi, Malaysia.   [Google Scholar]
  70. Mikalef P, Giannakos MN, Pappas IO, and Krogstie J (2018a). The human side of big data: Understanding the skills of the data scientist in education and industry. In the IEEE Global Engineering Education Conference, IEEE, Santa Cruz de Tenerife, Spain: 503-512. https://doi.org/10.1109/EDUCON.2018.8363273   [Google Scholar]
  71. Mikalef P, Pappas IO, Krogstie J, and Giannakos M (2018b). Big data analytics capabilities: A systematic literature review and research agenda. Information Systems and e-Business Management, 16(3): 547-578. https://doi.org/10.1007/s10257-017-0362-y   [Google Scholar]
  72. Miller HG and Mork P (2013). From data to decisions: A value chain for big data. It Professional, 15(1): 57-59. https://doi.org/10.1109/MITP.2013.11   [Google Scholar]
  73. Mittal V, Gangodkar D, and Pant B (2021). Big data technologies: A comprehensive survey. In: Ranganathan G, Chen J, and Rocha Á (Eds.), Inventive communication and computational technologies, 103-114. Volume 145, Springer, Singapore, Singapore. https://doi.org/10.1007/978-981-15-7345-3_9   [Google Scholar]
  74. Mneney J and Van Belle JP (2016). Big data capabilities and readiness of South African retail organizations. In the 6th International Conference-Cloud System and Big Data Engineering (Confluence), IEEE, Noida, India: 279-286. https://doi.org/10.1109/CONFLUENCE.2016.7508129   [Google Scholar]
  75. Monteiro LFS and de Oliveira KM (2011). Defining a catalog of indicators to support process performance analysis. Journal of Software Maintenance and Evolution: Research and Practice, 23(6): 395-422. https://doi.org/10.1002/smr.482   [Google Scholar]
  76. Morabito V (2015). Big data and analytics: Strategic and organizational impacts. Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-319-10665-6   [Google Scholar]
  77. Neely A, Gregory M, and Platts K (1995). Performance measurement system design: A literature review and research agenda. International Journal of Operations and Production Management, 15(4): 80-117. https://doi.org/10.1108/01443579510083622   [Google Scholar]
  78. Nwokeji JC and Matovu R (2021). A systematic literature review on big data extraction, transformation and loading (ETL). In: Arai K (Ed.), Intelligent computing: 308-324. Volume 284, Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-030-80126-7_24   [Google Scholar]
  79. Oliver P and Jupp V (2006). Purposive sampling. Sage, Thousand Oaks, USA.   [Google Scholar]
  80. Onyeabor GA and Ta’a A (2018). A model for addressing quality issues in big data. In the International Conference of Reliable Information and Communication Technology, Springer, Kuala Lumpur, Malaysia: 65-73. https://doi.org/10.1007/978-3-319-99007-1_7   [Google Scholar]
  81. Pak HD, Pak SM, Jang IH, and Choe YC (2010). A measurement of non-linear relationship between IS qualities and user satisfaction. In The Sixteenth Americas Conference on Information Systems, Lima, Peru: 12-15.   [Google Scholar]
  82. Petter S, DeLone W, and McLean E (2008). Measuring information systems success: Models, dimensions, measures, and interrelationships. European Journal of Information Systems, 17(3): 236-263. https://doi.org/10.1057/ejis.2008.15   [Google Scholar]
  83. Pitt LF, Watson RT, and Kavan CB (1995). Service quality: A measure of information systems effectiveness. MIS Quarterly, 19: 173-187. https://doi.org/10.2307/249687   [Google Scholar]
  84. Ponsard C, Touzani M, and Majchrowski A (2017). Combining process guidance and industrial feedback for successfully deploying big data projects. Open Journal of Big Data (OJBD), 3(1): 26-41.   [Google Scholar]
  85. Ravichandran T, Lertwongsatien C, and Lertwongsatien C (2005). Effect of information systems resources and capabilities on firm performance: A resource-based perspective. Journal of Management Information Systems, 21(4): 237-276. https://doi.org/10.1080/07421222.2005.11045820   [Google Scholar]
  86. Raziq A and Maulabakhsh R (2015). Impact of working environment on job satisfaction. Procedia Economics and Finance, 23: 717-725. https://doi.org/10.1016/S2212-5671(15)00524-9   [Google Scholar]
  87. Rehman MH, Chang V, Batool A, and Wah TY (2016). Big data reduction framework for value creation in sustainable enterprises. International Journal of Information Management, 36(6): 917-928. https://doi.org/10.1016/j.ijinfomgt.2016.05.013   [Google Scholar]
  88. Rouse WB, Edwards SL, and Hammer JM (1993). Modeling the dynamics of mental workload and human performance in complex systems. IEEE Transactions on Systems, Man, and Cybernetics, 23(6): 1662-1671. https://doi.org/10.1109/21.257761   [Google Scholar]
  89. Rowley J (2014). Designing and using research questionnaires. Management Research Review, 37(3): 308-330. https://doi.org/10.1108/MRR-02-2013-0027   [Google Scholar]
  90. Saltz JS (2015). The need for new processes, methodologies and tools to support big data teams and improve big data project effectiveness. In the IEEE International Conference on Big Data (Big Data), IEEE, Santa Clara, USA: 2066-2071. https://doi.org/10.1109/BigData.2015.7363988   [Google Scholar]
  91. Scott JE (1995). The measurement of information systems effectiveness: Evaluating a measuring instrument. ACM SIGMIS Database: The DATABASE for Advances in Information Systems, 26(1): 43-61. https://doi.org/10.1145/206476.206484   [Google Scholar]
  92. Serhani MA, El Kassabi HT, Taleb I, and Nujum A (2016). An hybrid approach to quality evaluation across big data value chain. In the IEEE International Congress on Big Data (BigData Congress), IEEE, San Francisco, USA: 418-425. https://doi.org/10.1109/BigDataCongress.2016.65   [Google Scholar]
  93. Sheng J, Amankwah-Amoah J, and Wang X (2019). Technology in the 21st century: New challenges and opportunities. Technological Forecasting and Social Change, 143: 321-335. https://doi.org/10.1016/j.techfore.2018.06.009   [Google Scholar]
  94. Sivarajah U, Kamal MM, Irani Z, and Weerakkody V (2017). Critical analysis of big data challenges and analytical methods. Journal of Business Research, 70: 263-286. https://doi.org/10.1016/j.jbusres.2016.08.001   [Google Scholar]
  95. Statz J (2005). Measurement for process improvement. Technical Report, Practical Software and Systems Measurement. Available online at: https://www.psmsc.com/Downloads/TechnologyPapers/pi_measurement_v1.0.pdf
  96. Thong JY and Yap CS (1996). Information systems effectiveness: A user satisfaction approach. Information Processing and Management, 32(5): 601-610. https://doi.org/10.1016/0306-4573(96)00004-0   [Google Scholar]
  97. Tulasi B (2013). Significance of big data and analytics in higher education. International Journal of Computer Applications, 68(14): 21-23. https://doi.org/10.5120/11648-7142   [Google Scholar]
  98. Urbach N and Ahlemann F (2010). Structural equation modeling in information systems research using partial least squares. Journal of Information Technology Theory and Application, 11(2): 5-40.   [Google Scholar]
  99. Urbach N and Müller B (2012). The updated DeLone and McLean model of information systems success. In: Dwivedi Y, Wade M, and Schneberger S (Eds.), Information systems theory: 1-18. Volume 28, Springer, New York, USA. https://doi.org/10.1007/978-1-4419-6108-2_1   [Google Scholar]
  100. Veiga J, Expósito RR, and Touriño J (2018). Performance evaluation of big data analysis. In: Sakr S and Zomaya A (Eds.), Encyclopedia of big data technologies: 1-6. Springer, Berlin, Germany. https://doi.org/10.1007/978-3-319-63962-8_143-1   [Google Scholar] PMCid:PMC5768986
  101. Villalpando LEB, April A, and Abran A (2014). Performance analysis model for big data applications in cloud computing. Journal of Cloud Computing, 3(1): 1-20. https://doi.org/10.1186/s13677-014-0019-z   [Google Scholar]
  102. Wade M and Hulland J (2004). The resource-based view and information systems research: Review, extension, and suggestions for future research. MIS Quarterly, 28(1): 107-142. https://doi.org/10.2307/25148626   [Google Scholar]
  103. Wamba SF, Gunasekaran A, Akter S, Ren SJF, Dubey R, and Childe SJ (2017). Big data analytics and firm performance: Effects of dynamic capabilities. Journal of Business Research, 70: 356-365. https://doi.org/10.1016/j.jbusres.2016.08.009   [Google Scholar]