International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 9, Issue 7 (July 2022), Pages: 150-158

----------------------------------------------

 Original Research Paper

 Perturbation and bifurcation analysis of a gonorrhoea dynamics model with control

 Author(s): Louis Omenyi 1, 2, *, Aloysius Ezaka 3, Henry O. Adagba 3, Friday Oyakhire 1, Kafayat Elebute 1, Akachukwu Offia 1, Monday Ekhator 1

 Affiliation(s):

 1Department of Mathematics and Statistics, Alex Ekwueme Federal University, Ndufu-Alike, Nigeria
 2Department of Mathematical Sciences, Loughborough University, Loughborough, UK
 3Department of Industrial Mathematics and Applied Statistics, Ebonyi State University, Abakaliki, Nigeria

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-8628-0298

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2022.07.015

 Abstract:

A model for the transmission dynamics of Gonorrhoea with control incorporating passive immunity is formulated. We show that the introduction of treatment or control parameters leads to transcritical bifurcation. The backward bifurcation coefficients were calculated and their numerical perturbation results in different forms of equilibria. The calculated effective reproduction number of the model with control is sufficiently small. This implies asymptotically stability of the solution, thus, the disease can be controlled in a limited time.

 © 2022 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Gonorrhoea, Passive immunity, Reproduction number, Stability, Bifurcation

 Article History: Received 22 December 2021, Received in revised form 26 March 2022, Accepted 22 April 2022

 Acknowledgment 

The first author thanks the leadership and members of the Seminar and Research Committee of the Department of Mathematics and Statistics of the Alex Ekwueme Federal University, Ndufu-Alike for their valuable scientific discussions that facilitated the completion of this research. All the authors express sincere gratitude to their family members for providing support to work.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Omenyi L, Ezaka A, and Adagba HO et al. (2022). Perturbation and bifurcation analysis of a gonorrhoea dynamics model with control. International Journal of Advanced and Applied Sciences, 9(7): 150-158

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 

 Tables

 Table 1  

----------------------------------------------    

 References (24)

  1. Adamu II and Usman S (2018). Mathematical model for the dynamics of neisseria gonorrhea disease with natural immunity and treatment effects. Journal of Mathematics Research, 10(2): 151-161. https://doi.org/10.5539/jmr.v10n2p151   [Google Scholar]
  2. And BE and Henry AO (2021). Global stability analysis of the role of antiretroviral therapy (ART) abuse in HIV/AIDS treatment dynamics. Pure and Applied Mathematics Journal, 10(1): 9-31. https://doi.org/10.11648/j.pamj.20211001.12   [Google Scholar]
  3. CDC (2013). Antibiotic resistant gonorrhoea-basic information. Centers for Disease Control and Prevention, Atlanta, USA.   [Google Scholar]
  4. Didelot X, Kendall M, Xu Y, White PJ, and McCarthy N (2021). Genomic epidemiology analysis of infectious disease outbreaks using transphylo. Current Protocols, 1: e60. https://doi.org/10.1002/cpz1.60   [Google Scholar] PMid:33617114 PMCid:PMC7995038
  5. Fu J, Han Q, Lin Y, and Jiang D (2015). Asymptotic behavior of a multigroup SIS epidemic model with stochastic perturbation. Advances in Difference Equations, 2015(1): 1-9. https://doi.org/10.1186/s13662-015-0406-x   [Google Scholar]
  6. Garba SM, Safi MA, and Gumel AB (2013). Cross-immunity-induced backward bifurcation for a model of transmission dynamics of two strains of influenza. Nonlinear Analysis: Real World Applications, 14(3): 1384-1403. https://doi.org/10.1016/j.nonrwa.2012.10.003   [Google Scholar]
  7. Hethcote HW and Yorke JA (1984). Lecture notes in biomathematics. Springer, Berlin, Germany.   [Google Scholar]
  8. Hook EW and Handsfield HH (2008). Gonococcal infections in the adult. In: Holmes KK, Sparling PF, Stamm WE, Piot P, Wasserheit JN, and Corey L (Eds.), Sexually transmitted disease: 627-645. 4th Edition, McGraw-Hill, New York, USA.   [Google Scholar]
  9. Kishore RR and Pattabhiramacharyulu NC (2011). A numerical approach for the spread of gonorrhea in homosexuals. ARPN Journal of Engineering and Applied Sciences, 6: 1-8.   [Google Scholar]
  10. Mushayabasa S and Bhunu CP (2011). Modelling the effects of heavy alcohol consumption on the transmission dynamics of gonorrhea. Nonlinear Dynamics, 66(4): 695-706. https://doi.org/10.1007/s11071-011-9942-4   [Google Scholar]
  11. Mushayabasa S, Tchuenche JM, Bhunu CP, and Ngarakana-Gwasira E (2011). Modeling gonorrhea and HIV co-interaction. Biosystems, 103(1): 27-37. https://doi.org/10.1016/j.biosystems.2010.09.008   [Google Scholar] PMid:20869424
  12. Nana-Kyere S, Glory KH, Okyere E, Seth N, Marmah JKA, and Obuobi DV (2016). A qualitative analysis of neisseria gonorrhea disease with treatment effect. Applied Mathematics, 6(1): 6-15.   [Google Scholar]
  13. Omenyi L and Uchenna M (2019). Global analysis on Riemannian manifold. The Australian Journal of Mathematical Analysis and Applications, 16(2): 1-17.   [Google Scholar]
  14. Omenyi L, Omaba M, Nwaeze E, and Uchenna M (2021). Analysis of Gegenbauer kernel filtration on the hypersphere. International Journal of Advanced and Applied Sciences, 8(11): 1-9. https://doi.org/10.21833/ijaas.2021.11.001   [Google Scholar]
  15. Osnes MN, Didelot X, de Korne-Elenbaas J, Alfsnes K, Brynildsrud OB, Syversen G, and Eldholm V (2020). Sudden emergence of a neisseria gonorrhoeae clade with reduced susceptibility to extended-spectrum cephalosporins, Norway. Microbial Genomics, 6(12). https://doi.org/10.1099/mgen.0.000480   [Google Scholar] PMid:33200978 PMCid:PMC8116678
  16. Riley S, Fraser C, Donnelly CA, Ghani AC, Abu-Raddad LJ, Hedley AJ, and Anderson RM (2003). Transmission dynamics of the etiological agent of SARS in Hong Kong: Impact of public health interventions. Science, 300(5627): 1961-1966. https://doi.org/10.1126/science.1086478   [Google Scholar] PMid:12766206
  17. Shaban N and Mofi H (2014). Modelling the impact of vaccination and screening on the dynamics of human papillomavirus infection. International Journal of Mathematical Analysis, 8(9): 441-454. https://doi.org/10.12988/ijma.2014.312302   [Google Scholar]
  18. Ugwu CS (2015). Mathematical model on gonorrhoea transmission. M.Sc. Thesis, University of Nigeria, Nsukka, Nigeria.   [Google Scholar]
  19. Unemo M (2015). Current and future antimicrobial treatment of gonorrhoea–The rapidly evolving Neisseria gonorrhoeae continues to challenge. BMC Infectious Diseases, 15(1): 1-15. https://doi.org/10.1186/s12879-015-1029-2   [Google Scholar] PMid:26293005 PMCid:PMC4546108
  20. Usman S and Adamu II (2017). Modeling the transmission dynamics of the monkeypox virus infection with treatment and vaccination interventions. Journal of Applied Mathematics and Physics, 5(12): 2335-2353. https://doi.org/10.4236/jamp.2017.512191   [Google Scholar]
  21. Van den Driessche P and Watmough J (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences, 180(1-2): 29-48. https://doi.org/10.1016/S0025-5564(02)00108-6   [Google Scholar]
  22. Whittles LK, White PJ, and Didelot X (2020). Assessment of the potential of vaccination to combat antibiotic resistance in gonorrhea: A modeling analysis to determine preferred product characteristics. Clinical Infectious Diseases, 71(8): 1912-1919. https://doi.org/10.1093/cid/ciz1241   [Google Scholar] PMid:31905399 PMCid:PMC7643747
  23. WHO (2006). Prevention and control of sexually transmitted infections. World Health Organization, Geneva, Switzerland.   [Google Scholar]
  24. Workowski KA and Bolan GA (2015). Sexually transmitted diseases treatment guidelines, 2015. Morbidity and Mortality Weekly Report Journal: Recommendations and Reports, 64(RR-03): 1-137.   [Google Scholar]