International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 9, Issue 6 (June 2022), Pages: 79-85

----------------------------------------------

 Original Research Paper

 Aqueous solubility of high concentrated caffeine using hydrotrope and the application to the anti-cellulite cosmetics

 Author(s): Su In Park 1, Kwang Won Lee 1, Shinsung Park 2, Moon Sam Shin 2, *, Beom Seok Park 3

 Affiliation(s):

 1Department of Senior Healthcare Majoring in Cosmetic Formulation and Pharmacology, Eulji University, Seongnam, South Korea
 2Department of Beauty and Cosmetic Science, Eulji University, Seongnam, South Korea
 3Department of Clinical Pathology, Eulji University, Seongnam, South Korea

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-3083-8950

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2022.06.010

 Abstract:

This study presents measurements of the aqueous solubility of caffeine at a temperature ranging from 5 to 40°C. And the low water solubility of caffeine was increased by using a hydrotropic solubilization system. Solubility was measured with a single hydrotropic system of niacinamide or betaine and a mixed hydrotropic system of niacinamide and betaine. As a result, it was possible to prepare a high-concentration aqueous caffeine solution of about 4% at 5.9°C and about 25% at 39.9°C. The modified Apelblat equation was applied to predict the temperature dependence of caffeine solubility in aqueous solutions containing niacinamide, and our experimental data showed good agreement with the correlated values. We propose the results of this study as basic data for the development of anti-cellulite cosmetics. 

 © 2022 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Caffeine, Solid-liquid equilibrium, Hydrotropic solubilization system, Niacinamide, Betaine, Anti-cellulite cosmetics

 Article History: Received 16 December 2021, Received in revised form 27 March 2022, Accepted 30 March 2022

 Acknowledgment 

This study was supported by the Bio and Medical Technology Development Program of the National Research Foundation (NRF) funded by the Ministry of Science and ICT (2017M3A9D8048416).

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Park SI, Lee KW, and Park S et al. (2022). Aqueous solubility of high concentrated caffeine using hydrotrope and the application to the anti-cellulite cosmetics. International Journal of Advanced and Applied Sciences, 9(6): 79-85

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 

 Tables

 Table 1 Table 2 Table 3 Table 4 Table 5 Table 6

----------------------------------------------    

 References (15)

  1. Al-Maaieh A and Flanagan DR (2002). Salt effects on caffeine solubility, distribution, and self-association. Journal of Pharmaceutical Sciences, 91(4): 1000-1008. https://doi.org/10.1002/jps.10046   [Google Scholar] PMid:11948539
  2. Avram MM (2004). Cellulite: A review of its physiology and treatment. Journal of Cosmetic and Laser Therapy, 6(4): 181-185. https://doi.org/10.1080/14764170410003057   [Google Scholar] PMid:16020201
  3. Bielfeldt S, Buttgereit P, Brandt M, Springmann G, and Wilhelm KP (2008). Non‐invasive evaluation techniques to quantify the efficacy of cosmetic anti‐cellulite products. Skin Research and Technology, 14(3): 336-346. https://doi.org/10.1111/j.1600-0846.2008.00300.x   [Google Scholar] PMid:19159381
  4. Coffman RE and Kildsig DO (1996). Hydrotropic solubilization-mechanistic studies. Pharmaceutical Research, 13(10): 1460-1463. https://doi.org/10.1023/A:1016011125302   [Google Scholar] PMid:8899835
  5. Hexsel D, Orlandi C, and Zechmeister do Prado D (2005). Botanical extracts used in the treatment of cellulite. Dermatologic Surgery, 31(s1): 866-873. https://doi.org/10.1111/j.1524-4725.2005.31733   [Google Scholar] PMid:16029680
  6. Kim H, Lim J, Hong JH, Kim AR, Shin MS, and Kim H (2014). Solubility of climbazole in various alcohols at different temperatures. The Journal of Chemical Thermodynamics, 77: 1-6. https://doi.org/10.1016/j.jct.2014.04.011   [Google Scholar]
  7. Kim JY, Kim S, Papp M, Park K, and Pinal R (2010). Hydrotropic solubilization of poorly water-soluble drugs. Journal of Pharmaceutical Sciences, 99(9): 3953-3965. https://doi.org/10.1002/jps.22241   [Google Scholar] PMid:20607808
  8. Kunz W, Holmberg K, and Zemb T (2016). Hydrotropes. Current Opinion in Colloid and Interface Science, 22: 99-107. https://doi.org/10.1016/j.cocis.2016.03.005   [Google Scholar]
  9. Monteiro J, Alves MG, Oliveira PF, and Silva BM (2019). Pharmacological potential of methylxanthines: Retrospective analysis and future expectations. Critical Reviews in Food Science and Nutrition, 59(16): 2597-2625. https://doi.org/10.1080/10408398.2018.1461607   [Google Scholar] PMid:29624433
  10. Nair V and Rajput MS (2010). A simple spectrophotometric estimation of Ketoprofen in tablets using mixed hydrotropy. Der Pharma Chemica, 2(2): 267-271.   [Google Scholar]
  11. Nidhi K, Indrajeet S, Khushboo M, Gauri K, and Sen DJ (2011). Hydrotropy: A promising tool for solubility enhancement: A review. International Journal of Drug Development and Research, 3(2): 26-33.   [Google Scholar]
  12. Noh ES and Chun IK (2004). Formulation of caffeine nasal sprays and its enhanced permeation through rabbit nasal mucosa. Journal of Pharmaceutical Investigation, 34(2): 131-138. https://doi.org/10.4333/KPS.2004.34.2.131   [Google Scholar]
  13. Savjani KT, Gajjar AK, and Savjani JK (2012). Drug solubility: Importance and enhancement techniques. International Scholarly Research Notices, 2012: 1-10. https://doi.org/10.5402/2012/195727   [Google Scholar] PMid:22830056 PMCid:PMC3399483
  14. Schott H and Han SK (1977). Effect of symmetrical tetraalkylammonium salts on cloud point of nonionic surfactants. Journal of Pharmaceutical Sciences, 66(2): 165-168. https://doi.org/10.1002/jps.2600660208   [Google Scholar] PMid:839410
  15. Shumilin I, Allolio C, and Harries D (2019). How sugars modify caffeine self-association and solubility: Resolving a mechanism of selective hydrotropy. Journal of the American Chemical Society, 141(45): 18056-18063. https://doi.org/10.1021/jacs.9b07056   [Google Scholar] PMid:31619038