International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 9, Issue 2 (February 2022), Pages: 55-62

----------------------------------------------

 Original Research Paper

 Title: To explore the pharmacological mechanism of action using digital twin

 Author(s): Hidayat Ur Rahman 1, 2, *, Muhammad Hamdi Bin Mahmood 1, Mohammed Safwan Ali Khan 3, Najm Us Sama 4, Mohd Razip Asaruddin 5, Muhammad Afzal 2

 Affiliation(s):

 1Faculty of Medicine and Health Sciences, University Malaysia Sarawak, Kota Samarahan, Malaysia
 2Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf-72341, Saudi Arabia
 3Department of Pharmacology, Hamidiye International Faculty of Medicine, University of Health Sciences, Uskudar, Istanbul, Turkey
 4College of Computer Science, Jouf University, Sakaka, Aljouf-72341, Saudi Arabia
 5Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0003-2772-4706

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2022.02.006

 Abstract:

With the advent of medical technology and science, the number of animals used in research has increased. For decades, the use of animals in research and product testing has been a point of conflict. Experts and pharmaceutical manufacturers are harming animals worldwide during laboratory research. Animals have also played a significant role in the advancement of science; animal testing has enabled the discovery of various novel drugs. The misery, suffering, and deaths of animals are not worth the potential human benefits. As a result, animals must not be exploited in research to assess the drug mechanism of action (MOA). Apart from the ethical concern, animal testing has a few more downsides, including the requirement for skilled labor, lengthy processes, and cost. Because it is critical to investigate adverse effects and toxicities in the development of potentially viable drugs. Assessment of each target will consume the range of resources as well as disturb living nature. As the digital twin works in an autonomous virtual world without influencing the physical structure and biological system. Our proposed framework suggests that the digital twin is a great reliable model of the physical system that will be beneficial in assessing the possible MOA prior to time without harming animals. The study describes the creation of a digital twin to combine the information and knowledge obtained by studying the different drug targets and diseases. Mechanism of Action using Digital twin (MOA-DT) will enable the experts to use an innovative approach without physical testing to save animals, time, and resources. DT reflects and simulates the actual drug and its relationships with its target, however presenting a more accurate depiction of the drug, which leads to maximize efficacy and decrease the toxicity of a drug. In conclusion, it has been shown that drug discovery and development can be safe, effective, and economical in no time through the combination of the digital and physical models of a pharmaceutical as compared to experimental animals. 

 © 2022 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Mechanism of action, Digital twin, Pharmacological target, Drug discovery

 Article History: Received 30 August 2021, Received in revised form 22 November 2021, Accepted 3 December 2021

 Acknowledgment 

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Rahman HU, Mahmood MHB, and Khan MSA et al. (2022). To explore the pharmacological mechanism of action using digital twin. International Journal of Advanced and Applied Sciences, 9(2): 55-62

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5

 Tables

 No Table  

----------------------------------------------    

 References (33)

  1. Aberer K, Hauswirth M, and Salehi A (2007). Infrastructure for data processing in large-scale interconnected sensor networks. In the International Conference on Mobile Data Management, IEEE, Mannheim, Germany: 198-205. https://doi.org/10.1109/MDM.2007.36   [Google Scholar]
  2. Amaral MD (2020). How to determine the mechanism of action of CFTR modulator compounds: A gateway to theranostics. European Journal of Medicinal Chemistry, 210: 112989. https://doi.org/10.1016/j.ejmech.2020.112989   [Google Scholar] PMid:33190956
  3. Bommu UD, Konidala KK, Pamanji R, and Yeguvapalli S (2019). Structural probing, screening and structure-based drug repositioning insights into the identification of potential Cox-2 inhibitors from selective coxibs. Interdisciplinary Sciences: Computational Life Sciences, 11(2): 153-169. https://doi.org/10.1007/s12539-017-0244-5   [Google Scholar] PMid:29236213
  4. Boschert S and Rosen R (2016). Digital twin-The simulation aspect. In: Hehenberger P and Bradley D (Eds.), Mechatronic futures: 59-74. Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-319-32156-1_5   [Google Scholar]
  5. Charman SA, Andreu A, Barker H, Blundell S, Campbell A, Campbell M, and Abla N (2020). An in vitro toolbox to accelerate anti-malarial drug discovery and development. Malaria Journal, 19(1): 1-27. https://doi.org/10.1186/s12936-019-3075-5   [Google Scholar] PMid:31898492 PMCid:PMC6941357
  6. De Savi C, Hughes DL, and Kvaerno L (2020). Quest for a COVID-19 cure by repurposing small-molecule drugs: mechanism of action, clinical development, synthesis at scale, and outlook for supply. Organic Process Research and Development, 24(6): 940-976. https://doi.org/10.1021/acs.oprd.0c00233   [Google Scholar] PMCid:PMC7294877
  7. Doke SK and Dhawale SC (2015). Alternatives to animal testing: A review. Saudi Pharm Journal, 23: 223–229. https://doi.org/10.1016/j.jsps.2013.11.002   [Google Scholar] PMid:26106269 PMCid:PMC4475840
  8. El Saddik A (2018). Digital twins: The convergence of multimedia technologies. IEEE Multimedia, 25(2): 87-92. https://doi.org/10.1109/MMUL.2018.023121167   [Google Scholar]
  9. Festing S and Wilkinson R (2007). The ethics of animal research: Talking point on the use of animals in scientific research. European Molecular Biology Organization Reports, 8(6): 526-530. https://doi.org/10.1038/sj.embor.7400993   [Google Scholar] PMid:17545991 PMCid:PMC2002542
  10. Fuller A, Fan Z, Day C, and Barlow C (2020). Digital twin: Enabling technologies, challenges and open research. IEEE Access, 8: 108952-108971. https://doi.org/10.1109/ACCESS.2020.2998358   [Google Scholar]
  11. Gao S, Han L, Luo D, Liu G, Xiao Z, Shan G, and Zhou W (2021). Modeling drug mechanism of action with large scale gene-expression profiles using GPAR, an artificial intelligence platform. BMC Bioinformatics, 22(1): 1-13. https://doi.org/10.1186/s12859-020-03915-6   [Google Scholar] PMid:33413089 PMCid:PMC7788535
  12. Habib PT, Saber-Ayad M, and Hassanein SE (2021). In silico analysis of 716 natural bioactive molecules form Atlantic Ocean reveals candidate molecule to inhibit spike protein. Research Square, Durham, USA. https://doi.org/10.21203/rs.3.rs-156623/v1   [Google Scholar]
  13. Hamid B, Jhanjhi NZ, Humayun M, Khan A, and Alsayat A (2019). Cyber security issues and challenges for smart cities: A survey. In the 13th International Conference on Mathematics, Actuarial Science, Computer Science and Statistics, IEEE, Karachi, Pakistan: 1-7. https://doi.org/10.1109/MACS48846.2019.9024768   [Google Scholar] PMCid:PMC6936166
  14. Hunter FM, Atkinson FL, Bento AP, Bosc N, Gaulton A, Hersey A, and Leach AR (2018). A large-scale dataset of in vivo pharmacology assay results. Scientific Data, 5(1): 1-11. https://doi.org/10.1038/sdata.2018.230   [Google Scholar] PMid:30351302 PMCid:PMC6206617
  15. Ibrahim MA, Abdeljawaad KA, Abdelrahman AH, and Hegazy MEF (2020). Natural-like products as potential SARS-CoV-2 Mpro inhibitors: In-silico drug discovery. Journal of Biomolecular Structure and Dynamics, 39(15): 5722-5734. https://doi.org/10.1080/07391102.2020.1790037   [Google Scholar] PMid:32643529 PMCid:PMC7443551
  16. Khan A, Rehman Z, Hashmi HF, Khan AA, Junaid M, Sayaf AM, and Wei DQ (2020). An integrated systems biology and network-based approaches to identify novel biomarkers in breast cancer cell lines using gene expression data. Interdisciplinary Sciences: Computational Life Sciences, 12: 155–168. https://doi.org/10.1007/s12539-020-00360-0   [Google Scholar] PMid:32056139
  17. Khan MSA, Khatoon N, Al-Sanea MM, Mahmoud MG, and Rahman HU (2018). Methanolic extract of Leathery Murdah, Terminalia coriacea (Roxb.) Wight and Arn: leaves exhibits anti-inflammatory activity in acute and chronic models. Medical Principles and Practice, 27: 267-271. https://doi.org/10.1159/000488199   [Google Scholar] PMid:29514164 PMCid:PMC6062723
  18. Ling CQ (2020). Traditional Chinese medicine is a resource for drug discovery against 2019 novel coronavirus (SARS-CoV-2). Journal of Integrative Medicine, 18(2): 87-88. https://doi.org/10.1016/j.joim.2020.02.004   [Google Scholar] PMid:32122812 PMCid:PMC7129043
  19. Merz SF, Bengtson CP, Tepohl C, Hagenston AM, Bading H, and Bas-Orth C (2020). A microscopy-based small molecule screen in primary neurons reveals neuroprotective properties of the FDA-approved anti-viral drug Elvitegravir. Molecular Brain, 13(1): 1-14. https://doi.org/10.1186/s13041-020-00641-1   [Google Scholar] PMid:32928261 PMCid:PMC7489219
  20. Messinis DE, Latino DA, Pospisil P, Poussin C, Peitsch MC, and Hoeng J (2021). Systems pharmacology investigation of mechanism of action of nutraceuticals. In: Gupta RC, Lall R, and Srivastava A (Eds.), Nutraceuticals: Efficacy, safety and toxicity: 345-361. 2nd Edition, Academic Press, Cambridge, USA. https://doi.org/10.1016/B978-0-12-821038-3.00024-0   [Google Scholar]
  21. Neto DSLR, Moreira-Filho JT, Neves BJ, Maidana RLBR, Guimarães ACR, Furnham N, and Silva FP (2020). In silico strategies to support fragment-to-lead optimization in drug discovery. Frontiers in Chemistry, 8: 93. https://doi.org/10.3389/fchem.2020.00093   [Google Scholar] PMid:32133344 PMCid:PMC7040036
  22. NRC (2010). Guide for the care and use of laboratory animals. National Research Council, National Academies Press, Washington, USA.   [Google Scholar]
  23. Paananen J and Fortino V (2020). An omics perspective on drug target discovery platforms. Briefings in Bioinformatics, 21(6): 1937-1953. https://doi.org/10.1093/bib/bbz122   [Google Scholar] PMid:31774113 PMCid:PMC7711264
  24. Plouffe D, Brinker A, McNamara C, Henson K, Kato N, Kuhen K, and Winzeler EA (2008). In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen. Proceedings of the National Academy of Sciences, 105(26): 9059-9064. https://doi.org/10.1073/pnas.0802982105   [Google Scholar] PMid:18579783 PMCid:PMC2440361
  25. Qi Q and Tao F (2018). Digital twin and big data towards smart manufacturing and industry 4.0: 360 degree comparison. IEEE Access, 6: 3585-3593. https://doi.org/10.1109/ACCESS.2018.2793265   [Google Scholar]
  26. Rietdijk J, Tampere M, Pettke A, Georgiev P, Lapins M, Warpman-Berglund U, Spjuth O, Puumalainen MR, and Carreras-Puigvert J (2021). A phenomics approach for antiviral drug discovery. BMC Biology, 19(1): 1-5. https://doi.org/10.1186/s12915-021-01086-1   [Google Scholar] PMid:34334126 PMCid:PMC8325993
  27. Rosen R, Von Wichert G, Lo G, and Bettenhausen KD (2015). About the importance of autonomy and digital twins for the future of manufacturing. IFAC-PapersOnLine, 48(3): 567-572. https://doi.org/10.1016/j.ifacol.2015.06.141   [Google Scholar]
  28. Saei AA, Gullberg H, Sabatier P, Beusch CM, Johansson K, Lundgren B, and Zubarev RA (2020). Comprehensive chemical proteomics for target deconvolution of the redox active drug auranofin. Redox Biology, 32: 101491. https://doi.org/10.1016/j.redox.2020.101491   [Google Scholar] PMid:32199331 PMCid:PMC7082630
  29. Sills GJ and Rogawski MA (2020). Mechanisms of action of currently used ant seizure drugs. Neuropharmacology, 168: 107966. https://doi.org/10.1016/j.neuropharm.2020.107966   [Google Scholar] PMid:32120063
  30. Sinisi S, Alimguzhin V, Mancini T, Tronci E, Mari F, and Leeners B (2020). Optimal personalized treatment computation through in silico clinical trials on patient digital twins. Fundamenta Informaticae, 174(3-4): 283-310. https://doi.org/10.3233/FI-2020-1943   [Google Scholar]
  31. Taylor K and Alvarez LR (2019). An estimate of the number of animals used for scientific purposes worldwide in 2015. Alternatives to Laboratory Animals, 47(5-6): 196-213. https://doi.org/10.1177/0261192919899853   [Google Scholar] PMid:32090616
  32. Zeng X, Zhu S, Lu W, Liu Z, Huang J, Zhou Y, and Cheng F (2020). Target identification among known drugs by deep learning from heterogeneous networks. Chemical Science, 11(7): 1775-1797. https://doi.org/10.1039/C9SC04336E   [Google Scholar] PMid:34123272 PMCid:PMC8150105
  33. Zon LI and Peterson RT (2005). In vivo drug discovery in the zebrafish. Nature Reviews Drug discovery, 4(1): 35-44. https://doi.org/10.1038/nrd1606   [Google Scholar] PMid:15688071