International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 9, Issue 1 (January 2022), Pages: 138-147

----------------------------------------------

 Original Research Paper

 Title: Region-based image retrieval using region of interest (ROI) according to incremental frame and clustering color image

 Author(s): Abd Rasid Mamat *, Fatma Susilawati Mohamad, Mohamed Afendee Mohamed, Norkhairani Abd Rawi, Mohd Khalid Awang

 Affiliation(s):

 Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0003-0047-0945

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2022.01.016

 Abstract:

Content-based image retrieval involves the extraction of global feature images for their retrieval performance in large image databases. Extraction of global features image cause problem of the semantic gap between the high-level meaning and low-level visual features images. In this study RBIR, Region of Interest Based (ROI) Image Retrieval Using Incremental Frame of Color Image was proposed. It combines several methods, including filtering process, image partitioning using clustering and incremental frame formation, complementation law of theory set to generate ROI, NROI, or ER of the region. The concept of weighting as well as a significant query is also incorporated as a query strategy. Extensive experiments were also conducted on the Wang database and the color model selected was the CIE lab. Experimental results show the proposed method is efficient in image retrieval. The performance of the proposed method shows a better average IPR value of 3.51% compared to RGB and 22.92% with the HSV color model. Meanwhile, it also performs better by 36%, 5%, and 24% compared to methods CH (8,2,2), CH (8,3,3), and CH (16,4,4). 

 © 2022 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Region of interest, Incremental frame, Significant query, Image partition

 Article History: Received 4 August 2021, Received in revised form 26 October 2021, Accepted 23 November 2021

 Acknowledgment 

This project is funded by the Center for Research Excellence, Incubation Management Center, Universiti Sultan Zainal Abidin, and an internal grant UniSZA/2017/DPU/74.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Mamat AR, Mohamad FS, and Mohamed MA et al. (2022). Region-based image retrieval using region of interest (ROI) according to incremental frame and clustering color image. International Journal of Advanced and Applied Sciences, 9(1): 138-147

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 

 Tables

 Table 1 Table 2 Table 3   

----------------------------------------------    

 References (46)

  1. Arbelaitz O, Gurrutxaga I, Muguerza J, Pérez JM, and Perona I (2013). An extensive comparative study of cluster validity indices. Pattern Recognition, 46(1): 243-256. https://doi.org/10.1016/j.patcog.2012.07.021   [Google Scholar]
  2. Ayan M, Erdem OA, and Bilge HŞ (2016). Multi-featured content-based image retrieval using color and texture features. In: Dursun M (Ed.), Applied mechanics and materials: 136-143. Volume 850, Trans Tech Publications Ltd., Freienbach, Switzerland. https://doi.org/10.4028/www.scientific.net/AMM.850.136   [Google Scholar]
  3. Baji F and Mocanu M (2017). Connected components objects feature for CBIR. In the 18th International Carpathian Control Conference, IEEE, Sinaia, Romania: 545-550. https://doi.org/10.1109/CarpathianCC.2017.7970460   [Google Scholar]
  4. Bchir O, Ismail MMB, and Aljam H (2018). Region-based image retrieval using relevance feature weights. International Journal of Fuzzy Logic and Intelligent Systems, 18(1): 65-77. https://doi.org/10.5391/IJFIS.2018.18.1.65   [Google Scholar]
  5. Burger W and Burge MJ (2016). Histograms and image statistics. In: Burger W and Burge MJ (Eds.), Digital image processing: 37-56. Springer, London, UK. https://doi.org/10.1007/978-1-4471-6684-9_3   [Google Scholar]
  6. Carson C, Thomas M, Belongie S, Hellerstein JM, and Malik J (1999). Blobworld: A system for region-based image indexing and retrieval. In the International Conference on Advances in Visual Information Systems, Springer, Amsterdam, Netherlands: 509-517. https://doi.org/10.1007/3-540-48762-X_63   [Google Scholar]
  7. Chaimontree S, Atkinson K, and Coenen F (2010). Best clustering configuration metrics: Towards multiagent based clustering. In the International Conference on Advanced Data Mining and Applications, Springer, Chongqing, China: 48-59. https://doi.org/10.1007/978-3-642-17316-5_5   [Google Scholar]
  8. Chan YK, Ho YA, Liu YT, and Chen RC (2008). A ROI image retrieval method based on CVAAO. Image and Vision Computing, 26(11): 1540-1549. https://doi.org/10.1016/j.imavis.2008.04.019   [Google Scholar]
  9. Chaudhuri S (2007). Segmentation and region of interest based image retrieval in low depth of field observations. Image and Vision Computing, 25(11): 1709-1724. https://doi.org/10.1016/j.imavis.2006.12.020   [Google Scholar]
  10. Chen W, Li Q, and Dahal K (2015). ROI image retrieval based on multiple features of mean shift and expectation–maximization. Digital Signal Processing, 40: 117-130. https://doi.org/10.1016/j.dsp.2015.01.003   [Google Scholar]
  11. Eze P, Parampalli U, Evans R, and Liu D (2019). Integrity verification in medical image retrieval systems using spread spectrum steganography. In the International Conference on Multimedia Retrieval, Association for Computing Machinery, Ottawa, Canada: 53-57. https://doi.org/10.1145/3323873.3325020   [Google Scholar]
  12. Hossain S and Islam R (2017). A new approach of content based image retrieval using color and texture features. British Journal of Applied Science and Technology, 21(3): 1-16. https://doi.org/10.9734/BJAST/2017/33326   [Google Scholar]
  13. Jain AK and Dubes C (1988). Algorithms for clustering data. Prentice-Hall, Hoboken, USA.   [Google Scholar]
  14. Kam AH, Ng TT, Kingsbury NG, and Fitzgerald WJ (2000). Content based image retrieval through object extraction and querying. In the Workshop on Content-Based Access of Image and Video Libraries, IEEE Computer Society, Hilton Head, USA: 91-91. https://doi.org/10.1109/IVL.2000.853846   [Google Scholar]
  15. Kannan K, Kanna BR, and Aravindan C (2010). Root mean square filter for noisy images based on hyper graph model. Image and Vision Computing, 28(9): 1329-1338. https://doi.org/10.1016/j.imavis.2010.01.013   [Google Scholar]
  16. Keilwagen J, Grosse I, and Grau J (2014). Area under precision-recall curves for weighted and unweighted data. PLOS ONE, 9(3): e92209. https://doi.org/10.1371/journal.pone.0092209   [Google Scholar] PMid:24651729 PMCid:PMC3961324
  17. Kim S, Park S, and Kim M (2004). Image classification into object/non-object classes. In the International Conference on Image and Video Retrieval, Springer, Dublin, Ireland: 393-400. https://doi.org/10.1007/978-3-540-27814-6_47   [Google Scholar]
  18. Lee YS, Hao SS, Lin SW, and Li SY (2012). Image retrieval by region of interest motif co-occurence matrix. In the International Symposium on Intelligent Signal Processing and Communications Systems, IEEE, Tamsui, Taiwan: 270-274. https://doi.org/10.1109/ISPACS.2012.6473494   [Google Scholar]
  19. Li J and Wang JZ (2003). Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(9): 1075-1088. https://doi.org/10.1109/TPAMI.2003.1227984   [Google Scholar]
  20. Liu Y, Zhang D, Lu G, and Ma WY (2007). A survey of content-based image retrieval with high-level semantics. Pattern Recognition, 40(1): 262-282. https://doi.org/10.1016/j.patcog.2006.04.045   [Google Scholar]
  21. Malviya N, Choudhary N, and Jain K (2017). Content based medical image retrieval and clustering based segmentation to diagnose lung cancer. Advances in Computational Sciences and Technology, 10(6): 1577-1594.   [Google Scholar]
  22. Mamat AR, Awang MK, Rawi NA, Awang MI, and Kadir MFA (2016a). Average analysis method in selecting Haralick’s texture features on color co-occurrence matrix for texture based image retrieval. International Journal of Multimedia and Ubiquitous Engineering, 11(2): 79-88. https://doi.org/10.14257/ijmue.2016.11.2.10   [Google Scholar]
  23. Mamat AR, Mohamed FS, Mohamed MA, Rawi NM, and Awang MI (2018). Silhouette index for determining optimal k-means clustering on images in different color models. International Journal of Engineering and Technology, 7(2.14): 105-109. https://doi.org/10.14419/ijet.v7i2.14.11464   [Google Scholar]
  24. Mamat AR, Mohamed FS, Rawi NA, Awang MK, Awang M, and Kadir MFA (2016b). Region based image retrieval based on texture features. Journal of Theoretical and Applied Information Technology, 92: 9-19.   [Google Scholar]
  25. Mamat AR, Rawi NA, Awang MI, Kadir MFA, and Rahman MNA (2015). Hybrid method to obtain interest region and non interest region for color based image retrieval. International Journal of Advances in Soft Computing and Its Applications, 7(3): 16-30.   [Google Scholar]
  26. Manning CD, Raghavan P, and Schütze H (2009). An introduction to information retrieval. Cambridge University Press, Cambridge, UK.   [Google Scholar]
  27. Manoharan S and Sathappan S (2013). A novel approach for content based image retrieval using hybrid filter techniques. In the 8th International Conference on Computer Science and Education, IEEE, Colombo, Sri Lanka: 518-524. https://doi.org/10.1109/ICCSE.2013.6553965   [Google Scholar]
  28. Maulik U and Bandyopadhyay S (2002). Performance evaluation of some clustering algorithms and validity indices. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(12): 1650-1654. https://doi.org/10.1109/TPAMI.2002.1114856   [Google Scholar]
  29. Moghaddam B, Biermann H, and Margaritis D (2001). Regions-of-interest and spatial layout for content-based image retrieval. Multimedia Tools and Applications, 14(2): 201-210. https://doi.org/10.1023/A:1011355417880   [Google Scholar]
  30. Prasad BG, Biswas KK, and Gupta SK (2004). Region-based image retrieval using integrated color, shape, and location index. Computer Vision and Image Understanding, 94(1-3): 193-233. https://doi.org/10.1016/j.cviu.2003.10.016   [Google Scholar]
  31. Raja R, Kumar S, and Mahmood MR (2020). Color object detection based image retrieval using ROI segmentation with multi-feature method. Wireless Personal Communications, 112(1): 169-192. https://doi.org/10.1007/s11277-019-07021-6   [Google Scholar]
  32. Rejito J, Abdullahi AS, Setiana D, and Ruchjana BN (2017). Image indexing using color histogram and k-means clustering for optimization CBIR in image database. Journal of Physics: Conference Series-IOP Publishing, 893: 012055. https://doi.org/10.1088/1742-6596/893/1/012055   [Google Scholar]
  33. Shrivastava N and Tyagi V (2015). A review of ROI image retrieval techniques. In the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications, Springer, Bhubaneswar, India: 509-520. https://doi.org/10.1007/978-3-319-12012-6_56   [Google Scholar]
  34. Singh SM and Hemachandran K (2012). Content-based image retrieval using color moment and Gabor texture feature. International Journal of Computer Science Issues, 9(5): 299-309.   [Google Scholar]
  35. Szeliski R (2010). Computer vision: Algorithms and applications. Springer Science and Business Media, Berlin, Germany.   [Google Scholar]
  36. Talib J (2006). Struktur matematik diskret-untuk sains komputer. Penerbit UTM, Skudai, Malaysia.   [Google Scholar]
  37. Tian Q, Wu Y, and Huang TS (2000). Combine user defined region-of-interest and spatial layout for image retrieval. In the International Conference on Image Processing (Cat. No. 00CH37101), IEEE, Vancouver, Canada, 3: 746-749. https://doi.org/10.1109/ICIP.2000.899562   [Google Scholar]
  38. Toriwaki J and Yoshida H (2009). Fundamentals of three-dimensional digital image processing. Springer Science and Business Media, Berlin, Germany. https://doi.org/10.1007/978-1-84800-172-5   [Google Scholar]
  39. Vimina ER and Jacob KP (2013). A sub-block based image retrieval using modified integrated region matching. International Journal of Computer Science Issues, 10(1): 686-692. https://doi.org/10.12720/joig.1.1.7-11   [Google Scholar]
  40. Vu K, Hua KA, and Tavanapong W (2003). Image retrieval based on regions of interest. IEEE Transactions on Knowledge and Data Engineering, 15(4): 1045-1049. https://doi.org/10.1109/TKDE.2003.1209021   [Google Scholar]
  41. Wang Z, Liu G, and Yang Y (2013). A new ROI based image retrieval system using an auxiliary Gaussian weighting scheme. Multimedia Tools and Applications, 67(3): 549-569. https://doi.org/10.1007/s11042-012-1059-3   [Google Scholar]
  42. Yang L, Geng B, Cai Y, Hanjalic A, and Hua XS (2011). Object retrieval using visual query context. IEEE Transactions on Multimedia, 13(6): 1295-1307. https://doi.org/10.1109/TMM.2011.2162399   [Google Scholar]
  43. Yue J, Li Z, Liu L, and Fu Z (2011). Content-based image retrieval using color and texture fused features. Mathematical and Computer Modelling, 54(3-4): 1121-1127. https://doi.org/10.1016/j.mcm.2010.11.044   [Google Scholar]
  44. Zambre DS and Patil SP (2013). Retrieving content based images with query point technique based on k-mean clustering. International Journal of Advancements in Research and Technology, 2(4): 357-360.   [Google Scholar]
  45. Zhang D and Lu G (2002). Generic Fourier descriptor for shape-based image retrieval. In the International Conference on Multimedia and Expo, IEEE, Lausanne, Switzerland, 1: 425-428. https://doi.org/10.1109/ICME.2002.1035809   [Google Scholar]
  46. Zhou Q, Ma L, Celenk M, and Chelberg D (2005). Content-based image retrieval based on ROI detection and relevance feedback. Multimedia Tools and Applications, 27(2): 251-281. https://doi.org/10.1007/s11042-005-2577-z   [Google Scholar]