International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 9, Issue 1 (January 2022), Pages: 110-116

----------------------------------------------

 Original Research Paper

 Title: Trapping bacteria and fungi using microfluidic design

 Author(s): Clare Maristela V. Galon *, Marvie Rose A. Madriaga, Isabelle Bryanne Margaja

 Affiliation(s):

 Department of Chemistry and Physics, College of Arts and Sciences, Cebu Normal University, Cebu, Philippines

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0001-7768-4365

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2022.01.013

 Abstract:

Escherichia coli and Candida auris are not easy to identify in laboratories without special technology. In this study, we have presented microfluidic designs for trapping bacteria and fungi. Two trapping chambers are designed using AutoCAD and the fluid dynamics of the bacteria and fungi are simulated using D. Schroeder’s Fluid Dynamics Simulation software. The designs are modified versions of a device that is constructed and simulated with numerical predictions, which include sizes and apertures in consideration of the specified microbe. The current designs take into account the exact dimensions of E. coli and C. auris under fluid flow and passive microfluidic technique, where actuation is based on geometry, is considered. The measurements of the design ensure that the species are to be trapped due to diffusion and ­­fluid dynamics. From the simulation, the stagnation is to be shown with its default setting, and approximation is done in its motion which is simulated in the two-dimensional space of the bacteria and fungi. The microfluidic designs will be useful during experiments in deciphering necessary information of the bacteria and fungi and will be a platform in modeling numerous biomedical assays and in the optimization of biophysical tools. 

 © 2021 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Microfluidics, Escherichia coli, Candida auris, Simulation, Trapping

 Article History: Received 8 July 2021, Received in revised form 4 October 2021, Accepted 23 November 2021

 Acknowledgment 

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Galon CMV, Madriaga MRA, and Margaja IB (2022). Trapping bacteria and fungi using microfluidic design. International Journal of Advanced and Applied Sciences, 9(1): 110-116

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 

 Tables

 No Table   

----------------------------------------------    

 References (11)

  1. Ben-Ami R, Berman J, Novikov A, Bash E, Shachor-Meyouhas Y, Zakin S, and Finn T (2017). Multidrug-resistant candida haemulonii and C. Auris, Tel Aviv, Israel. Emerging Infectious Diseases, 23(2): 195-203. https://doi.org/10.3201/eid2302.161486   [Google Scholar] PMid:28098529 PMCid:PMC5324804
  2. Galon CV and Bacabac RG (2019). Microfluidics: An application of physics in medicine. LAP LAMBERT Academic Publishing, Sunnyvale, USA.   [Google Scholar]
  3. Janča J, Halabalová V, Polášek V, Vašina M, and Menshikova AY (2011). Relaxation of micro particles exposed to hydrodynamic forces in microfluidic conduits. Analytical and Bioanalytical Chemistry, 399(4): 1481-1491. https://doi.org/10.1007/s00216-010-4163-0   [Google Scholar] PMid:20835866
  4. Kim MC, Isenberg BC, Sutin J, Meller A, Wong JY, and Klapperich CM (2011). Programmed trapping of individual bacteria using micrometre-size sieves. Lab on a Chip, 11(6): 1089-1095. https://doi.org/10.1039/c0lc00362j   [Google Scholar] PMid:21293825
  5. Liberale C, Cojoc G, Bragheri F, Minzioni P, Perozziello G, La Rocca R, and Cristiani I (2013). Integrated microfluidic device for single-cell trapping and spectroscopy. Scientific Reports, 3(1): 1-7. https://doi.org/10.1038/srep01258   [Google Scholar] PMid:23409249 PMCid:PMC3570777
  6. Mansur EA, Mingxing YE, Yundong WANG, and Youyuan DAI (2008). A state-of-the-art review of mixing in microfluidic mixers. Chinese Journal of Chemical Engineering, 16(4): 503-516. https://doi.org/10.1016/S1004-9541(08)60114-7   [Google Scholar]
  7. Milne G, Rhodes D, MacDonald M, and Dholakia K (2007). Fractionation of polydisperse colloid with acousto-optically generated potential energy landscapes. Optics Letters, 32(9): 1144-1146. https://doi.org/10.1364/ol.32.001144   [Google Scholar]
  8. Patteson AE, Gopinath A, Goulian M, and Arratia PE (2015). Running and tumbling with E. coli in polymeric solutions. Scientific Reports, 5(1): 1-11. https://doi.org/10.1038/srep15761   [Google Scholar] PMid:26507950 PMCid:PMC4938119
  9. Pilát Z, Bernatová S, Ježek J, Kirchhoff J, Tannert A, Neugebauer U, and Zemánek P (2018). Microfluidic cultivation and laser tweezers Raman spectroscopy of E. coli under antibiotic stress. Sensors, 18(5): 1623. https://doi.org/10.3390/s18051623   [Google Scholar] PMid:29783713 PMCid:PMC5982924
  10. Schroeder D (2019). Fluid dynamics simulation. Available online at: https://physics.weber.edu/schroeder/fluids/
  11. Socolofsky SA and Jirka GH (2005). CVEN 489-501: Special topics in mixing and transport processes in the environment. Engineering-Lectures. 5th Edition, Coastal and Ocean Engineering Division, Texas A&M University, MS, 3136, 77843-3136.   [Google Scholar]