International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 9, Issue 1 (January 2022), Pages: 99-109

----------------------------------------------

 Original Research Paper

 Title: An integrated approach on verification of signatures using multiple classifiers (SVM and Decision Tree): A multi-classification approach

 Author(s): Upasna Jindal 1, Surjeet Dalal 1, *, G. Rajesh 2, Najm Us Sama 3, N. Z. Jhanjhi 4, Mamoona Humayun 5

 Affiliation(s):

 1Department of CSE, SRM University, Delhi-NCR, Sonipat, Haryana, India
 2Department of IT, MIT Campus, Anna University, Chennai, Tamil Nadu, India
 3Department of Science, Deanship of Common First Year, Jouf University, Sakaka, Saudi Arabia
 4School of Computer Science and Engineering, SCE, Taylors University, Jaya, Malaysia
 5Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakakah, Saudi Arabia

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-4325-9237

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2022.01.012

 Abstract:

A signature is a handwritten representation that is commonly used to validate and recognize the writer individually. An automated verification system is mandatory to verify the identity. The signature essentially displays a variety of dynamics and the static characteristics differ with time and place. Many scientists have already found different algorithms to boost the signature verification system function extraction point. The paper is aimed at multiplying two different ways to solve the problem in digital, manual, or some other means of verifying signatures. The various characteristics of the signature were found through the most adequately implemented methods of machine learning (support vector and decision tree). In addition, the characteristics were listed after measuring the effects. An experiment was performed in various language databases. More precision was obtained from the feature. 

 © 2021 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Online, Offline, Feature extraction, Database, Classifiers, Local and global

 Article History: Received 17 November 2020, Received in revised form 11 February 2021, Accepted 15 November 2021

 Acknowledgment 

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Jindal U, Dalal S, and Rajesh G et al. (2022). An integrated approach on verification of signatures using multiple classifiers (SVM and Decision Tree): A multi-classification approach. International Journal of Advanced and Applied Sciences, 9(1): 99-109

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 

 Tables

 Table 1 Table 2 Table 3 Table 4   

----------------------------------------------    

 References (33)

  1. Abuhaiba IS (2007). Offline signature verification using graph matching. Turkish Journal of Electrical Engineering and Computer Sciences, 15(1): 89-104.   [Google Scholar]
  2. Bharadwaja AV (2015). The analysis of online and offline signature verification techniques to counter forgery. Indian Journal of Science and Technology, 8(20): 1-7. https://doi.org/10.17485/ijst/2015/v8i20/77735   [Google Scholar]
  3. Blankers VL, van den Heuvel CE, Franke KY, and Vuurpijl LG (2009). Icdar 2009 signature verification competition. In the 10th International Conference on Document Analysis and Recognition, IEEE, Barcelona, Spain: 1403-1407. https://doi.org/10.1109/ICDAR.2009.216   [Google Scholar]
  4. Boonchuay K, Sinapiromsaran K, and Lursinsap C (2017). Decision tree induction based on minority entropy for the class imbalance problem. Pattern Analysis and Applications, 20(3): 769-782. https://doi.org/10.1007/s10044-016-0533-3   [Google Scholar]
  5. Cpałka K, Zalasiński M, and Rutkowski L (2016). A new algorithm for identity verification based on the analysis of a handwritten dynamic signature. Applied Soft Computing, 43: 47-56. https://doi.org/10.1016/j.asoc.2016.02.017   [Google Scholar]
  6. Ferrer MA, Alonso JB, and Travieso CM (2005). Offline geometric parameters for automatic signature verification using fixed-point arithmetic. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(6): 993-997. https://doi.org/10.1109/TPAMI.2005.125   [Google Scholar] PMid:15943430
  7. Gao W, Zhang X, Yang L, and Liu H (2010). An improved Sobel edge detection. In the 3rd International Conference on Computer Science and Information Technology, IEEE, Chengdu, China, 5: 67-71. https://doi.org/10.1109/ICCSIT.2010.5563693   [Google Scholar]
  8. Guru DS and Prakash HN (2008). Online signature verification and recognition: An approach based on symbolic representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(6): 1059-1073. https://doi.org/10.1109/TPAMI.2008.302   [Google Scholar] PMid:19372610
  9. Jarad M, Al-Najdawi N, and Tedmori S (2014). Offline handwritten signature verification system using a supervised neural network approach. In the 6th International Conference on Computer Science and Information Technology, IEEE, Amman, Jordan: 189-195. https://doi.org/10.1109/CSIT.2014.6805999   [Google Scholar]
  10. Jena D, Majhi B, Panigrahy SK, and Jena SK (2008). Improved offline signature verification scheme using feature point extraction method. In the 7th IEEE International Conference on Cognitive Informatics, IEEE, Stanford, USA: 475-480. https://doi.org/10.1109/COGINF.2008.4639204   [Google Scholar]
  11. Kamel NS, Sayeed S, and Ellis GA (2008). Glove-based approach to online signature verification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(6): 1109-1113. https://doi.org/10.1109/TPAMI.2008.32   [Google Scholar] PMid:18421114
  12. Kiani V, Pourreza R, and Pourreza HR (2009). Offline signature verification using local Radon transform and support vector machines. International Journal of Image Processing, 3(5): 184-194.   [Google Scholar]
  13. Kour J, Hanmandlu M, and Ansari AQ (2011). Online signature verification using GA-SVM. In the International Conference on Image Information Processing, IEEE, Shimla, India: 1-4. https://doi.org/10.1109/ICIIP.2011.6108923   [Google Scholar]
  14. Kruthi C and Shet DC (2014). Offline signature verification using support vector machine. In the Fifth International Conference on Signal and Image Processing, IEEE, Bangalore, India: 3-8. https://doi.org/10.1109/ICSIP.2014.5   [Google Scholar]
  15. Lai S, Jin L, and Yang W (2017). Online signature verification using recurrent neural network and length-normalized path signature descriptor. In the 14th IAPR International Conference on Document Analysis and Recognition, IEEE, Kyoto, Japan, 1: 400-405. https://doi.org/10.1109/ICDAR.2017.73   [Google Scholar] PMCid:PMC5337438
  16. Maergner P, Howe NR, Riesen K, Ingold R, and Fischer A (2019). Graph-based offline signature verification. Available online at: https://arxiv.org/abs/1906.10401
  17. Mathur N, Mathur S, and Mathur D (2016). A novel approach to improve Sobel edge detector. Procedia Computer Science, 93: 431-438. https://doi.org/10.1016/j.procs.2016.07.230   [Google Scholar]
  18. Nazari Z and Kang D (2015). Density based support vector machines for classification. International Journal of Advanced Research in Artificial Intelligence, 4(4): 69-76. https://doi.org/10.14569/IJARAI.2015.040411   [Google Scholar]
  19. Oliveira LS, Justino E, and Sabourin R (2007). Off-line signature verification using writer-independent approach. In the International Joint Conference on Neural Networks, IEEE, Orlando, USA: 2539-2544. https://doi.org/10.1109/IJCNN.2007.4371358   [Google Scholar]
  20. Qiao Y, Wang X, and Xu C (2011). Learning Mahalanobis distance for DTW based online signature verification. In the IEEE International Conference on Information and Automation, IEEE, Shenzhen, China: 333-338. https://doi.org/10.1109/ICINFA.2011.5949012   [Google Scholar] PMid:21861052
  21. Quan ZH and Liu KH (2007). Online signature verification based on the hybrid hmm/ann model. International Journal of Computer Science and Network Security, 7(3): 313-322.   [Google Scholar]
  22. Saeed S, Abdullah A, Jhanjhi NZ, Naqvi M, and Humayun M (2020). Performance analysis of machine learning algorithm for healthcare tools with high dimension segmentation. In: Agrawal R, Chatterjee JM, Kumar A, Rathore PS, and Le DN (Eds.), Machine learning for healthcare: Handling and managing data: 115-128. CRC Press, Boca Raton, USA. https://doi.org/10.1201/9780429330131-9   [Google Scholar]
  23. Shao YH, Chen WJ, Huang WB, Yang ZM, and Deng NY (2013). The best separating decision tree twin support vector machine for multi-class classification. Procedia Computer Science, 17: 1032-1038. https://doi.org/10.1016/j.procs.2013.05.131   [Google Scholar]
  24. Sharif M, Khan MA, Faisal M, Yasmin M, and Fernandes SL (2018). A framework for offline signature verification system: Best features selection approach. Pattern Recognition Letters, 139: 50-59. https://doi.org/10.1016/j.patrec.2018.01.021   [Google Scholar]
  25. Sheng Y, Phoha VV, and Rovnyak SM (2005). A parallel decision tree-based method for user authentication based on keystroke patterns. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 35(4): 826-833. https://doi.org/10.1109/TSMCB.2005.846648   [Google Scholar] PMid:16128463
  26. Soleymanpour E, Rajae B, and Pourreza HR (2010). Offline handwritten signature identification and verification using contourlet transform and Support Vector Machine. In the 6th Iranian Conference on Machine Vision and Image Processing, IEEE, Isfahan, Iran: 1-6. https://doi.org/10.1109/IranianMVIP.2010.5941179   [Google Scholar]
  27. Sreeraj M and Idicula SM (2011). A survey on writer identification schemes. International Journal of Computer Applications, 26: 23-33. https://doi.org/10.5120/3075-4205   [Google Scholar]
  28. Swain M, Kisan S, Chatterjee JM, Supramaniam M, Mohanty SN, Jhanjhi NZ, and Abdullah A (2020). Hybridized machine learning based fractal analysis techniques for breast cancer classification. International Journal of Advanced Computer Science and Applications, 11(10): 179-184. https://doi.org/10.14569/IJACSA.2020.0111024   [Google Scholar]
  29. Vargas JF, Ferrer MA, Travieso CM, and Alonso JB (2009). Offline signature verification based on pseudo-cepstral coefficients. In the 10th International Conference on Document Analysis and Recognition, IEEE, Barcelona, Spain: 126-130. https://doi.org/10.1109/ICDAR.2009.68   [Google Scholar]
  30. Vincent OR and Folorunso O (2009). A descriptive algorithm for Sobel image edge detection. In the Informing Science and IT Education Conference, Informing Science Institute, Macon, USA, 40: 97-107. https://doi.org/10.28945/3351   [Google Scholar]
  31. Yanikoglu B and Kholmatov A (2009). Online signature verification using Fourier descriptors. EURASIP Journal on Advances in Signal Processing: 260516. https://doi.org/10.1155/2009/260516   [Google Scholar]
  32. Zulkarnain Z, Rahim MSM, and Othman NZS (2015). Feature selection method for offline signature verification. Journal Technology, 75(4). https://doi.org/10.11113/jt.v75.5070   [Google Scholar]
  33. Zuo J and Jia P (2016). Proof on decision tree algorithm. Revista Técnica de la Facultad de Ingeniería Universidad del Zulia, 39: 276‐280. https://doi.org/10.21311/001.39.7.34   [Google Scholar]