International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 9, Issue 1 (January 2022), Pages: 84-90

----------------------------------------------

 Original Research Paper

 Title: A bibliometric analysis of the supply chain finance research

 Author(s): Nguyen Minh Sang *

 Affiliation(s):

 International Economics Faculty, Banking University, Ho Chi Minh City, Vietnam

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-4272-0247

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2022.01.010

 Abstract:

The purpose of the article is to use biometric methods to perform a high-level analysis of research trend analysis on supply chain finance through 305 studies in the field of Business-Economics and Social Sciences published on the Scopus database for the period 2006-2021. The findings provide an overview of worldwide publication trends on the topic of supply chain finance, specifically: (i) the most cited studies; (ii) the most cited authors; (iii) the most influential journals; (iv) the main research keywords among which the network links; (v) leading research institutions and (vi) research collaboration trends among countries on supply chain finance. The study provides more scientific evidence about the current big picture of publication trends in the world, thereby suggesting and recommending future research directions on supply chain finance. 

 © 2021 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Bibliometric, Business, Economics, Supply chain finance

 Article History: Received 3 September 2021, Received in revised form 12 November 2021, Accepted 13 November 2021

 Acknowledgment 

The author wishes to acknowledge support from the Banking University - Ho Chi Minh City.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Sang NM (2022). A bibliometric analysis of the supply chain finance research. International Journal of Advanced and Applied Sciences, 9(1): 84-90

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3  

 Tables

 Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7   

----------------------------------------------    

 References (25)

  1. Camerinelli E (2009). Supply chain finance. Journal of Payments Strategy and Systems, 3(2): 114-128.   [Google Scholar]
  2. Caniato F, Gelsomino LM, Perego A, and Ronchi S (2016). Does finance solve the supply chain financing problem? Supply Chain Management: An International Journal, 21(5): 534–549. https://doi.org/10.1108/SCM-11-2015-0436   [Google Scholar]
  3. Chen J, Zhou YW, and Zhong Y (2017). A pricing/ordering model for a dyadic supply chain with buyback guarantee financing and fairness concerns. International Journal of Production Research, 55(18): 5287-5304. https://doi.org/10.1080/00207543.2017.1308571   [Google Scholar]
  4. Gao GX, Fan ZP, Fang X, and Lim YF (2018). Optimal Stackelberg strategies for financing a supply chain through online peer-to-peer lending. European Journal of Operational Research, 267(2): 585-597. https://doi.org/10.1016/j.ejor.2017.12.006   [Google Scholar]
  5. Gelsomino LM, Mangiaracina R, Perego A, and Tumino A (2016). Supply chain finance: A literature review. International Journal of Physical Distribution and Logistics Management, 46(4): 348-366. https://doi.org/10.1108/IJPDLM-08-2014-0173   [Google Scholar]
  6. Godzien J, de la Fuente AG, Otero A, and Barbas C (2018). Metabolite annotation and identification. Comprehensive Analytical Chemistry, 82: 415-445. https://doi.org/10.1016/bs.coac.2018.07.004   [Google Scholar]
  7. Gomm ML (2010). Supply chain finance: Applying finance theory to supply chain management to enhance finance in supply chains. International Journal of Logistics: Research and Applications, 13(2): 133-142. https://doi.org/10.1080/13675560903555167   [Google Scholar]
  8. Hofmann E and Zumsteg S (2015). Win-win and no-win situations in supply chain finance: The case of accounts receivable programs. Supply chain forum: An international journal, 16(3): 30-50. https://doi.org/10.1080/16258312.2015.11716350   [Google Scholar]
  9. Lekkakos SD and Serrano A (2016). Supply chain finance for small and medium sized enterprises: The case of reverse factoring. International Journal of Physical Distribution and Logistics Management, 46(4): 367–392. https://doi.org/10.1108/IJPDLM-07-2014-0165   [Google Scholar]
  10. Liebl J, Hartmann E, and Feisel E (2016). Reverse factoring in the supply chain: Objectives, antecedents and implementation barriers. International Journal of Physical Distribution and Logistics Management, 46(4): 393–413. https://doi.org/10.1108/IJPDLM-08-2014-0171   [Google Scholar]
  11. More D and Basu P (2013). Challenges of supply chain finance: A detailed study and a hierarchical model based on the experiences of an Indian firm. Business Process Management Journal, 19(4): 624-647. https://doi.org/10.1108/BPMJ-09-2012-0093   [Google Scholar]
  12. Pfohl HC and Gomm M (2009). Supply chain finance: Optimizing financial flows in supply chains. Logistics Research, 1(3-4): 149-161. https://doi.org/10.1007/s12159-009-0020-y   [Google Scholar]
  13. Pritchard A (1969). Statistical bibliography or bibliometrics. Journal of Documentation, 25(4): 348-349. https://doi.org/10.1108/eb026482   [Google Scholar]
  14. Sanders NR and Wagner SM (2011). Multidisciplinary and multimethod research for addressing contemporary supply chain challenges. Journal of Business Logistics, 32(4): 317-323. https://doi.org/10.1111/j.0000-0000.2011.01027.x   [Google Scholar]
  15. Tang CS, Yang SA, and Wu J (2018). Sourcing from suppliers with financial constraints and performance risk. Manufacturing and Service Operations Management, 20(1): 70-84. https://doi.org/10.1287/msom.2017.0638   [Google Scholar]
  16. Tseng ML, Bui TD, Lim MK, Tsai FM, and Tan RR (2021). Comparing world regional sustainable supply chain finance using big data analytics: A bibliometric analysis. Industrial Management and Data Systems, 121(3): 657-700. https://doi.org/10.1108/IMDS-09-2020-0521   [Google Scholar]
  17. Tseng ML, Wu KJ, Hu J, and Wang CH (2018). Decision-making model for sustainable supply chain finance under uncertainties. International Journal of Production Economics, 205: 30-36. https://doi.org/10.1016/j.ijpe.2018.08.024   [Google Scholar]
  18. Tunca TI and Zhu W (2018). Buyer intermediation in supplier finance. Management Science, 64(12): 5631-5650. https://doi.org/10.1287/mnsc.2017.2863   [Google Scholar]
  19. Van der Vliet K, Reindorp MJ, and Fransoo JC (2015). The price of reverse factoring: Financing rates vs. payment delays. European Journal of Operational Research, 242(3): 842-853. https://doi.org/10.1016/j.ejor.2014.10.052   [Google Scholar]
  20. Wandfluh M, Hofmann E, and Schoensleben P (2016). Financing buyer–supplier dyads: An empirical analysis on financial collaboration in the supply chain. International Journal of Logistics Research and Applications, 19(3): 200-217. https://doi.org/10.1080/13675567.2015.1065803   [Google Scholar]
  21. Wuttke DA, Blome C, Foerstl K, and Henke M (2013). Managing the innovation adoption of supply chain finance-Empirical evidence from six European case studies. Journal of Business Logistics, 34(2): 148-166. https://doi.org/10.1111/jbl.12016   [Google Scholar]
  22. Wuttke DA, Blome C, Heese HS, and Protopappa-Sieke M (2016). Supply chain finance: Optimal introduction and adoption decisions. International Journal of Production Economics, 178: 72-81. https://doi.org/10.1016/j.ijpe.2016.05.003   [Google Scholar]
  23. Xu X, Chen X, Jia F, Brown S, Gong Y, and Xu Y (2018). Supply chain finance: A systematic literature review and bibliometric analysis. International Journal of Production Economics, 204: 160-173. https://doi.org/10.1016/j.ijpe.2018.08.003   [Google Scholar]
  24. Yan N and Sun B (2015). Comparative analysis of supply chain financing strategies between different financing modes. Journal of Industrial and Management Optimization, 11(4): 1073-1087. https://doi.org/10.3934/jimo.2015.11.1073   [Google Scholar]
  25. Zhu Y, Zhou L, Xie C, Wang GJ, and Nguyen TV (2019). Forecasting SMEs' credit risk in supply chain finance with an enhanced hybrid ensemble machine learning approach. International Journal of Production Economics, 211: 22-33. https://doi.org/10.1016/j.ijpe.2019.01.032   [Google Scholar]