International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 8, Issue 7 (July 2021), Pages: 23-30

----------------------------------------------

 Original Research Paper

 Title: Control of the free convective heat transfer using a U-shaped obstacle in an Al2O3-water nanofluid filled cubic cavity

 Author(s): Rajab Al-Sayagh *

 Affiliation(s):

 Department of Mechanical Engineering, College of Engineering, Northern Border University, Arar, Saudi Arabia

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0001-9940-9110

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2021.07.004

 Abstract:

This paper deals with the study of free convection in a 3D enclosure filled with Al2O3-nanofluid and equipped with a U-shaped obstacle. The used U-shaped obstacle is considered perfectly conductive. The effect of the dimension and the orientation of the obstacle is investigated. In addition, the parameters governing the problem are varied as Rayleigh number (103 to 106), and nanoparticles volume fraction (0 to 7.5%). Results are depicted in terms of flow structures, temperature fields, and Nusselt number. Results show that the obstacle dimension and orientation can control the flow and optimize the heat transfer and the addition of nanoparticles enhances significantly Nusselt number. 

 © 2021 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Nanofluid, Natural convection, U-shaped obstacle, 3D

 Article History: Received 13 December 2020, Received in revised form 26 February 2021, Accepted 15 March 2021

 Acknowledgment 

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

  Al-Sayagh R (2021). Control of the free convective heat transfer using a U-shaped obstacle in an Al2O3-water nanofluid filled cubic cavity. International Journal of Advanced and Applied Sciences, 8(7): 23-30

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 

 Tables

 Table 1 Table 2 

----------------------------------------------

 References (34)

  1. Ahmed SE, Mansour MA, Hussein AK, Mallikarjuna B, Almeshaal MA, and Kolsi L (2019). MHD mixed convection in an inclined cavity containing adiabatic obstacle and filled with Cu–water nanofluid in the presence of the heat generation and partial slip. Journal of Thermal Analysis and Calorimetry, 138(2): 1443-1460. https://doi.org/10.1007/s10973-019-08340-3   [Google Scholar]
  2. Akbari OA, Safaei MR, Goodarzi M, Akbar NS, Zarringhalam M, Shabani GAS, and Dahari M (2016). A modified two-phase mixture model of nanofluid flow and heat transfer in a 3-D curved microtube. Advanced Powder Technology, 27(5): 2175-2185. https://doi.org/10.1016/j.apt.2016.08.002   [Google Scholar]
  3. Almeshaal MA, Kalidasan K, Askri F, Velkennedy R, Alsagri AS, and Kolsi L (2020b). Three-dimensional analysis on natural convection inside a T-shaped cavity with water-based CNT–aluminum oxide hybrid nanofluid. Journal of Thermal Analysis and Calorimetry, 139(3): 2089-2098. https://doi.org/10.1007/s10973-019-08533-w   [Google Scholar]
  4. Almeshaal MA, Maatki C, Kolsi L, Ghachem K, and Chamkha A (2020a). 3D Rayleigh‐Bénard‐type natural convection in MWCNT‐nanofluid‐filled L‐shaped enclosures with consideration of aggregation effect. Mathematical Methods in the Applied Sciences, 2020: 1-17. https://doi.org/10.1002/mma.6409   [Google Scholar]
  5. Al-Rashed AA, Kalidasan K, Kolsi L, Aydi A, Malekshah EH, Hussein AK, and Kanna PR (2018b). Three-dimensional investigation of the effects of external magnetic field inclination on laminar natural convection heat transfer in CNT–water nanofluid filled cavity. Journal of Molecular Liquids, 252: 454-468. https://doi.org/10.1016/j.molliq.2018.01.006   [Google Scholar]
  6. Al-Rashed AA, Kolsi L, Kalidasan K, Malekshah EH, Borjini MN, and Kanna PR (2017). Second law analysis of natural convection in a CNT-water nanofluid filled inclined 3D cavity with incorporated Ahmed body. International Journal of Mechanical Sciences, 130: 399-415. https://doi.org/10.1016/j.ijmecsci.2017.06.028   [Google Scholar]
  7. Al-Rashed AA, Kolsi L, Oztop HF, Aydi A, Malekshah EH, Abu-Hamdeh N, and Borjini MN (2018a). 3D magneto-convective heat transfer in CNT-nanofluid filled cavity under partially active magnetic field. Physica E: Low-Dimensional Systems and Nanostructures, 99: 294-303. https://doi.org/10.1016/j.physe.2018.02.011   [Google Scholar]
  8. Al-Rashed AAA, Hassen W, Kolsi L, Oztop HF, Chamkha AJ, and Abu-Hamdeh N (2019). Three-dimensional analysis of natural convection in nanofluid-filled parallelogrammic enclosure opened from top and heated with square heater. Journal of Central South University, 26(5): 1077-1088. https://doi.org/10.1007/s11771-019-4072-0   [Google Scholar]
  9. Al-Sayegh R (2018). Influence of external magnetic field inclination on three-dimensional buoyancy-driven convection in an open trapezoidal cavity filled with CNT-Water nanofluid. International Journal of Mechanical Sciences, 148: 756-765. https://doi.org/10.1016/j.ijmecsci.2018.09.032   [Google Scholar]
  10. Attia MEH, Hussein AK, Rout SK, Soli J, Elaloui E, Driss Z, and Chand R (2021). Experimental study of the effect of Al2O3 nanoparticles on the profitability of a single-slope solar still: Application in southeast of Algeria. In: Ramgopal M, Rout SK, Sarangi SK (Eds.), Advances in air conditioning and refrigeration: 119-133. Springer, Singapore, Singapore. https://doi.org/10.1007/978-981-15-6360-7_12   [Google Scholar]
  11. Bondareva NS, Sheremet MA, Oztop HF, and Abu-Hamdeh N (2017). Heatline visualization of natural convection in a thick walled open cavity filled with a nanofluid. International Journal of Heat and Mass Transfer, 109: 175-186. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.124   [Google Scholar]
  12. Hassen W, Kolsi L, Mohammed HA, Ghachem K, Sheikholeslami M, and Almeshaal MA (2020). Transient electrohydrodynamic convective flow and heat transfer of MWCNT-dielectric nanofluid in a heated enclosure. Physics Letters A, 384(28): 126736. https://doi.org/10.1016/j.physleta.2020.126736   [Google Scholar]
  13. Hussain S, Jamal M, Maatki C, Ghachem K, and Kolsi L (2020). MHD mixed convection of Al2O3–Cu–water hybrid nanofluid in a wavy channel with incorporated fixed cylinder. Journal of Thermal Analysis and Calorimetry, 1-15. https://doi.org/10.1007/s10973-020-10260-6   [Google Scholar]
  14. Hussein AK, Kolsi L, Almeshaal MA, Li D, Ali HM, and Ahmed IS (2019). Mixed convection in a cubical cavity with active lateral walls and filled with hybrid graphene–platinum nanofluid. Journal of Thermal Science and Engineering Applications, 11(4): 041007. https://doi.org/10.1115/1.4043758   [Google Scholar]
  15. Kasaeian A, Daneshazarian R, Mahian O, Kolsi L, Chamkha AJ, Wongwises S, and Pop I (2017). Nanofluid flow and heat transfer in porous media: A review of the latest developments. International Journal of Heat and Mass Transfer, 107: 778-791. https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.074   [Google Scholar]
  16. Kasaeipoor A, Malekshah EH, and Kolsi L (2017). Free convection heat transfer and entropy generation analysis of MWCNT-MgO (15%−85%)/Water nanofluid using Lattice Boltzmann method in cavity with refrigerant solid body-Experimental thermo-physical properties. Powder Technology, 322: 9-23. https://doi.org/10.1016/j.powtec.2017.08.061   [Google Scholar]
  17. Kolsi L, Algarni S, Mohammed HA, Hassen W, Lajnef E, Aich W, and Almeshaal MA (2020). 3D magneto-buoyancy-thermocapillary convection of CNT-water nanofluid in the presence of a magnetic field. Processes, 8(3): 258. https://doi.org/10.3390/pr8030258   [Google Scholar]
  18. Kolsi L, Alrashed AA, Al-Salem K, Oztop HF, and Borjini MN (2017b). Control of natural convection via inclined plate of CNT-water nanofluid in an open sided cubical enclosure under magnetic field. International Journal of Heat and Mass Transfer, 111: 1007-1018. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.069   [Google Scholar]
  19. Kolsi L, Kalidasan K, Alghamdi A, Borjini MN, and Kanna PR (2016). Natural convection and entropy generation in a cubical cavity with twin adiabatic blocks filled by aluminum oxide–water nanofluid. Numerical Heat Transfer, Part A: Applications, 70(3): 242-259. https://doi.org/10.1080/10407782.2016.1173478   [Google Scholar]
  20. Kolsi L, Lajnef E, Aich W, Alghamdi A, Aichouni MA, Borjini MN, and Aissia HB (2017a). Numerical investigation of combined buoyancy-thermocapillary convection and entropy generation in 3D cavity filled with Al2O3 nanofluid. Alexandria Engineering Journal, 56(1): 71-79. https://doi.org/10.1016/j.aej.2016.09.005   [Google Scholar]
  21. Kolsi L, Öztop HF, Al-Rashed AA, Aydi A, Naceur BM, and Abu-Hamdeh N (2019). Control of heat transfer and fluid flow via a moving fin in a triangular enclosure filled with nanofluid. Heat Transfer Research, 50(2): 159-181. https://doi.org/10.1615/HeatTransRes.2018019485   [Google Scholar]
  22. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C and Pop I (2019). Recent advances in modeling and simulation of nanofluid flows-part II: Applications. Physics Reports, 791: 1-59. https://doi.org/10.1016/j.physrep.2018.11.003   [Google Scholar]
  23. Oztop HF and Abu-Nada E (2008). Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. International Journal of Heat and Fluid Flow, 29(5): 1326-1336. https://doi.org/10.1016/j.ijheatfluidflow.2008.04.009   [Google Scholar]
  24. Pordanjani AH, Aghakhani S, Karimipour A, Afrand M, and Goodarzi M (2019). Investigation of free convection heat transfer and entropy generation of nanofluid flow inside a cavity affected by magnetic field and thermal radiation. Journal of Thermal Analysis and Calorimetry, 137(3): 997-1019. https://doi.org/10.1007/s10973-018-7982-4   [Google Scholar]
  25. Rahimi A, Azarikhah P, Kasaeipoor A, Malekshah EH, and Kolsi L (2019). Lattice Boltzmann simulation of free convection’s hydrothermal aspects in a finned/multi-pipe cavity filled with CuO-water nanofluid. International Journal of Numerical Methods for Heat and Fluid Flow, 29(3): 1058-1078. https://doi.org/10.1108/HFF-07-2018-0349   [Google Scholar]
  26. Rahimi A, Kasaeipoor A, Amiri A, Doranehgard MH, Malekshah EH, and Kolsi L (2018a). Lattice Boltzmann method based on Dual-MRT model for three-dimensional natural convection and entropy generation in CuO–water nanofluid filled cuboid enclosure included with discrete active walls. Computers and Mathematics with Applications, 75(5): 1795-1813. https://doi.org/10.1016/j.camwa.2017.11.037   [Google Scholar]
  27. Rahimi A, Kasaeipoor A, Malekshah EH, and Kolsi L (2018d). Lattice Boltzmann simulation of free convection in nanofluid filled cavity with partially active walls–entropy generation and heatline visualization. International Journal of Numerical Methods for Heat and Fluid Flow, 28(10): 2254-2283. https://doi.org/10.1108/HFF-06-2017-0229   [Google Scholar]
  28. Rahimi A, Kasaeipoor A, Malekshah EH, Palizian M, and Kolsi L (2018b). Lattice Boltzmann numerical method for natural convection and entropy generation in cavity with refrigerant rigid body filled with DWCNTs-water nanofluid-experimental thermo-physical properties. Thermal Science and Engineering Progress, 5: 372-387. https://doi.org/10.1016/j.tsep.2018.01.005   [Google Scholar]
  29. Rahimi A, Sepehr M, Lariche MJ, Kasaeipoor A, Malekshah EH, and Kolsi L (2018c). Entropy generation analysis and heatline visualization of free convection in nanofluid (KKL model-based)-filled cavity including internal active fins using lattice Boltzmann method. Computers and Mathematics with Applications, 75(5): 1814-1830. https://doi.org/10.1016/j.camwa.2017.12.008   [Google Scholar]
  30. Rashidi I, Kolsi L, Ahmadi G, Mahian O, Wongwises S, and Abu-Nada E (2020). Three-dimensional modelling of natural convection and entropy generation in a vertical cylinder under heterogeneous heat flux using nanofluids. International Journal of Numerical Methods for Heat and Fluid Flow, 30(1): 119-142. https://doi.org/10.1108/HFF-12-2018-0731   [Google Scholar]
  31. Rostami S, Aghakhani S, Hajatzadeh Pordanjani A, Afrand M, Cheraghian G, Oztop HF, and Shadloo MS (2020). A review on the control parameters of natural convection in different shaped cavities with and without nanofluid. Processes, 8(9): 1011. https://doi.org/10.3390/pr8091011   [Google Scholar]
  32. Safaei MR, Karimipour A, Abdollahi A, and Nguyen TK (2018). The investigation of thermal radiation and free convection heat transfer mechanisms of nanofluid inside a shallow cavity by lattice Boltzmann method. Physica A: Statistical Mechanics and Its Applications, 509: 515-535. https://doi.org/10.1016/j.physa.2018.06.034   [Google Scholar]
  33. Selimefendigil F, Öztop HF, and Abu-Hamdeh N (2016). Mixed convection due to rotating cylinder in an internally heated and flexible walled cavity filled with SiO2–water nanofluids: Effect of nanoparticle shape. International Communications in Heat and Mass Transfer, 71: 9-19. https://doi.org/10.1016/j.icheatmasstransfer.2015.12.007   [Google Scholar]
  34. Yousefzadeh S, Rajabi H, Ghajari N, Sarafraz MM, Akbari OA, and Goodarzi M (2020). Numerical investigation of mixed convection heat transfer behavior of nanofluid in a cavity with different heat transfer areas. Journal of Thermal Analysis and Calorimetry, 140(6): 2779-2803. https://doi.org/10.1007/s10973-019-09018-6   [Google Scholar]