International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 8, Issue 3 (March 2021), Pages: 21-29

----------------------------------------------

 Original Research Paper

 Title: Design of a clinical database to support research purposes: Challenges and solutions

 Author(s): Halima Samra 1, 2, *, Alice Li 3, Ben Soh 1

 Affiliation(s):

 1Department of Computer Science and Information Technology, La Trobe University, Melbourne, Australia
 2Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
 3La Trobe Business School, La Trobe University, Melbourne, Australia

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-5199-3677

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2021.03.003

 Abstract:

The aim of this paper is to propose solutions to challenges faced by database systems for clinical research purposes. Current clinical databases are primarily based on data acquisition for healthcare intentions. However, these healthcare databases lack the data analysis capability for clinical researchers. In order for clinical researchers to use the healthcare databases in an effective manner, such as in their clinical trial studies, challenges of data integration, data storage, and data retrieval in the current healthcare database settings need to be overcome. Our proposed solutions include using: 1) NoSQL to efficiently integrate clinical databases with legacy healthcare databases, (2) entity attribute value model for data retrieval, and (3) warehouse for big data storage. 

 © 2020 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Databases and information systems, Relational databases, Clinical research databases, Clinical research information systems, Data modeling

 Article History: Received 27 August 2020, Received in revised form 4 November 2020, Accepted 5 November 2020

 Acknowledgment:

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

  Samra H, Li A, and Soh B (2021). Design of a clinical database to support research purposes: Challenges and solutions. International Journal of Advanced and Applied Sciences, 8(3): 21-29

 Permanent Link to this page

 Figures

 Fig. 1 

 Tables

 Table 1 Table 2

----------------------------------------------

 References (46)

  1. Aggarwal CC and Reddy CK (2015). Healthcare data analytics. Volume 36, CRC Press, Boca Raton, USA.   [Google Scholar]
  2. Akerkar R (2013). Big data computing. CRC Press, Boca Raton, USA. https://doi.org/10.1201/b16014   [Google Scholar]
  3. Aleem IS, Schemitsch EH, and Hanson BP (2008). What is a clinical decision analysis study? Indian Journal of Orthopaedics, 42(2): 137-139. https://doi.org/10.4103/0019-5413.40248   [Google Scholar] PMid:19826517 PMCid:PMC2759613
  4. Anhøj J (2003). Generic design of web-based clinical databases. Journal of Medical Internet Research, 5(4): e27. https://doi.org/10.2196/jmir.5.4.e27   [Google Scholar] PMid:14713655 PMCid:PMC1550574
  5. Archenaa J and Anita EM (2015). A survey of big data analytics in healthcare and government. Procedia Computer Science, 50: 408-413. https://doi.org/10.1016/j.procs.2015.04.021   [Google Scholar]
  6. Batra S, Sachdeva S, and Bhalla S (2018). Entity attribute value style modeling approach for archetype based data. Information, 9(1): 2. https://doi.org/10.3390/info9010002   [Google Scholar]
  7. Benson T and Grieve G (2016). Principles of health interoperability: SNOMED CT, HL7 and FHIR. Springer, Berlin, Germany. https://doi.org/10.1007/978-3-319-30370-3   [Google Scholar]
  8. Blanke T (2014). Digital asset ecosystems: Rethinking crowds and clouds. Elsevier, Amsterdam, Netherlands.   [Google Scholar]
  9. Brazhnik O (2007). Databases and the geometry of knowledge. Data and Knowledge Engineering, 61(2): 207-227. https://doi.org/10.1016/j.datak.2006.05.005   [Google Scholar]
  10. Campbell RJ (2004). Database design: What HIM professionals need to know. Perspectives in Health Information Management, 1: 6.   [Google Scholar]
  11. Cardon D (2018). Healthcare databases: Purpose, strengths, weaknesses. Health Catalyst, Salt Lake City, USA.   [Google Scholar]
  12. Chen CP and Zhang CY (2014). Data-intensive applications, challenges, techniques and technologies: A survey on big data. Information Sciences, 275: 314-347. https://doi.org/10.1016/j.ins.2014.01.015   [Google Scholar]
  13. Chen M, Mao S, Zhang Y, and Leung VC (2014). Big data: Related technologies, challenges and future prospects. Volume 96, Springer, Berlin, Germany. https://doi.org/10.1007/978-3-319-06245-7   [Google Scholar]
  14. Chow SC and Liu JP (2005). Design and analysis of clinical trials: Concepts and methodologies. 2nd Edition, Wiley and Sons, Hoboken, USA.   [Google Scholar]
  15. Collen MF (1990). Clinical research databases: A historical review. Journal of Medical Systems, 14(6): 323-344. https://doi.org/10.1007/BF00996713   [Google Scholar] PMid:2132040
  16. Collen MF (2012). Secondary medical research databases. In: Collen MF (Ed.), Computer medical databases: 183-193. Springer, London, UK. https://doi.org/10.1007/978-0-85729-962-8_6   [Google Scholar]
  17. Dziadkowiec O, Callahan T, Ozkaynak M, Reeder B, and Welton J (2016). Using a data quality framework to clean data extracted from the electronic health record: A case study. eGEMs: Generating Evidence and Methods to improve patient outcomes, 4(1): 1201. https://doi.org/10.13063/2327-9214.1201   [Google Scholar] PMid:27429992 PMCid:PMC4933574
  18. Erturk E and Jyoti K (2015). Perspectives on a big data Application: What database engineers and IT students need to know. Engineering, Technology and Applied Science Research, 5(5): 850-853. https://doi.org/10.48084/etasr.592   [Google Scholar]
  19. Fayyad U, Piatetsky-Shapiro G, and Smyth P (1996). From data mining to knowledge discovery in databases. AI Magazine, 17(3): 37-37.   [Google Scholar]
  20. Franks B (2012). Taming the big data tidal wave: Finding opportunities in huge data streams with advanced analytics. Volume 49, John Wiley and Sons, Hoboken, USA. https://doi.org/10.1002/9781119204275   [Google Scholar]
  21. Gligorijević V and Pržulj N (2015). Methods for biological data integration: Perspectives and challenges. Journal of the Royal Society Interface, 12(112): 20150571. https://doi.org/10.1098/rsif.2015.0571   [Google Scholar] PMid:26490630 PMCid:PMC4685837
  22. Gliklich RE, Dreyer NA, and Leavy MB (2014). Registries for evaluating patient outcomes: A user’s guide. Government Printing Office, Washington, USA.   [Google Scholar]
  23. Hashem IAT, Yaqoob I, Anuar NB, Mokhtar S, Gani A, and Khan SU (2015). The rise of “big data” on cloud computing: Review and open research issues. Information Systems, 47: 98-115. https://doi.org/10.1016/j.is.2014.07.006   [Google Scholar]
  24. Hassanien AE, Azar AT, Snasael V, Kacprzyk J, and Abawajy JH (2015). Big data in complex systems. Volume 9, Springer, Berlin, Germany. https://doi.org/10.1007/978-3-319-11056-1   [Google Scholar]
  25. Kambatla K, Kollias G, Kumar V, and Grama A (2014). Trends in big data analytics. Journal of Parallel and Distributed Computing, 74(7): 2561-2573. https://doi.org/10.1016/j.jpdc.2014.01.003   [Google Scholar]
  26. Kaur K and Rani R (2013). Modeling and querying data in NoSQL databases. In the IEEE International Conference on Big Data, IEEE, Silicon Valley, USA: 1-7. https://doi.org/10.1109/BigData.2013.6691765   [Google Scholar]
  27. Khan WA, Hussain M, Latif K, Afzal M, Ahmad F, and Lee S (2013). Process interoperability in healthcare systems with dynamic semantic web services. Computing, 95(9): 837-862. https://doi.org/10.1007/s00607-012-0239-3   [Google Scholar]
  28. Kudyba S (2014). Big data, mining, and analytics: Components of strategic decision making. CRC Press, Boca Raton, USA. https://doi.org/10.1201/b16666   [Google Scholar]
  29. Lippeveld T, Sauerborn R, Bodart C, and WHO (2000). Design and implementation of health information systems. World Health Organization, Geneva, Switzerland.   [Google Scholar]
  30. Loke YK (2014). Use of databases for clinical research. Archives of Disease in Childhood, 99(6): 587-589. https://doi.org/10.1136/archdischild-2013-304466   [Google Scholar] PMid:24489362
  31. Loper D, Klettke M, Bruder I, and Heuer A (2013). Enabling flexible integration of healthcare information using the entity-attribute-value storage model. Health Information Science and Systems, 1: 9. https://doi.org/10.1186/2047-2501-1-9   [Google Scholar] PMid:25825661 PMCid:PMC4340778
  32. Louie B, Mork P, Martin-Sanchez F, Halevy A, and Tarczy-Hornoch P (2007). Data integration and genomic medicine. Journal of Biomedical Informatics, 40(1): 5-16. https://doi.org/10.1016/j.jbi.2006.02.007   [Google Scholar] PMid:16574494
  33. Madison T and Plaunt M (2003). Clinical data management. 2nd Edition, Encyclopedia of Biopharmaceutical Statistics, New York, USA. https://doi.org/10.1201/b14760-26   [Google Scholar]
  34. Manyika J, Chui M, Brown B, Bughin J, Dobbs R, Roxburgh C, and Hung Byers A (2011). Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute.   [Google Scholar]
  35. Minelli M, Chambers M, and Dhiraj A (2013). Big data, big analytics: Emerging business intelligence and analytic trends for today's businesses. Volume 578, John Wiley and Sons, Hoboken, USA. https://doi.org/10.1002/9781118562260   [Google Scholar]
  36. Mohanty H, Bhuyan P, and Chenthati D (2015). Big data: A primer. Volume 11, Springer, Berlin, Germany. https://doi.org/10.1007/978-81-322-2494-5   [Google Scholar]
  37. Muji M, Ciupa RV, Dobru D, Bica C, Olah P, Bacarea V, and Marusteri M (2009). Database design patterns for healthcare information systems. In the International Conference on Advancements of Medicine and Health Care Through Technology, Springer, Cluj-Napoca, Romania: 63-66. https://doi.org/10.1007/978-3-642-04292-8_14   [Google Scholar]
  38. Nadkarni P and Marenco L (2013). Data integration: An overview. In: Sarkar IN (ed.), Methods in biomedical informatics: A pragmatic approach: 15-47. Elsevier Inc., Waltham, USA. https://doi.org/10.1016/B978-0-12-401678-1.00002-6   [Google Scholar] PMCid:PMC4325484
  39. Raghupathi W and Raghupathi V (2014). Big data analytics in healthcare: Promise and potential. Health Information Science and Systems, 2: 3. https://doi.org/10.1186/2047-2501-2-3   [Google Scholar] PMid:25825667 PMCid:PMC4341817
  40. Raj P, Raman A, Nagaraj D, and Duggirala S (2015). Big data analytics for healthcare. In: Raj P, Raman A, Nagaraj D, and Duggirala S (Eds.), High-performance big-data analytics: 391-424. Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-319-20744-5_14   [Google Scholar]
  41. Richmond B (2006). Introduction to data analysis handbook. Academy for Educational Development, Durham, UK.   [Google Scholar]
  42. Rocca WA, Yawn BP, Sauver JLS, Grossardt BR, and Melton LJ (2012). History of the Rochester epidemiology project: Half a century of medical records linkage in a US population. Mayo Clinic Proceedings, 87(12): 1202-1213. https://doi.org/10.1016/j.mayocp.2012.08.012   [Google Scholar] PMid:23199802 PMCid:PMC3541925
  43. Sahama TR and Croll PR (2007). A data warehouse architecture for clinical data warehousing. In: Warren J, Roddick J, Steketee C, Brankovic L, Coddington P, and Wendelborn A (Eds.), ACSW frontiers 2007: Proceedings of 5th Australasian symposium on grid computing and e-research: 227-232. Australian Computer Society, Darlinghurst, Australia.   [Google Scholar]
  44. Srinivasa S and Bhatnagar V (2012). Big data analytics. In the 1st International Conference on Big Data Analytics BDA, Springer, New Delhi, India: 24-26. https://doi.org/10.1007/978-3-642-35542-4   [Google Scholar]
  45. Wiederhold G (2012). Databases for health care. 1st Edition, Springer, Berlin, Germany. https://doi.org/10.1007/978-3-642-93174-1_1   [Google Scholar]
  46. Yang JJ, Li J, Mulder J, Wang Y, Chen S, Wu H, and Pan H (2015). Emerging information technologies for enhanced healthcare. Computers in Industry, 69: 3-11. https://doi.org/10.1016/j.compind.2015.01.012   [Google Scholar]