International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 8, Issue 1 (January 2021), Pages: 95-103

----------------------------------------------

 Original Research Paper

 Title: Valorization of underutilized river tamarind Leucaena leucocephala seeds biomass for cellulose nanocrystals synthesis

 Author(s): Maryam Husin 1, Zul Ilham 2, *, Abd Rashid Li 3, Atik Zufar Mohd Razaki 2, Wan Abd Al Qadr Imad Wan-Mohtar 2, Salbiah Man 3

 Affiliation(s):

 1Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
 2Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
 3Forest Research Institute Malaysia (FRIM), Kuala Lumpur, Malaysia

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0003-3836-0848

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2021.01.012

 Abstract:

River tamarind or scientifically Leucaena leucocephala, is one of the underutilized nanocellulose resources with the potential to be used in reinforcement materials. This work evaluated the use of the insoluble residual waste or marc obtained during the isolation of galactomannan from Leucaena leucocephala seed (LLS) as a feedstock of cellulose to obtain cellulose nanocrystals by a two-step acid hydrolysis followed by its characterization and morphological study. The first step involved acid hydrolyzation of the hemicellulose and lignin from LLS, while the second step dealt with the removal of the amorphous region to produce crystalline LLS nanocrystals (NLLS). The physicochemical properties of nanocrystals were characterized using the Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), particle size analyzer (PSA), X-ray diffractometer (XRD), thermal gravimetric analysis (TGA), and gel permeation chromatography (GPC). The NLLS isolated showed a rod-like structure in the range of 70–90nm in diameter with a crystallinity index of 76% and thermal stability at 264°C. PSA indicates that 97.5% of the size distribution of NLLS was below 136.9nm. GPC analysis also revealed that the sulphuric acid hydrolyzation during the second step caused a reduction in the molecular weight due to the cleaving of glycosidic bonds in the structure.  These results indicated that LLS waste is a potential feedstock for cellulose nanocrystals preparation. 

 © 2020 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Leucaena leucocephala, Cellulose, Nanocrystals, Acid hydrolysis, Agricultural waste

 Article History: Received 6 May 2020, Received in revised form 1 September 2020, Accepted 3 September 2020

 Acknowledgment:

The authors would like to thank the University of Malaya for research funding IIRG017B-2019 and ST006-2019.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

  Husin M, Ilham Z, and Li AR et al. (2021). Valorization of underutilized river tamarind Leucaena leucocephala seeds biomass for cellulose nanocrystals synthesis. International Journal of Advanced and Applied Sciences, 8(1): 95-103

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 

 Tables

 Table 1 

----------------------------------------------

 References (38)

  1. Abitbol T, Rivkin A, Cao Y, Nevo Y, Abraham E, Ben-Shalom T, and Shoseyov O (2016). Nanocellulose, a tiny fiber with huge applications. Current Opinion in Biotechnology, 39: 76-88. https://doi.org/10.1016/j.copbio.2016.01.002   [Google Scholar] PMid:26930621
  2. Bano S and Negi YS (2017). Studies on cellulose nanocrystals isolated from groundnut shells. Carbohydrate Polymers, 157: 1041-1049. https://doi.org/10.1016/j.carbpol.2016.10.069   [Google Scholar] PMid:27987804
  3. Brendel O, Iannetta PPM, and Stewart D (2000). A rapid and simple method to isolate pure alpha-cellulose. Phytochemical Analysis: An International Journal of Plant Chemical and Biochemical Techniques, 11(1): 7-10. https://doi.org/10.1002/(SICI)1099-1565(200001/02)11:1<7::AID-PCA488>3.0.CO;2-U   [Google Scholar]
  4. Chen C and Hu L (2018). Nanocellulose toward advanced energy storage devices: Structure and electrochemistry. Accounts of Chemical Research, 51(12): 3154-3165. https://doi.org/10.1021/acs.accounts.8b00391   [Google Scholar] PMid:30299086
  5. Chen YW, Lee HV, and Abd Hamid SB (2016). Preparation of nanostructured cellulose via Cr (III)-and Mn (II)-transition metal salt catalyzed acid hydrolysis approach. BioResources, 11(3): 7224-7241. https://doi.org/10.15376/biores.11.3.7224-7241   [Google Scholar]
  6. Cherian BM, Pothan LA, Nguyen-Chung T, Mennig G, Kottaisamy M, and Thomas S (2008). A novel method for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization. Journal of Agricultural and Food Chemistry, 56(14): 5617-5627. https://doi.org/10.1021/jf8003674   [Google Scholar] PMid:18570426
  7. Chirayil CJ, Joy J, Mathew L, Mozetic M, Koetz J, and Thomas S (2014). Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Industrial Crops and Products, 59: 27-34. https://doi.org/10.1016/j.indcrop.2014.04.020   [Google Scholar]
  8. Fahma F, Iwamoto S, Hori N, Iwata T, and Takemura A (2010). Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose, 17(5): 977-985. https://doi.org/10.1007/s10570-010-9436-4   [Google Scholar]
  9. García A, Gandini A, Labidi J, Belgacem N, and Bras J (2016). Industrial and crop wastes: A new source for nanocellulose biorefinery. Industrial Crops and Products, 93: 26-38. https://doi.org/10.1016/j.indcrop.2016.06.004   [Google Scholar]
  10. George J and Sabapathi SN (2015). Cellulose nanocrystals: Synthesis, functional properties, and applications. Nanotechnology Science and Application, 8: 45–54. https://doi.org/10.2147/NSA.S64386   [Google Scholar] PMid:26604715 PMCid:PMC4639556
  11. Haafiz MM, Hassan A, Zakaria Z, and Inuwa IM (2014). Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose. Carbohydrate Polymers, 103: 119-125. https://doi.org/10.1016/j.carbpol.2013.11.055   [Google Scholar] PMid:24528708
  12. Han MD, Han JS, Hyun SH, and Shin HW (2008). Solubilization of water-insoluble beta-glucan isolated from Ganoderma lucidum. Journal of Environmental Biology, 29(2): 237-242.   [Google Scholar]
  13. Henrique MA, Silvério HA, Neto WPF, and Pasquini D (2013). Valorization of an agro-industrial waste, mango seed, by the extraction and characterization of its cellulose nanocrystals. Journal of Environmental Management, 121: 202-209. https://doi.org/10.1016/j.jenvman.2013.02.054   [Google Scholar] PMid:23542530
  14. Husin M, Li AR, Ramli N, Romli AZ, Hakimi MI, and Ilham Z (2017). Preparation and characterization of cellulose and microcrystalline cellulose isolated from waste Leucaena leucocephala seeds. International Journal of Advanced and Applied Sciences, 4(3): 51-58. https://doi.org/10.21833/ijaas.2017.03.009   [Google Scholar]
  15. Husin M, Rahim N, Ahmad MR, Romli AZ, and Ilham Z (2019). Hydrolysis of microcrystalline cellulose isolated from waste seeds of Leucaena leucocephala for glucose production. Malaysian Journal of Fundamental and Applied Sciences, 15(2): 200-205. https://doi.org/10.11113/mjfas.v15n2.1165   [Google Scholar]
  16. Ilham Z and Nimme FH (2019). Quantitative priority estimation model for evaluation of various non-edible plant oils as potential biodiesel feedstock. AIMS Agriculture and Food, 4(2): 303-319. https://doi.org/10.3934/agrfood.2019.2.303   [Google Scholar]
  17. Jiang F and Hsieh YL (2015). Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydrate Polymers, 122: 60-68. https://doi.org/10.1016/j.carbpol.2014.12.064   [Google Scholar] PMid:25817643
  18. Jonoobi M, Harun J, Tahir PM, Shakeri A, SaifulAzry S, and Makinejad MD (2011). Physicochemical characterization of pulp and nanofibers from kenaf stem. Materials Letters, 65(7): 1098-1100. https://doi.org/10.1016/j.matlet.2010.08.054   [Google Scholar]
  19. Jorfi M and Foster EJ (2015). Recent advances in nanocellulose for biomedical applications. Journal of Applied Polymer Science, 132(14): 41719. https://doi.org/10.1002/app.41719   [Google Scholar]
  20. Karimi K and Taherzadeh MJ (2016). A critical review of analytical methods in pretreatment of lignocelluloses: Composition, imaging, and crystallinity. Bioresource Technology, 200: 1008-1018. https://doi.org/10.1016/j.biortech.2015.11.022   [Google Scholar] PMid:26614225
  21. Khalil HA, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R, and Jawaid M (2014). Production and modification of nanofibrillated cellulose using various mechanical processes: A review. Carbohydrate Polymers, 99: 649-665. https://doi.org/10.1016/j.carbpol.2013.08.069   [Google Scholar] PMid:24274556
  22. Kim JS, Lee YY, and Kim TH (2016). A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresource Technology, 199: 42-48. https://doi.org/10.1016/j.biortech.2015.08.085   [Google Scholar] PMid:26341010
  23. Li Y, Pickering KL, and Farrell RL (2009). Analysis of green hemp fibre reinforced composites using bag retting and white rot fungal treatments. Industrial Crops and Products, 29(2-3): 420-426. https://doi.org/10.1016/j.indcrop.2008.08.005   [Google Scholar]
  24. Lin N and Dufresne A (2014). Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal, 59: 302-325. https://doi.org/10.1016/j.eurpolymj.2014.07.025   [Google Scholar]
  25. Lu Q, Cai Z, Lin F, Tang L, Wang S, and Huang B (2016). Extraction of cellulose nanocrystals with a high yield of 88% by simultaneous mechanochemical activation and phosphotungstic acid hydrolysis. ACS Sustainable Chemistry and Engineering, 4(4): 2165-2172. https://doi.org/10.1021/acssuschemeng.5b01620   [Google Scholar]
  26. Mandal A and Chakrabarty D (2011). Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydrate Polymers, 86(3): 1291-1299. https://doi.org/10.1016/j.carbpol.2011.06.030   [Google Scholar]
  27. Marett J, Aning A, and Foster EJ (2017). The isolation of cellulose nanocrystals from pistachio shells via acid hydrolysis. Industrial Crops and Products, 109: 869-874. https://doi.org/10.1016/j.indcrop.2017.09.039   [Google Scholar]
  28. Mendes, DCCA, Ferreira NMS, Furtado CRG, and de Sousa AMF (2015). Isolation and characterization of nanocrystalline cellulose from corn husk. Materials Letters, 148: 26-29. https://doi.org/10.1016/j.matlet.2015.02.047   [Google Scholar]
  29. Morais JPS, Rosa MDF, De Souza Filho MDSM, Nascimento LD, Do Nascimento DM, and Cassales AR (2013). Extraction and characterization of nano-cellulose structures from raw cotton linter. Carbohydrate Polymers, 91(1): 229-235. https://doi.org/10.1016/j.carbpol.2012.08.010   [Google Scholar] PMid:23044127
  30. Othman SH (2014). Bio-nanocomposite materials for food packaging applications: Types of biopolymer and nano-sized filler. Agriculture and Agricultural Science Procedia, 2: 296–303. https://doi.org/10.1016/j.aaspro.2014.11.042   [Google Scholar]
  31. Pius A, Ekebafe L, Ugbesia S, and Pius R (2014). Modification of adhesive using cellulose micro-fiber (CMF) from melon seed shell. American Journal of Polymer Science, 4(4): 101-106.   [Google Scholar]
  32. Rabemanolontsoa H and Saka S (2016). Various pretreatments of lignocellulosics. Bioresource Technology, 199: 83-91. https://doi.org/10.1016/j.biortech.2015.08.029   [Google Scholar] PMid:26316403
  33. Rahim N, Li AR, Kamarun D, and Ahmad MR (2018). Isolation and characterization of galactomannan from seed of Leucaena leucocephala. Polymer Bulletin, 75(5): 2027-2037. https://doi.org/10.1007/s00289-017-2135-7   [Google Scholar]
  34. Sè€be G, Ham-Pichavant F, Ibarboure E, Koffi ALC, and Tingaut P (2012). Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates. Biomacromolecules, 13(2): 570-578. https://doi.org/10.1021/bm201777j   [Google Scholar] PMid:22260431
  35. Segal LGJMA, Creely JJ, Martin Jr AE, and Conrad CM (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 29(10): 786-794. https://doi.org/10.1177/004051755902901003   [Google Scholar]
  36. Smyth M, García A, Rader C, Foster EJ, and Bras J (2017). Extraction and process analysis of high aspect ratio cellulose nanocrystals from corn (Zea mays) agricultural residue. Industrial Crops and Products, 108: 257-266. https://doi.org/10.1016/j.indcrop.2017.06.006   [Google Scholar]
  37. Tibolla H, Pelissari FM, Rodrigues MI, and Menegalli FC (2017). Cellulose nanofibers produced from banana peel by enzymatic treatment: Study of process conditions. Industrial Crops and Products, 95: 664-674. https://doi.org/10.1016/j.indcrop.2016.11.035   [Google Scholar]
  38. Xie H, Du H, Yang X, and Si C (2018). Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials. International Journal of Polymer Science, 2018: 7923068. https://doi.org/10.1155/2018/7923068   [Google Scholar]