International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 8, Issue 1 (January 2021), Pages: 26-30

----------------------------------------------

 Original Research Paper

 Title: Toward 6G wireless communications: Vision, applications, and technologies

 Author(s): Ahmed A. Alzamil *

 Affiliation(s):

 Electrical Engineering Department, College of Engineering, University of Hail, Hail, Saudi Arabia

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0001-9031-7199

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2021.01.004

 Abstract:

5G is the latest standard for wireless networks that are still being slowly deployed to replace 4G and even 3G networks. Although it brings great improvements beyond 4G, it will not be capable of fulfilling the future requirements driven by the steadily increasing demands of the digital society. Therefore, the focus is now shifting toward the sixth generation of wireless communication systems (6G). Enhanced wireless connectivity that can serve the next decade is the mission of 6G. The latest initiatives have discussed the framework and the required performance capabilities of 6G cellular systems. This paper investigates the concept of the next generation of wireless communications. Therefore, ambitious scenarios of the future of wireless communications are presented. To defend the need for transitioning beyond 5G in the next decade, this paper explores the expectations, the use cases, the key performance indicators (KPIs), and the enabling technologies that will not to be available until 6G networks are deployed. 

 © 2020 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: 5G, 6G, Wireless networks, Cellular

 Article History: Received 4 June 2020, Received in revised form 16 August 2020, Accepted 20 August 2020

 Acknowledgment:

The author would like to thank the deanship of scientific research at the University of Hail in Saudi Arabia for supporting and funding this project.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

  Alzamil AA (2021). Toward 6G wireless communications: Vision, applications, and technologies. International Journal of Advanced and Applied Sciences, 8(1): 26-30

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3

 Tables

 No Table 

----------------------------------------------

 References (21)

  1. Almazroi AA (2018). Performance analysis of 4G broadband cellular networks. International Journal of Advanced and Applied Sciences, 5(9): 12-17. https://doi.org/10.21833/ijaas.2018.09.003   [Google Scholar]
  2. Belmonte-Hernández A, Hernández-Peñaloza G, Gutiérrez DM, and Álvarez F (2019). SWiBluX: Multi-sensor deep learning fingerprint for precise real-time indoor tracking. IEEE Sensors Journal, 19(9): 3473-3486. https://doi.org/10.1109/JSEN.2019.2892590   [Google Scholar]
  3. Berardinelli G, Mahmood NH, Rodriguez I, and Mogensen P (2018). Beyond 5G wireless IRT for industry 4.0: Design principles and spectrum aspects. In the IEEE Globecom Workshops, IEEE, Abu Dhabi, UAE: 1-6. https://doi.org/10.1109/GLOCOMW.2018.8644245   [Google Scholar]
  4. Chen L, Chen L, Jordan S, Liu YK, Moody D, Peralta R, and Smith-Tone D (2016). Report on post-quantum cryptography. National Institute of Standards and Technology, Gaithersburg, USA. https://doi.org/10.6028/NIST.IR.8105   [Google Scholar]
  5. Dang S, Amin O, Shihada B, and Alouini MS (2020). What should 6G be? Nature Electronics, 3(1): 20-29. https://doi.org/10.1038/s41928-019-0355-6   [Google Scholar]
  6. Giordani M, Polese M, Mezzavilla M, Rangan S, and Zorzi M (2020). Toward 6G networks: Use cases and technologies. IEEE Communications Magazine, 58(3): 55–61. https://doi.org/10.1109/MCOM.001.1900411   [Google Scholar]
  7. Henry R, Herzberg A, and Kate A (2018). Blockchain access privacy: Challenges and directions. IEEE Security and Privacy, 16(4): 38-45. https://doi.org/10.1109/MSP.2018.3111245   [Google Scholar]
  8. Huynh VN, Hoang DT, Lu X, Niyato D, Wang P, and Kim DI (2018). Ambient backscatter communications: A contemporary survey. IEEE Communications Surveys and Tutorials, 20(4): 2889-2922. https://doi.org/10.1109/COMST.2018.2841964   [Google Scholar]
  9. ITU (2015). IMT traffic estimates for the years 2020 to 2030. Report ITU-R M.2370-0, International Telecommunication Union, Geneva, Switzerland.   [Google Scholar]
  10. Letaief KB, Chen W, Shi Y, Zhang J, and Zhang YJA (2019). The roadmap to 6G: AI empowered wireless networks. IEEE Communications Magazine, 57(8): 84-90. https://doi.org/10.1109/MCOM.2019.1900271   [Google Scholar]
  11. Mao Q, Hu F, and Hao Q (2018). Deep learning for intelligent wireless networks: A comprehensive survey. IEEE Communications Surveys and Tutorials, 20(4): 2595-2621. https://doi.org/10.1109/COMST.2018.2846401   [Google Scholar]
  12. Nagatsuma T, Ducournau G, and Renaud CC (2016). Advances in terahertz communications accelerated by photonics. Nature Photonics, 10(6): 371-379. https://doi.org/10.1038/nphoton.2016.65   [Google Scholar]
  13. Ulukus S, Yener A, Erkip E, Simeone O, Zorzi M, Grover P, and Huang K (2015). Energy harvesting wireless communications: A review of recent advances. IEEE Journal on Selected Areas in Communications, 33(3): 360-381. https://doi.org/10.1109/JSAC.2015.2391531   [Google Scholar]
  14. Viswanathan H and Mogensen PE (2020). Communications in the 6G era. IEEE Access, 8: 57063-57074. https://doi.org/10.1109/ACCESS.2020.2981745   [Google Scholar]
  15. Wakunami K, Hsieh PY, Oi R, Senoh T, Sasaki H, Ichihashi Y, and Yamamoto K (2016). Projection-type see-through holographic three-dimensional display. Nature Communications, 7(1): 1-7. https://doi.org/10.1038/ncomms12954   [Google Scholar] PMid:27694975 PMCid:PMC5063955
  16. Xu X, Pan Y, Lwin PPMY, and Liang X (2011). 3D holographic display and its data transmission requirement. In the International Conference on Information Photonics and Optical Communications, IEEE, Jurong West, Singapore: 1-4. https://doi.org/10.1109/IPOC.2011.6122872   [Google Scholar]
  17. Yang L and Wang FY (2007). Driving into intelligent spaces with pervasive communications. IEEE Intelligent Systems, 22(1): 12-15. https://doi.org/10.1109/MIS.2007.8   [Google Scholar]
  18. Yunas SF, Valkama M, and Niemelä J (2015). Spectral and energy efficiency of ultra-dense networks under different deployment strategies. IEEE Communications Magazine, 53(1): 90-100. https://doi.org/10.1109/MCOM.2015.7010521   [Google Scholar]
  19. Zhang X, Cheng W, and Zhang H (2018). Heterogeneous statistical QoS provisioning over airborne mobile wireless networks. IEEE Journal on Selected Areas in Communications, 36(9): 2139-2152. https://doi.org/10.1109/JSAC.2018.2864415   [Google Scholar]
  20. Zhang Z, Xiao Y, Ma Z, Xiao M, Ding Z, Lei X, and Fan P (2019). 6G wireless networks: Vision, requirements, architecture, and key technologies. IEEE Vehicular Technology Magazine, 14(3): 28-41. https://doi.org/10.1007/978-3-030-01150-5   [Google Scholar]
  21. Zhu N, Diethe T, Camplani M, Tao L, Burrows A, Twomey N, and Craddock I (2015). Bridging e-health and the internet of things: The sphere project. IEEE Intelligent Systems, 30(4): 39-46. https://doi.org/10.1109/MIS.2015.57   [Google Scholar]